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Abstract

Parallel disks can improve I�O performance in a man�
ner analogous to the use of parallel processors to im�
prove computation times� However� due to their data
storage function� reliability issues become exceedingly
important� Currently proposed schemes use shadow�
ing or parity to achieve reliability in parallel disks� In
this paper we introduce the idea of using the Informa�
tion Dispersal Algorithm �IDA� of Michael O� Rabin
��� to distribute data and redundancy information uni�
formly among multiple disks and compare the perfor�
mance and reliability characteristics of shadowing� par�
ity� and IDA� We discuss some ways to take advantage
of the uniformity of data placement and argue that IDA
is the algorithm of choice for achieving reliability and
performance in parallel disk systems�

� Introduction
Recently� parallel disk systems have emerged as a po�
tential solution for achieving ultra�high capacity� per�
formance and reliability at a reasonably low cost� This
emerging technology is likely to have a great impact on
the market of data�storage devices for mainframe com�
puters� massively parallel computers and large database
systems ���� The basic idea underlying the design of par�
allel disk systems is to use a large number of inexpensive
small disks to attain very large capacities� The rela�
tively low cost per megabyte of storage on these disks�
combined with their better volumetric and power e��
ciencies ���� makes them very attractive when compared
to larger disks�

A signi�cant drawback of using a large number of
parallel disks to improve I	O performance is the e
ect
it has on reliability� More disks means more frequent
failures and� thus� an increased probability of data loss�
Without taking additional protective measures� it is well
known that the probability of losing data increases al�
most linearly with the number of disks in the system�

With large disk arrays� � the reliability of the system
drops to unacceptable levels� For example� even with a
small disk array of ���
� disks� the MTTF �Mean Time
To Fail� is expected to drop to few days�

Interest in parallel disk systems has been spurred
by the sharp decline in the price of small hard disk
drives� The current ratio between the cost per
Megabyte for large and small disks is somewhere be�
tween � and �� and� with current market trends� this
�gure is only expected to rise�� Previous research ���
used minimal redundancy primarily to ensure accept�
able levels of fault�tolerance� Performance gains from
the added redundancy �if any� were viewed as a side ef�
fect� In our opinion� this should be reversed� With the
aforementioned pricing trends� more redundancy should
be used� primarily� to boost performance with fault�
tolerance being a byproduct�

In this paper� we propose a novel technique for
adding redundancy to disk arrays� Our approach is
based on the Information Dispersal Algorithm �IDA�
of Michael O� Rabin ���� We show that IDA is supe�
rior to current approaches� namely� shadowing ��� and
parity �
�� It yields the best reliability and performance
gains for every percent of added redundancy�

� Shadowing
This is the simplest and most straightforward approach
for increasing the reliability of a system� The idea is to
keep �r��� replicas of every block of data� Each one of
these replicas is striped over a group of m � n��r � ��
disks� This scheme tolerates up to r failures out of the
n disks by an r�fold increase in the required storage�

�Some of these are estimated to have as many as ���� disks
�see �����

�The price is roughly �	�� Dollars per megabyte for ��
	inch
disks �e�g� Conners CP����� compared to ��	�
 Dollars per
megabyte for the ���
	inch and the ��	inch disks �e�g� DEC RA	

�� IBM ��
���



��� The Seek Time�
In this section� we analyze the seek time of a shad�
owed system and how it relates to the parameters n
and r�� We do not assume that any intelligent arm
scheduling algorithm is used� Thus� we assume that the
accesses are uniformly distributed over the disks diam�
eter D� Notice that this assumption becomes invalid if
a scheduling algorithm like the ones described in ��� is
used� Also� we assume that the disks are asynchronous��

Read Access�
To read a data block� the controller will have to wait for
the �rst replica to become available� Since the number
of disks involved in reading a replica is m� the expected
seek time becomes the expected maximum of these m
disk seeks�� Using the results in ���� we get�
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Each one of these groups can be approximated with
a logical disk having the same expected seek time� For
a single disk� however� the expected seek time is one
third its maximum seek distance� Thus� the logical disk
would have a maximum seek distance of�
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The seek time for reading in a shadowed system is�
thus� the minimum of the r�� logical disks� Using the
analysis in ���� we get�
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When tabulated ���� data from the above formulae show
that for a constant level of fault�tolerance� the seek time
tends to increase as the total number of disks per server
increases� This is due to the fact that the number of
disks per group increases� resulting in an increase in the
expected seek time of the group �logical disk�� Notice
also that for a given number of disks per server� the ex�
pected seek time tends to decrease sharply as the level
of fault�tolerance increases� This is due to two factors�
First� the number of groups increases making the ex�
pected minimum seek time decrease� Second� the num�
ber of disks per group decreases making the expected
seek time per group decrease as well�

Write Access�
To write a data block� the controller will have to wait

�We assume that the seek time is dominant compared to other
delays �e�g� latency and overhead��

�This assumption is pessimistic� In a number of situations� one
might argue that other assumptions are more appropriate� For
example� seek synchronization ��� is a more appropriate assump	
tion if the head movement of the di�erent disks are correlated�

�For seek synchronous systems� the expected seek time should
be D

�
�see �����

for all of the disks �all groups and all disks per group�
to respond� Using the analysis from ���� we get�

E�Shadow seek�
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The seek time for writing in a shadowed system is� thus�
independent of the level of fault�tolerance� It increases
as the total number of disks in the system increases�

When deriving the above estimate� we assumed
that all the pieces �namely n� have to be written be�
fore committing the write request� That was necessary
to maintain the same level of fault�tolerance through�
out the whole operation� Another approach� however�
would be to relax this restriction a little bit to improve
performance� We illustrate this using the following ex�
ample�

Assume that a shadowing system tolerates up to
two faults by maintaining three replicas of each stripe�
Using the usual �conservative� approach� we will have
to write all three stripes for every write request� As
we have shown above� this will cause the seek and la�
tency delays to increase� In a sense� this performance
degradation is the price we have to pay for the increased
protection against failures� The question� of course� is
whether this price is justi�ed� For instance� if we com�
mit the write request after writing only one copy �the
�rst one to �nish�� then the seek time would be changed
from ����� to ������ a decrease of about seventy��ve
percent� One might argue that� by doing so� the level
of fault�tolerance is jeopardized� since a failure in the
disk with the only copy �before the other two copies get
to be written� might result in an unrecoverable error�
Although true� this is unrealistic� First� the probability
of having a failure in the interval of time between the
completion of the �rst write and the second is extremely
small� Second� even if that failure occur� the second and
third writes can still go through unless the whole system
fails �say as a result of a power failure�� As a matter
of fact� we can still tolerate such unlikely situation by
adopting a more conservative solution where we commit
the write request after two of the copies get written �the
�rst two to �nish�� This will make the seek time ������
a decrease of over forty percent from the original write�
all approach� Assuming the occurrence of two failures
before the third write is completed is unquestionably
overly pessimistic�

Read�Write Access�
For a read	write mix of �� the expected seek time is
given by��

E�Shadow seek�
read�write � �Eread � ��� ��Ewrite

�In typical applications� read requests tend to be much more
frequent than write requests� However� the use of bu�er caches
makes the actual �physical� read�write mix more balanced�



��� The Transfer Time
Since the total number of disks per server is n� it follows
that data can be striped into m � n��r � �� pieces�
These pieces can be accessed in parallel� thus reducing
the transfer time by a factor of m � n��r � ���

� Parity

A major drawback of the shadowing approach is the ex�
cessive amount of redundancy needed to protect against
failures� Instead of replicating data� redundancy can be
added to the system so as to correct the erroneous in�
formation� In ���� �
� such an approach for tolerating
a single failure in a group of N disks was suggested
and termed N	
 RAID� The idea is to calculate and
store parity information of a group of disks on a bit�
per�disk basis� One parity block would be needed for
everyNblocks across the disks� Any single disk failure
can be corrected simply by reading the rest of the disks
in the group to determine what bit values of the failed
disk would result in getting the proper parity��

In this section� we generalize the parity approach
to be able to tolerate more than one failure� We analyze
the expected performance of such an organization and
contrast it to the shadowing approach�

��� Level of redundancy and fault�

tolerance
Let the number of data disks per server be m and as�
sume that it is required to tolerate up to r simultaneous
faults using the parity approach� The parity disks will
partition the system into a number of parity groups�
Each parity group consists of a number of data disks m
and one parity disk�� Obviously� each one of the parity
groups can tolerate at most one fault� To be able to tol�
erate up to r faults� we should have every data disk in
at least r parity groups� If no more than r faults occur�
then the data on any disk is recoverable since that disk
is guaranteed to be in at least one parity group with at
most one fault�

One way of organizing the data and parity disks
to guarantee the above condition is to imagine that the
data disks are organized in an r�dimensional space��

Obviously� every data disk will have r coordinates� Each
one of these coordinates identi�es a parity group that
the data disk is a member of� For such an arrange�
ment� one parity disk is needed per coordinate for each
dimension� Let the number of parity groups �and thus
the number of parity disks� needed to tolerate r faults

�The N information disks along with the parity disk form a
parity group�

�Notice that an information disk can be in more than one
parity group�

	The cases where r � �� � were examined in ����

be p� We have�

p � rd r

p
mer��

� rm
r��

r

To tolerate one fault� we get p � � which corresponds
to the N	
 RAID of �
�� To tolerate more faults� the
number of parity disks grows rapidly� For example� to
tolerate � simultaneous faults amongst 
� data disks�
we need �
 parity disks ��� percent added redundancy��
In this case� the parity groups consist of � data disks
and one parity disk� To tolerate � simultaneous faults�
however� we need �� parity disks ��� percent added re�
dundancy�� In this case� the parity groups consist of �
data disks and one parity disk�

��� Seek Time
In this section� we analyze the seek time of a parity
system� However� before doing that� we will discuss how
reading and writing in such a system is accomplished�
We assume that data is striped over the m data disks�

To write a data block� all m� p disks are accessed
in parallel to write all the data and parity information
to the disks� In case of no failures� the access would
take as long as the slowest of the m � p disks� In case
of failures� data should be written on di
erent sectors
or on standby units� Depending on the seriousness of
the failure� this process might be more complicated� To
read a data block� all m disks are accessed in parallel�
In case of no failures� the access would take as long as
the slowest of the m disks� If failure�s� are detected�
the system will have to�


�� Lock all parity disks associated with the failed disk�s��

�� Read all the necessary parity groups�

	� Compute the data block for a correct parity�


� Write back the corrected data�

�� Unlock the parity disks�

Since failures are not expected to be frequent� this
performance overhead can be neglected on the average�
In the above discussion� we have assumed that �ne grain
striping is used� making it necessary for every request to
access all data disks� If coarse grain striping is used� it
might be possible to ful�ll the request by accessing fewer
disks� For read requests� this might be an advantage�
since the seek	latency delays are expected to be smaller�
Write requests� however� become very expensive ���� In
particular� to write data to a single disk in a parity
system� the system will have to�


�� Lock all the parity groups associated with the disk�

�� Read the old data�

	� Read the old parity�


� Perform the write request�

�� Compute and write the new parity using the formula�

New parity � �old data � new data� � old parity� and

�� Unlock the parity disks�



For a system with even a small percentage of writes�
the parity disks will quickly become a performance bot�
tleneck� Thus� in the following analysis� we will assume
that �ne grain striping is used�

Read Access�
Using the formula for the expected seek time for the
maximum of m seeks ���� we get�
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Write Access�
Using the formula for the expected seek time for the
maximum of n � m� p seeks ���� we get�

E�Parity seek�
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��� The Transfer Time
The transfer to	from the m data disks can be done in
parallel� resulting in decreasing the transfer time by a
factor of m � n� p�

� The IDA Approach
Recently� Michael O� Rabin ��� devised a new algorithm
for the secure and fault�tolerant communication and
storage of information� The basic idea of this algorithm
is to disperse the contents of a data block into n di
er�
ent pieces so that recombining any m of these pieces�
m �� n� is su�cient to reconstruct the original data
block� Figure � illustrates the dispersal of m stripes
into n stripes using IDA� Obviously� such an approach
would tolerate up to n�m faults� The algorithm uses
irreducible polynomial arithmetic to disperse or recon�
struct the data� If the size of the data to be dispersed is
S then the size of each of the pieces is ���m�S� making
the total required storage �n�m�S� The major aspect
of IDA is that the added redundant information is not
identi�able �as is the case with the parity approach��
Rather� it is distributed among the data blocks� This
makes the di
erent pieces of information in the system
uniform� That is� there is no distinction between data
and parity�

��� Redundancy and Fault�tolerance
To tolerate up to r simultaneous faults� IDA requires
that the total number of dispersed stripes exceeds the
minimum number of stripes needed for reconstruction
by r� Thus� a total of n � m � r stripes is needed for
every m stripes of data� a redundancy of ����n�m��m
percent� Obviously� IDA requires the least amount of
redundancy compared to shadowing and parity�
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Figure �� Data dispersal using IDA

��� The Seek Time
In this section� we analyze the seek time of IDA and how
it relates to the parameters n and r� The estimates we
get should be thought of as upper bounds� A number of
optimizations �using intelligent layout of data stripes on
the di
erent cylinders and appropriate arm scheduling
algorithms� are possible which would result in decreas�
ing the seek times considerably�

Read Access�
To read a data block� all n disks are accessed in parallel
and the �rst m of these to reply are used to reconstruct
the data block� If no more than r failure�s� are detected�
the system will have to recompute the missing stripes
and rewrite them to di
erent sectors or standby disks�
Notice that this will not cause any delays for the read
request� Using the formula for the expected seek time
��� we get�

E�IDA seek�
read
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Write Access�
To write a data block� all the n disks are accessed in
parallel to write all the stripes� In case of no failures�
the access would take as long as the slowest of the n
disks� In case of a failure� data should be written on
di
erent sectors or on standby units� This� however�
should not delay the commitment of the write request�
Using the formula for the expected seek time for the
maximum of the n disks ���� we get�

E�IDA seek�
write
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Read�Write Access�
When tabulated ���� the seek time for the IDA ap�
proach for di
erent read	write mixes reveals an impor�
tant property� The larger the number of pieces dis�
persed� n � the worse the seek time of both read and
write accesses for a constant level of redundancy� Table
� shows this trend for di
erent values of n� The write
seek time depends only on n � whereas the read seek
time depends on the available redundancy �we show the



read seek time for redundancy levels of ��� ��� and ��
percent�� Despite this deterioration in the seek time� we
might still favor a larger n to cut on the transfer time�
especially with fairly large block sizes� Obviously� an
optimum level of dispersion can be determined once the
system parameters �block size� transfer rate� maximum
seek time���� etc�� are given�

Expected seek time

Read access Write access
n n�m

n
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n�m
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Table �� Trend of read and write seek times

Notice that the �gures given in Table � should
be thought of as upper bounds since� as it will be ex�
plained later� much better write access performance can
be achieved through intelligent arm scheduling� opti�
mized layout of data blocks and adoption of a delayed
write policy�

��� The Transfer Time
The transfer to �or from� the n �orm� disks can be done
in parallel� resulting in decreasing the transfer time by
a factor of m�

��� The Overhead Time
To assemble	disassemble blocks of data using IDA�
some computations have to be done� If �ne grain strip�
ing is used� this overhead can be kept very small� In ����
we presented an architecture for a VLSI chip to imple�
ment IDA in real�time� The chip has been fabricated
by MOSIS and tested in the VLSI lab� Harvard Univer�
sity� The performance of the chip was measured to be
about � megabyte per second� This corresponds� to an
overhead of � micro�second for a stripe of � bits� By
using proper pipelining and more elaborate designs� we
believe that the overhead delay can be reduced signif�
icantly� Even� if hardware support is not available to
assemble	disassemble the data� the overhead time will
still be minimal compared to seek and latency delays�
As a matter of fact� the overhead time of IDA becomes
an issue only when it exceeds the transfer time of that
block�

��� Arm Scheduling
In ���� arm scheduling algorithms were proposed for

shadowed systems in order to decrease the seek delays
for read requests� These algorithms are impossible to
use with parity systems since there is no choice with
respect to which disks to be accessed� With the IDA
approach the system can select out of the n disks the
best m disks to use for accessing the requested block�
Notice that using such an algorithm for arm scheduling
does not change our previous estimate of the seek time
since the system is� in a way� predicting which disks will
have the smallest seek time�

��� Delayed Write Optimization
The main advantage of the IDA approach is the sym�
metry of the di
erent stripes� There is no distinction
between data and redundancy� As we have shown ear�
lier� this property can be exploited to enhance the per�
formance of read requests� However� when writing the
dispersed information to the di
erent disks� we have as�
sumed that the system has to wait until all the pieces
are written before committing the write request� This
restriction results in a degradation of the performance
of the write requests compared to the read requests�
In systems where disk cashing is used� the percentage
of write requests is high� This means that the overall
system performance is likely to deteriorate�

The requirement of writing all the pieces before
committing the write request stems from the need to
sustain the level of fault�tolerance� This might be neces�
sary if that level is low� However� in a system where re�
dundancy is introduced to boost performance as well as
fault�tolerance� this restriction becomes questionable�
To illustrate this point� consider a system where data
blocks are dispersed into �
 pieces� of which any � are
su�cient to reconstruct the original blocks� In such a
system� the read seek time will be as low as ����D�
whereas the write seek time will be as high as ����D�
Such a system� tolerates up to � simultaneous faults� If
we are willing to sacri�ce this ultra�high level of fault�
tolerance a little bit for a very short period of time� then
a much better write seek time can be achieved� For in�
stance� if we commit any write request after physically
writing only � pieces� then the write seek time becomes
����D� an improvement of more than half �actually over

� percent�� One might argue that� by doing so� the
level of fault�tolerance is jeopardized since the system
can only tolerate one failure right after the write re�
quest is committed� This concern is true but unrealistic�
First� the probability of having two failures in the inter�
val of time between the completion of the �th and ��th

writes is extremely small� Second� unless the failures
are coordinated� the rest of the writes should proceed
normally� thus restoring the level of fault�tolerance to
its original level�

The �exibility of not writing all the pieces before
committing a write request can also be exploited to in�
crease the achievable concurrency� Again� we illustrate
this by an example� Consider a system consisting of 
�



disks where data blocks are dispersed into �
 pieces of
which only � are su�cient to reconstruct the original
data� If we insist on having all the physical writes go
through before committing a write request then� obvi�
ously� the system can respond to at most � write re�
quests at any time� On the other hand� if we adopt
the policy of writing �say� only � of the pieces before
committing a write request� then the system can service
up to � write requests at any time� This would result
in boosting the throughput of system by up to �� per�
cent and almost doubling the achievable concurrency�
Moreover� the delayed writes can be done cheaply � for
instance by waiting until the head of a disk is at a fa�
vorable position �using a scheduling algorithm similar
to C�scan��

��	 Dynamic Recon
guration
One of the major advantages of using IDA is that the
amount of redundancy �and thus the level of fault�
tolerance and the performance gains� can be adjusted
for the di
erent needs of the system� For instance� crit�
ical �les would be assigned a higher level of redundancy
thus insuring ultra�high accessibility and better perfor�
mance� On the other hand� less critical data can be
assigned lower levels of redundancy �or even no redun�
dancy at all�� This �exibility is impossible to insure
with parity systems� Another main advantage of using
IDA is that� with a careful design� it is possible to add
new disks to the system �and thus increase its capac�
ity� dynamically� This is also possible with shadowed
systems� For parity systems� however� the distinction
between parity information and data makes such a re�
con�guration more di�cult�

� Comparison
We will compare the three approaches we have pre�
sented �shadowing� parity and IDA� using typical ex�
amples� The examples and �gures we will be presenting
are only suggestive� As we have discussed in ���� the
actual performance depends heavily on other factors as
well��	

First� we will examine all three approaches for a
�xed level of fault�tolerance� We will compare the
required redundancy and the achievable performance�
Next� we will �x the total capacity and the percentage
of redundancy and compare the achievable performance
and fault�tolerance�

��� Fixed Fault�tolerance
Consider an example system consisting of n � �� disks�
We will examine two situations� First� we will assume
that it is required to tolerate one failure out of the ��

��Organization� Operating system optimizations� Tuning of pa	
rameters� etc�

disks �r � ��� Next� we will assume that it is required to
tolerate up to two simultaneous failures �r � ��� The
conclusions we will draw out of this example can be
easily extended for larger values of n or r�

Example��� �n � ���r � ��
Table � shows the level of redundancy� the transfer
speedup and the expected seek time for all three strip�
ing approaches� The expected seek time is calculated
for di
erent read	write mixes of �� ��� ��� �� and ���
percent reads�

Example�� �n � �
� r � ��

Striping approach
Shadowing Parity IDA

Redundancy �percent� ����� 
�	� 
�	�
Transfer speedup ���� �	�� �	��

Seek Time ��� ���� ���� ���� ����
Seek Time ��� ���� ���� ���� ����
Seek Time ��� ���� ���
 ���� ����
Seek Time ��� ���� ���� ���� ����
Seek Time ��� ���� ��
� ���	 ���	

Table �� Comparison for n � ���r � �

From this table� we notice that the amount of re�
dundancy for a shadowed system is much higher than
that of a parity system or a system using IDA� This
means a much smaller capacity out of the available
space� This also means that less parallelism is avail�
able for striping� This is re�ected in the lower transfer
speedup of shadowed systems when compared to either
parity systems or IDA systems� For write accesses� the
seek time is the same for all three approaches� The seek
time for read accesses� however� is di
erent� shadowing
is the best followed by IDA and then parity�

Example��� �n � ���r � ��
Table � shows the level of redundancy� the transfer
speedup and the expected seek time for all three strip�
ing approaches� The expected seek time is calculated
for di
erent read	write mixes of �� ��� ��� �� and ���
percent reads�

��� Fixed Redundancy
In the above examples� we have �xed the level of fault�
tolerance� Our conclusion was that IDA requires a much
lesser amount of redundancy compared to the other ap�
proaches� What if IDA is allowed to use as much redun�
dancy as does shadowing or parity� What would be the
achievable performance and fault�tolerance gains�

Example��� �n � ��m � ��
Consider an example system consisting of � disks where
up to � can be used for redundant storage� When com�
paring the cost per megabyte for small disks �� to ��
Dollars	MB� with that for large disks ��� to �� Dol�



Example�� �n � �
�r � ��

Striping approach
Shadowing Parity IDA

Redundancy �percent� ����� ���� ���
Transfer speedup ��� ���� ����

Seek Time ��� ���� ���� ���� ����
Seek Time ��� ���� ���� ���� ����
Seek Time ��� ���� ���� ���� ���

Seek Time ��� ���� ��
� ���� ����
Seek Time ��� ���� ���� ���� ����

Table �� Comparison for n � ���r � �

lars	MB�� this level of redundancy is acceptable� As�
sume that the data is to be striped on the other � disks
so as to achieve a transfer speedup of �� With shad�
owing� � disks will be used to hold the redundant copy
of the striped blocks� Thus every stripe will be stored
on two di
erent disks� thus� tolerating one erasure� To
read a data block� we will have to wait for�out of every
� copies to become available� With parity� the four data
disks will be arranged in two dimensions� with two par�
ity disks for row�parity and two parity disks for column�
parity� thus� tolerating up to�erasures� To read a data
block� we will have to wait for all of the � data disks to
respond� To write a data block� we will have to write all
of the data and parity disks� With IDA� data blocks will
be dispersed into � pieces such that any � will su�ce
to reconstruct the original data� To read a data block�
we will have to wait for the �rst � pieces �any � pieces�
to be available� To write a data block� we will have to
write all of the � pieces� Table � shows a comparison
of the relative performance and fault�tolerance of the
three approaches�

Example�	 �n � ��m � 
�

Striping approach
Shadowing Parity IDA

Tolerable Faults � � 

Seek Time ��� ���� ���� ���� ����
Seek Time ��� ���� ���	 ���� ����
Seek Time ��� ���� ���	 ���� ��
�
Seek Time ��� ���� ��
	 ���� ��	�
Seek Time ��� ���� ��	� ���� ����

Table �� Comparison for n � � and m � �

From this table� we notice that IDA is superior to
both parity and shadowing in terms of level of fault�
tolerance� Its performance is better �although close� to
shadowing and a lot better than parity �especially when
the read percentage is high��

��� Performance optimization
In the example above� we have �xed the level of redun�
dancy and sought the highest possible level of fault�
tolerance with any improvement in the performance
seen as a side e�ect� As we have discussed earlier� one
might add redundancy to the system to enhance its per�
formance in the �rst place� What would be the achiev�
able performance for a given level of redundancy and a
given level of fault�tolerance�

Example�	� �n � ��m � ��
Consider an example system consisting of � disks where
up to � disks can be used for redundant storage� Also�
assume that the system is required to tolerate at least
one erasure at any point in time� With a pure shadow�
ing approach� the best we can do is to use all of the
available redundancy to guarantee the required level
of fault�tolerance in an organization identical to that
used in Example�� �� disks for data and � disks for the
shadow�� With parity� one can suggest an organization
similar to the one in Example��� except that a delayed
write policy is used with one of the groups of parity
disks �row�parity or column�parity�� In this case� to
write a data block� we will have to wait until 
 writes
terminate �instead of ��� With IDA� we can use a de�
layed write policy with an arrangement identical to that
of Example��� To write a data block� we will have to
write any � pieces�

Table � shows a comparison of the relative perfor�
mance and fault�tolerance of the three approaches� We
tabulate two measures for fault�tolerance� transient and
steady state� The transient level of fault�tolerance re�
�ects the reliability of the system before the delayed
writes terminate� whereas the steady�state level of fault�
tolerance re�ects the eventual reliability once the de�
layed writes are �nished� From Table �� we notice that
IDA is superior to both parity and shadowing in terms
of the achievable performance�

Example�
 �n � ��m � 
�

Striping approach
Shadowing Parity IDA

Tolerable Faults �transient� � � �
Tolerable Faults �eventual� � � 


Seek Time ��� ���� ���� ���� ��	

Seek Time ��� ���� ���	 ���� ��	�
Seek Time ��� ���� ���	 ���	 ��	�
Seek Time ��� ���� ��
	 ���� ����
Seek Time ��� ���� ��	� ���� ����

Table �� Comparison for n � � and m � �

In all of the above examples� we have assumed that
only one of the three approaches is used� Is it possible
that a combination of �say� parity and shadowing might
be superior �in terms of performance and	or reliability�
when compared to IDA � The answer to this question



is not obvious� For instance� we have established that
when tolerating up to � erasure� IDA and parity are
identical in terms of the required redundancy and the
achievable performance� What if we use parity to tol�
erate failures and shadowing to improve performance �
Our answer is No� To illustrate this� we consider the
following example�

Example�
� �n � ���m � ��
Consider a system consisting of �� disks where up to

 disks can be used for redundant storage� Also� as�
sume that the system is required to tolerate at least
one erasure at any point in time� Using IDA� the so�
lution is obvious� disperse data blocks into �� pieces
of which any � would be su�cient and use a delayed
write strategy� One can imagine another arrangement
where data is striped over � disks and shadowed onto
another � disks� To tolerate � erasure� a parity disk
will be used with every group of � data disks� Table

 shows the achievable performance and fault�tolerance
for these two alternatives�

Example�� �n � ��m � 
�

Striping approach
Shadowing � Parity IDA

Tolerable faults �transient� � �
Tolerable faults �eventual� � �

Seek Time ��� ���� ��	�� �����
Seek Time ��� ���� ��	�� �����
Seek Time ��� ���� ��	�� ���
�
Seek Time ��� ���� ��	�
 �����
Seek Time ��� ���� ��	�� �����

Table 
� IDA compared to parity � shadowing

From this table� we notice that IDA is still superior
to the combination of parity and shadowing in terms of
the achievable performance and reliability�

� Conclusion and Future Work
IDA�based design of RAID systems is provably optimal
with respect to the amount of added redundancy and
the achievable level of fault�tolerance� Its main advan�
tage is its indi
erence in dealing with data and redun�
dancy� This makes it possible to make more use of the
added redundancy to enhance performance� Other ad�
vantages of using IDA include� intelligent arm schedul�
ing� dynamic recon�guration and controllable redun�
dancy�

Previous RAID research ��� used redundancy pri�
marily to ensure acceptable levels of fault�tolerance�
Performance gains �if any� were viewed as a side e
ect�
In our opinion� this should be reversed� Redundancy
should be used primarily to boost performance with
fault�tolerance being a byproduct� In this respect� we

have demonstrated that IDA is the right choice� With
an a
ordable level of redundancy�� IDA can be used
to reduce disk access delays and improve concurrency
while insuring ultra�high levels of reliability�

More work remains to be done in order to incorpo�
rate IDA with a RAID design� This includes designing
and possibly implementing appropriate hardware proto�
types� investigating the potential support available from
operating systems� and analyzing the requirements of
di
erent applications in order to �ne tune system pa�
rameters for an optimized performance�
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