
Log-Based Directory Resolution in the Coda File System
h e e t Kumar and M. Satyanarayanan

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
optimistic replicltion is m imparrrnt technique for
achieving high avdability in distributed file systans. A
key problem m optimistic rephtim is using d c
b w l e d g e of objects to resolve co"mt updates from
multiple partitions. In this paper, we describe how the
Coda File System resolves pllrtitionsd updareg to

updates is a simple yet efficient and powerful teclmique for
directory resolution m Unix file systems. Mersurementr
from our implementatkm show that the time for resolution
is typically less than 1096 of the time for paforming the
original set of partitioned updates. Analysis based on file
traces fnnn our envinm" indicate that a log size of 2
MB per hour of padtion should be ample for typical

dirCCtOIkS. The C U U d I d t Of Our Work is th.t &g&g Of

smers.

1. Introduction
Optimistic replication is an effective technique for
aaaining high availability in distributed file systms[31.
The term ''Optimistic" refers to tbe fact that concumnt
updates are allowed in multiple network partitions. A
pessimistic scheme, in contrast, allows updates in at most
one partition. An optimistic strategy provides higher data
availability but cannot guarantee data consistency 8ccoss
partitions. Therefore optimistic replication is PrefaaMe

when coping with it is less onerous than being denied
u p d a t e ~ ~ g n c ~ f ~ . ThaeissUbs€arltial
evidence to suggest that this combination of circumstances
is often ptesent in distributed Unix file systems [71.

A key problem in Optimistic replidon is dewting when
an object has been updated collcurrently in multiple

transparently m q e d without violating semantic
constraints. Concumnt updates that can be mexged are
called benign. Other updates are called conflicting.

When Closely-spaced seqraential Write-sharing is ran, and

partitions. and deterrmrun * ' g w h c ~ t h o s e u p d a t e s c a n b e

Without semantic knowledge all concurrent partitioned
updates to an object must be treated as conflicting. and
meqed manually by the user. Manual resolution is
undesirable because it reduces the overall usability of the
system.

An extremely important object., with known semantics, in
Unix Ne systems is a directory. We refex to the process of
examining replicas of a directory, deducing the set of
partitioned updates and merging them using Unix
semantics as directory resolution. It has two important
sideeffects. First, benign updates are propagated to al l
replicas, thus making them identical. Second, directories
with conflicting updates are marked unusable and
pregetvedforfufuaaemanualrepair.

In this paper we describe how the Codcl File
Systcm [lo, 111 exploits Unix directory semantics to
effectively support optimistic re.pliauion. The central
result of our work is that logging of directory updates is a
simple yet efficient and powerful technique for directory
resolution. An imphmtation of k t o r y resolution is
complete, and is used on a daily basis by a small user
community. M e a " e n t s from our implementation show
that the time for resolution is epproxlmate * ly 10% of the
time for perfannins the original se€ of p a r t i t i d U-.
Aualysis based on Ne traces from ouremhnunent indicate
that a log size of 2 MB per hour of partition should be
ample for typical servers.

2. Coda File System
Coda is designed for a typical m h and development
environment and is in- for applications like electronic
mail, bulletin boards, document prepamion and prog"
devclopmealt. It is not inttnded to be used for applications
like- that exhibit high -of fine-grain write-
shsring. Codacoosistsofalargecoktionofuntrusted
Unix clients and a much smauet number of trusted Unix
file seaveas. Each clieat has a local disk and can
communicate with the servexs ova a high bandwidth
network At certain times, a client may be temporarily
unable to communicate with some or all of the servers due
toa~ornctworkfa i lm.

202
0-8186-3330-1/93 $03.00 0 1993 IEEE

Clients view Coda as a single, location-transpannt shared
Unix file system. The Coda namesp~ce is mapped to
individual file se" at the gnrnularity of subaes called
volumes. At each client, a cack manager (Venus)
dynamically obtains and caches volume mappings.

Coda uses two distinct, but complementary, mechanisms to
achieve high availability. The first m e d " , s e w
replication, allows volumes to have &-write replicar at
more than one server. This reduces the probability of an
object becoming unavailable due to failures. 'Lhe second
", disconnected operation, takes effect when no
server is acuxsible. While discomc WVenuSSaViCeS
file requesrs by relying solely on the contents of its cache.
When disoonnection ends Venus propeeatw m o d i b h u
and r e v ~ t s to serverreplication.

2.1. Replica Control Algorithm
The set of replication sites for a volume is its volume
sforuge grow (VSG). The s u b w of a VSG that is cllczently
accessible is a client's accessible VSG (AVSG). File
system requests are senriced by Venus from its cache. If
the cache does not contain the iatestcopy of aa object
Venus contacts the AVSG. The prutocol for aumsing
objects from the mers is reod-s t~dldata-one I
write-uil.
earlier [IO], we only present a summary here

Read accesses return the latest accessible copy of an object.
To serviceacache miss, Venus one server from
the object's AVSG as the prqferred server and obtains both
dataandstatusinformationfromit. Inparallclitobtains

call that caused the cache miss retams m y only if

otherwise the object neads lesolutial. validity of the
cached objects is maintained by callbacks.

'Ihe update protocol, which is execwd when a directory is
modified or a file is closed after being wrirtesl, p"
changes in parallel to all accessible replicas. It collsjsts of
two phases, cop1 and COPZ. when cop stands f a Coda
optimistic protocol. In COPI, each AVSQ membex exccutes
the operation and stamps its replica with a client-generated
tag called a storcid. COPZ distributes a data stmctllre called
the L(pd4tc set, which sum- the climt's knowledge of
who pedormed the cop1 opemion SUCCtSSfUIy. llle
update set. dong with the storeid, is used to maintab the
vetsion i n f o " used during resolution.

since this protocol has been dedbe!d in detail

Status information from otha AV= me!Jnkrs. The System

the i n f d o n from dl AVSG h khtkd.

2.2. Directory Updates
Coda directories umsist of a series of name-identifm pairs
that map names to specific objects in the system. coda
supposts the Unix interface for maring, removing and

changing directory entries as well as modifying individual
Objects. Directory entries ~ 8 n be insetted via the creat,
link or mkdir system calls, removed via the unlink or
rmdir system calls. and changed via the rename system
call. Unlike Unix, Coda allows hard links only within a
directory. consequently, the coda naming hierarchy is
constrained tobeasuicttretratherthanan acyclic graph.

Dinctay updates are indcgcnderu of one a n o k as long
as they do not refmncc the same object A set of
indepndent updates can beexecuted in any order resulting
inthesamefinalsystemstate. Forexam~operations
"create foo" and "create bar" in diffant
dkctories are indeptndent. By definition, independent
k t o q updates are benign since we are only interested in
W r i t G W r i t e ~ t s .

Directay updates that are not independent are also benign

* N m l N m conflicts: Two different objects
with the samenameareinsemdin adirectory
indiff~tparti t ions.

.RemovclUpdotc conflctts: An enuy is
m v e d fiun a directory in one partition but
thecorresposldm * g object a its descendants are
lpwtatedinaMthapattitian.
UpdorclUpdruc conflicts: A directary's mea
data. such as its w x s s list, is updated in two
[x m m @tions.

.ReMmelRe~mc conflicts: An object is
moved into dif€amt directories in two

unless they cOcfeSpOnd to one of the following situations:

partitions.

The first thret cases w a first identified by Guy in the
context of the Locus Ne system [51. The fourth category
does not exist in Guy's classification because his model
does not restrict the naminghierarchy tobeatree.

3. Overview of Directory Resolution
partitioned updates on an object are detected the first time
i t i s~a f tez twoormorepg l t i t ionsreconnec t If
Venus detects a versiaa mismatch amongst the replicas
while servicing a cache miss, it a&ts the p e f d server
to perfam resoIutioll and pauses. If resoiution is
successful,Venusretriessenicithecachemiss. Inthis
case, resolution is completely r l a " t to applications
and USCIS. The only " b l e effect is a slight delay in
t h c ~ o f t h e s y s l e m d Ifnsdutron ' is

Venus retrans an ezrot as the result of the
system call thatgareratedthccache miss.

Dinctory resolutioll is performed entirely on senen, with
clients being mpoasible only for its activation. This
dichotomy is crucial to meeting Coda's goal of scalrrbility

203

without compromising secun'ry. Relying on clients to
detect partitioned updates eliminates the need for elaborate
machinery on servers to keep a;lck of the state of
connectivity of other servers. Such machinery has to be
present on clients anyway to guarantee coherence. This is
consistent with our strategy of enhancing scalability by
using client resources rather than server resources wherever
possible [121.

A logical extension of this shategy would make clients
rather than servers perform resolution. Unfortunately, this
would compromk security because the process of
resolution may require examination and modification of
regions of the file system for which the user at the client
performing the resolution has no access privileges. Our
assumption that a client is only as trusmaithy as its user
requires us to perform such operations on servers.

Coda performs resolution lazily: although there may be
many partitioned updates in a volume, the system only
resolves those objects needed to satisfy the triggering
system call. An aggressive approach to resolution would,
in contrast, strive to eliminate all unresolved partitioned
updates as soon as partitions reconnect. Our s m g y
minimizes the latency of systems calls that trigger
resolution. It also reduces the peak deinands made on
servers immediately after recovery from a crash or network
partition. Its main drawback is that unresolved partitioned
updates may persist until a further crash or partition, thus
increasing the chances of stale data being used or a
conflicting update being made. A compromise would be to
perform resolution lazily when triggered by a client, but to
conduct aggressive resolution in the background during
periods of low server load. Our usage experience so far
with Coda has not indicated the need for such a hybrid
policy.

The resolution subsystem is responsible for classifying
partitioned updates, propagating benign updates, and
preserving evidence from conflicting updates. To perform
this function, the subsystem maintains data strucmes at
each m e r and executes a resolution protocol involving
the AV.% of the object being resolved. We describe the
design of the data sUuctures, their use during resolution
and the resolution protocol in the following sections.

4. The Resolution Log
Every replica of a volume in Coda is associated with a data
structure known as its resolution log. Conceptually, a
resolution log contains the entire list of mutating directory
operations on a replica since its creation. In practice, of
course, logs are of finite length and only the tail is
preserved. The size of the log is specified when creating a
volume, but can be later adjusted by a system
administrator.

4.1. Log Storage
Resolution requires log modifications to be made in a fault-
tolerant manner. Each m&ication should be pmnt
as well as urom'c with respect to the directory update it
reflects. We achieve this by placing both the resolution log
and directory contents in recoverable virtual memory and
modifying them within the same transaction. This is
implemented using a lightweight transactional package
called RVM [81.

RVM suppom local, non-nested transactions on data
structures mapped into a process' virtual memory. It
provides the basic transactional propemes * of atomicity and
permanence by using a NO-UNWIRGDO write-ahead value
log that records committed updates to recoverable virtual
memory. periodically, the modifications represented by
the log records are applied to the committed image of
virtual memory on disk to reclaim space used by those
records. By placing the resolution log in RVM, we combine
the well-known strengths of opemtion logging and value
lwging.

Our decision to associate resolution logs with volumes was
motivated by a numbex of considerations. First, a per-
volume log achieves a reasonable balance between
resource usage and efficiency. A single log per server
would have achieved better utilization of RVM, but would
have given us no control over the usage of RVM by
individual users. At the other extreme, a per-directory log
would have been more effiknt since helevant entries
would not have to be examined during resolution. But that
approach would have resulted in much greater intemal
fragmentation of RVM. A second consideration is that a
per-volume log is consistent with Coda's policy of
associating disk quocas with volumes. A final
consideraton is that the operands of system calls in Coda
may span dktories but not a volume boundary.
Consequently, a volume is the smallest encapsulating unit
whose log is guaranteed to contain all the infarmation
needed to resolve an update.

204

t ypede f s t r u c t
I
unsigned S e N e r i d ;
V lceS to re Id s t o r e i d ; I*ofpLirypchllbl
unaigned opcode; I* ofpLirnvurion*I
Vnode I d dvnode: I*/idof pLiriki.erory *I
l ong nex t index; I* dincrory b g W*I
l ong previndex; I* dincrory b g W *I
]common-log;

s t r u c t c r ea t e - log
I
cormnon-log cl;
c h a r *name; ZfEL */
VnodeId cvnode; IbfidofnmuchiU*I
1 ;

(b) Entry for File Creation

(a) Refix of Every Entry
Figure 1: A Simple Log Entry

s t r u c t rmdir-log
(
common-log c l ; 19 p+ 91

c h a r "me; 1. of&&udcW*l
VnodeId cvnode; I*jidofhkUlchild*l
i n t head: I* po*urto &leudchildr b g * I
i n t count ; I* length of hkud chidr b g * l
ViceS to re Id c s id : I* *mid of hkud cwd ' I
1;

(a) Entry for Directory Deletion

s t r u c t rename-log
I

unsigned s r c t g t ; I* wuImlouorkv##frpcrurul*l
s t r u c t

common-log c1; I' p* ' I

1 I* i#o clbou mwce *I
c h a r 'oldname;
VnodeId cvnode;

I rename-src;
VnodeId OtherDlrV; I*fidofoJurpawN * I
S t K U C t

{ I' i#o clbobour -a *I
c h a r
i n t t g t e x i s t e d : I* wa#amold&rg~~&kUl? *I
VnodeId TgtVnode; I'fidofold&rg#l ' I
union

*newname:

{I* i$o clbobour old &&U$ * # I *I
ViceVersVec TgtGhostW; I' ifilwuafil. *I
s t r u c t

(I * ifitwora dirutory *I
i n t head:
i n t count ;
I TgtGhostLog;

1 TgtGhost;
1 rename-t g t ;

I ;

(b) Entry for Rename

Figure 2: More Complex Log Entries

42. Log Format
The organizaeion of the resolution log meets three
requirements. First, it makes efficient use of log storage.
Second, it supports efficient recording of updates during
n o d operation, as well as efficient haversal of log
enties during resolution. Third, it contains all the
information needed to perform resolution.

The first two requirements are met by organizing the log
physically on a per-volume basis, but logically on a per-
directory basis. The log for a directory is realized as a
doubly-linked chain of log entries embedded in the volume
log. Recording a directory updateconsists of finding a free
entry in the volume log. lmking it to the end of the
directory's log. and filling in the fields of the entry. During
resolution, it is usually sufficient to examine the log entries
of the directory being resolved. Only on rare occasions is it
necessary to examine the logs of other directories.

To meet the third requirement, each log entry has to
contain the opcode of the corresponding system call, names
of new Coda objects created by the call, and the low-level

unique identifiers (calledfi) of all Coda objects created,
deleted or modified by the call. In addition each enay
contains the storeid of the cOrreSpOnding update in Coda.
Figure 1 shows the log entry for a simple directory
operation in Coda such as file creation.

Log entries for deletions are m m complex. They contain
the state of the object when deleted to unambiguously
detect removelupdafe conflicts during resolution. For a
deleted file, the final state is encoded in its Coda version
vector [lo]. For a dew directory, this infamation
consists of a pointer to its resolution log, as shown in
Figure 2a

The most complex log entry, shown in Figm 2b.
cOrreSpOndS to the rename operation. Such an may is
created in each of the logs of the two directories affected
by the operation. Since a rename may delete. an existing
target, the log entry contains sufficient information to also
detect any ensuing remove/update conflicts.

205

Sitel Site2 Site3

(a) Step 1: Compute LCE

Remove

local entries

(b) Step 2: Discard useless entries and merge 1 - gs (c) Step 3: Perform operations - Fina log state
Thic f i p e shows the ncpr d the canpcnmtion algaithm. The algorithm is being exeCUtCd at site 2 and the dirrctory i r replicated at
h sewen site 1. sire 2 and si& 3. ?he bdmg is diffmt for updatu in diffemnt pprtitionr. ’Ihe f i r shows (a) the logr made
av.il.ble to sife 2. (b) how the mmpauating opentioar 8 ~ c cnlculated and (c) the 1% 81 sitc 2 just lfter it eXUZltCs the canpensating
operatioas.

Figure 3: The Compensation Algorithm at Site 2

5. The Resolution Algorithm
Resolution uses the log from each replica to deduce and
propagate the set of partitioned updates to all replicas. For
this purpose, each replica’s log is made available to every
member of the AVSG. In Section 5.1, we focus on the
actions at a single server. Next, in Section 5.2, we describe
how resolution is coordinated among multiple servers.
Finally, in Section 5.3, we idenhfy a number of
complications that can arise in resolution and show how
they can be handled.

5.1. Compensation at One Site
The compensa’on algorithm is executed at each AVSG
member after that mer has received the log of every other
member of the AVSG. For the purpose of this discussion,
the server at which the algorithm is executing is called the
local serveG all other AVSG members are called remote
servers. The goal of the compensation algorithm is to use
the logs of all replicas to compute the set of partitioned
updates missed by the local semr and to apply a sequence
of updates to compensate for the missed updates.
Detection of conflicts, if any, is a side effect of the
algorithm. The algorithm proceeds in three steps as shown
in Figure 3.

In the first step, the set of all partitioned updates is
deduced. This is done by scanning each log backwards
starting from the last entry and finding the most recent
entry that exists in all logs. This is called the latest
common enrry (LCE), and repsents the most m n t point
when all the replicas were identid Resolution relies on
the invariant that entries in each log after the LCE
correspond to exactly the set of partitioned updates. This

invariant follows from two observations. First, if entries
with the same storeid are found in the logs of a set of
replicas, it implies that these replicas successfully
participated in the same update. Second, the Coda update
protocol guarantees that updates succeed only at replicas
that are already identical. Entries prior to the LCE are not
used and can be discarded for the subsequent steps of this
algorithm.

In the second step, the set of updates missed by the local
server are deduced from the set of all partitioned updates.
The partitioned updates from each replica’s log are merged
and the duplicate entries removed. Then the log entries
corresponding to partitioned updates already performed at
the local server are removed. Due to dependencies
behveen log entries from one server, the merge must
mainrain their order. For example, the enhy for rmdir
f oo must follow the entry for mkdir f oo because these
operations do not commute. But log entries from different
servers can be merged in any order.

In the third step the updates missed by the local server are
executed. These updates modify permanent data structures
in RVM and are all performed within a single transaction. If
a serious failure such as running out of disk space occurs
during the transaction, the entire step is aborted and the
algorithm fails. Updates that invert each others’ effects are
not executed at all. Before executing each update, the
seavex e n s m that the muking state will not violate any
semantic invariant. If this is not the case, it marks the
object that was to be modified in conflict As each update
is performed, a log record reflecting this mutation is
spooled to the resolution log. Once the entire list of
updates has been applied. the encapsulating transaction
commits and the compensation algorithm at this site is
complete.

206

Phase 1 Phase 2 Phasa 3 Phase 4

'Ibis liggurc shows the sequence of RPCs during rrsdution. The client V invoku resolution by nominating server SI as amdinam. The
four phases of tbc pmocol are executed at three subordinate servers SI, S2 and S3. The d e labeled SI is shaded when the server is
acting as coordinator and unshaded when it is acting as subordinate. If a mnflict is dewred in phase 3. it is distributed via an extn Rpc
befae phase 4.

Figure 4: Phases of the Resolution Protocol

5.2. The Resolution Protocol
In this section we describe how resolution is coordinated
between multiple servers. The resolution protocol is
coordinator-driven, with one AVSG site acting as
coordinator and the others acting as subordinates. The
resolution protocol proceeds in four phases, as shown in
Figure 4. To improve performance. the coordinator uses a
parallel RPC mechanism [9] to communicate with
subordinates.

The protocol serves two purposes. First, it dismbutes
resolution logs to all AVSG sites so that each can execute
the compensation algorithm described earlier. Second, it
distributes the final result of resolution to all AVSG sites.
Prior to the execution of the protocol, some of the
participating replicas may differ from others. At the end of
the protocol, either all these replicas are identical and ready
for immediate use, or have been marked in conflict and are
unavailable until manually repaired.

Our description below describes the events in the absence
of failures. However, the protocol is designed to be
resilient to subordinate, coordinator or network failures. If
a subordinate fails, the coordinator times out and excludes
it from subsequent phases of the protocol. If the
coordinator fails, the client times out and restarts the
protocol, nominating another coordinator. Network
failures appear as a remote site crash to each host at either
end of the link. In all cases. local atomicity of actions is
guaranteed by RVM at each site.

5.2.1. Phase 1: Locking
Resolution begins with the coordinator requesting each VSG
site to lock its replica of the volume containing the
directory being resolved. The sites that respond to this
request become the subordinates of the resolution promcol;
other sites are ignored in the rest of the promcol. All
responding sites must indicate successful lock acquisition;
otherwise the protocol is aborted and an error code returned
to the triggering client. The client retries the call after a
few seconds. If the error persists after ten retries, it is
passed on to the application trying to access the object.

A resolution lock excludes all other mutarions on a replica,
including those from normal updates, manual repairs or any
other instances of directory resolution in that volume. But
nonmutating operations such as reading a file or listing a
directory in the volume are permitted. Although locking at
finer granularity would improve concurrency, it would be
more complex to implement. Our experience so far
suggests that this complexity is not warranted.

The resolution lock is held for the entire duration of the
protocol, and times out in the event of a coordinator crash
or network failure. The value of this timeout has to be
greatex than the longest expected resolution time, and is set
conservatively to 10 minutes in our implementation.

5.23. Phase 2: Log Collection and Merging
In this phase, the log entries needed for resolution are
collected by the coordinator. Each subordinate first
extracts the log of the directory being resolved from its
volume log. It then scans the extracted log, composes a list
of other objects whose logs might also be needed, and
extracts those logs recursively. For example, if a subtree is

107

deleted during a partition, the logs of all the directories in
the subtree are needed to resolve its parent Therefore,
each subordinate’s log is of dif€emt size. The coofdinator
merges the logs received f” all the subordinates into a
linear data structure that preserves the identification of each
log.

The need for a se- phase just to collect logs is specific
to our implementation. It requires the coordinator to
allocate buffers before receiving the logs. Since each
subordinate’s log can be of different length, the maximum
size of each log is calculated during phase 1, and the log
transferred only in the second phase.

5.23. Phase 3: Log Distribution and Compensation
This phase begins with the COO- sending the merged
logs to subordinates. At this point, each subordinate has
logs from every accessible replica, and can perfarm the
compensation algorithm described in Section 5.1. Each
subordinate returns a list of conflicts, if any, that arose
during this phase.

Although resolution may be successN at a subordinate, the
fate of resolution at other sites is still unknown. As a
precaution against premature tennhuion of the protow1
due to coo- failure, each subordinate marks its
replica with a unique storeid. This ensures that any future
comparison involving the replica in its current state will
trigger resolution again.

Having each s u b u r d i ~ t e compute its own compensating
operations exploits the parallelism inherent in this task.
This opportunity would have been lost, had we chosen the
alternative strategy of having the coordinatot compute the
compensating options for each subordinate. But the
latter approach would have involved less data rransfer,
since the coordinatu would have shipped compensation
lists rather than the larger merged logs.

53A. Phase 4: Unlocking
In the normal case, phase 3 succeeds at all subordinates.
The coardinator sends out a new storeid in phase 4, thus
marking all the replicas as equal. The subordinates release
their resolution locks, and the coonham returns to the
Client.

If thereturn code to phase 3 f” any subordime indicates
conflict, the coordinatot executes an additional step in the
protocol to distribute conflict information to all
subordinates. Phase 4 then merely consists of releasing
resolution locks, and retuming control to the client with an
error indicating a conflict.

5.3. Complications

53.1. Coping with Finite Logs
Our discussion so far has ignored the fact that log space is
fiNte. Coda keeps log lengths to a minimum by
discarding, at the earliest opportunity, portions of logs that
will never be needed in future resolutions. Once an update
has been reflected at all replicas, its log enuy will become
the LCE for any future resolutions. Hence older entries can
be discarded resulting in a log with just a single enny.
Confirmation that an update has been propagated to all
replicas is available from two sources. In normal
operation, the COP2 phase of the update pnxocol distributes
this information. During resolution, the coodinator
distributes this information in phase 4. Logs grow only
when some replicas are inaccessible, as repcxted by either
of these sowes.

What does a server do when a log becomes full? One
approach would be to disallow updates to that volume until
resolution is done. The other approach, used in Coda. is to
allow updates to continue by overwriting entries at the head
of the log. This causes the LCE to be lost, a condition that
will be reported as a conflict by the compensation
a l p i t h m of any fume resolution. The Coda strategy
enhances update availability and provides an easily-
understood madeoff between resource usage and usability:
the largex a log, the lower the likelihood of having to resort
to manual repair. However, it would be a simple matter to
make the choice between disallowing updates and
overwriting log enuies a volumespecific parameter.

53.2. Resolving with Partial VSG
When resolution pmceeds without all VSG members,
partitioned updates must be repropagated when other
members become accessible. To prevent a site from
perfarming the same operation twice, Coda logs updates
during resolution with the storeid of the original update.
The log entry contains the same information as the original
update’s enuy to ensure correctness of future resolutions
even if the site where the original update was performed
becomes inaccessible.

Log entries spooled during resolution do not provide the
same guarantee as that provided by e n d for client-
initiated updates: if two replicas’ logs have the same log
entry, the replicas need not have been identical at that
point So step 1 of the compensation algorithm that
computes the LCE must ignoae log records spooled during
resolution. This is achieved by using different families of
opcodes for log entries of client-initiated updates and
resolution updates.

208

533. Manual Repairs and Resolution
Manual repairs allow the user to perform arbitrary
operations at each replica. Once a replica is repaid, its
log is truncated and a log entry reflecting the repair is
spooled. The storeid far this entry will be the LCE in
future resolutions. If a repair is performed when some VSG
members are missing, future resolutions him by the
recovecy of missing vso members will failbecause M LCE
will be found. Hence the user will have to manually repair
the object again. Only a repair perfarmed when all vso
members are up will restore the ability to perform
transparent resolution.

53.4. Cross-Directory Renames
A rename openition may involve directorim far apart in the
naming hierarchy. It is necessary to resolve both the

be dependent on other partitioned renames. To correctly
handle these cascacM dependemies, the transitive closure
of al l k t o r i e s affected by a sequence of renames must be

Analysis of file system traces from our environment shows

directory renames. In the light of their relatively rare
occltrrence. we have chosen not to address transparent

implementation. But we do guarantee detection of such
renames, and mark both parents in conflict The next
version of our system will suppart this missing
functionality.

source and target parents simultaneously because each may

resolved together.

that less than 3% of all directory updates are cross-

resolution of c"y renames in our Cumnt

6. Evaluation
A log-based approach to directmy resolution incurs time
and space overheads. The time overhead occurs mainly
during resolution. with logging being an almost negligible
contributor in our implementation. The space overhead
arises from the need to maintain logs at servers. Therest of
this section answexs the two obvious questions that follow
from these observathx

How well does resolution perform?

How fast does the log grow during partition?

6.1. Performance of Resolution

6.1.1. Metric
A fair estimate of the ovahead due to resolution must

then anz more partitioned updates to resolve. Hence the
metric we use in our evaluation is the ratio of two times:
resolution rinrc and work W . Resolution time is the
elapsed time between detection of a partitioned update and

account far the fact that d u t i o n will take longer when

return of control to the client after successful resolution.
Wark time is the sum of the elapsed rimes for performing
the or ig id set of partitioned updates.

Resolution time is Perceptible to the first user to access a
directory after the end of a network failure that resulted in
resolvable partitioned updates. The elapsed time for failed
reso/ution is less important, since it is swamped by the time
formanualresolution.

An inaease in partitioned activity lengthens phases 2 and 3
of the resolution protocol. Phase 2 talres longer because
larger logs are shipped to the CoOrdinatoT . phase3takes
longer because of an innease in the translllssl 'ontimeto
ship a large maged log to the subordinates. and because
of an in- in the times at the subonham for

An
incrase in the numbs of nplicas also increases resolution
time because CommuniCatiOa oveheads are higher, and the
computing of compensating opedons by subordinates
takes longer.

computing and applying compensating operations.

6.12. Experiment Design
To quantify the above effects, we conducted a series of
carcfuUy controlled exptzimem using a synthetic
benchmark. Oneinsmnceofthebenchmark,refemxltoas
a work unit, consists of 104 directory updates. The
execution of a warkuaitproceeds in three steps:

o(re8tiOn of U) new objects, co118i8tiag of 14
Nes. 4 subdirectories, 1 link and 1 symbolic
link. These numbers approximate the
observed composition of typical user
dinctariesinourenvironment.

.simulation of edita activity on the newly-
created files. This is done by creating, then
removing, a chtckpoint file for each.

.simulation of C++ compiler activity on the
newlycreated Nes. For each such file, fo0.c. a
fh foo..c is & next, a file foo..o is

removed.
c"i$ then reaamed tofoo.0; finally foo..c is

An experiment consists of first measuring the work time
for perfarming a variable number of work units on each of
n partitioned replicas of a directory. Then the partitions
between the replicas are healed, resolution is trigged. and
the resolution time is lI"d

We performed two sets of experiments, one involving
partiDioDed work only at one replica, and the other
involving partitioned wark at all replicas. In each set, we
examined c o n f i g " involving 2.3 and 4 replicas. For
each configuration, we varied the load from 1 to 10 work
units.

209

I Rep I Load I Workllmc I R d u t i o n Tim ~sccona
Fador (seconds) Total

I 1 I
2 1

2
3
5
7
10

27.9 (0.4)

69.7 (63)
111.6 (69)
188.0 (10)

15 (OD)
2 9 (0.1)
4.5 (OD)
7.8 (0.1)

120 (0.1)
18.2 (OA)

3 1 285 gl)
2 79.5 0-5)
3 118.1 (10.7)
5 224.8 (10.2)
7 337.1 (9s)
10 475.2 (7.2)

1.9 (00)
3.7 (0.1)
5.8 (03)
9.0 (03)

I 12.7 (03) , 19.7 (03) ’
4 1

2
3
5
7
10

27.9 (02) 20 (0.4)
78.6 (7-0) 3.7 (ao)

1095 (3.2) 5.6 (or)
218.8 0.9) 9.7 (0.1)

525.2 (5.7) 25.0 (45)

341.7 (90) 14.5 (0.6)

I I I I

1

4.2 (0.0)
7.4 (0.1)

11.6 (0.1)
17.6 (0.4)

I
1.7 (0.m 6.7%
3.4 (0.1) 4.7%
5.4 (0.2) 4.6%
8.6 (0.3) 4.0%

122 p.3 3.8%
19.0 (0.3) 4.1%

I

5.2 (0.1)
9.3 (0.2)

’Ihir data was obuined using a Decstatica 3100 arith 16MB of memory as dient, and Decrtatica 5 o o O m with 32MB of m c m q M

scwm camnunicating over an Ethemet. The numbers pmaented here are mean vpluw fmn three trials of uch experiment Fig- m
pumthems are. staodard deviations.

Table 1: Resolution Time After Work at One Replica

6.13. Results
Tables 1 and 2 present the means and standard deviations
of work and resolution times observed in three trials of
each experiment They also indicate the contributions of
individual phases to total resolution time. The tables
indicate that resolution time increases primarily with load,
and secondarily with the replication factor.

The primary conclusion to be drawn from this data is that a
log-based strategy for directory resolution is quite efficient,
taking no more than 10% of the work time in all our
experiments. This holds even up to a load of 10 at a
replidon factor of 4, corresponding to over lo00 updates
being performed on each of 4 replicas of a directory.

The tables show that phases 1 and 4 contribute very little to
the overall resolution time. Since these phases merely do
locking and unlocking, the time for them should be
independent of load. But, as a sanity check in our current
implementation, the coordinatoT collects the replicas to
venfy equality before unlocking in Phase 4. This accounts
for the dependence of this phase on load and replication
factor in our experiments.

Phase 2 consists of extraction and shipping of logs by
subordinates. The time for this is dependent on the total
lengths of the logs, which is only related to the total
amount of work. This is apparent in Table 1 where the
time for phase 2 increases with load but is invariant with
degree of replication. The times for Phase 2 in Table 2 are

significantly higher than in Table 1. This is a cotlsequence
of our parallel RFT implementation. A large log fetch
from one site and zero-length log fetches from the others is
much more efficient than a number of smaller, equal-sized
log fetches from each site.

Phase 3 is typically the dominant contributor to the total
time for resolution. This is not surprising, since the bulk of
work for resolution occurs here. This includes the shipping
of merged logs, computation of compensating operations,
and application of these operations.

Table 1 also shows that resolution time grows linearly with
workload unlike work time which grows supra-linearly.
This is because of interactions with the RVM package. At
higher loads, the time for truncating the RVM log gets
included in the worktime but not in the resolution time
because the client’s RVM log is much smaller than the
Servers’ RVM log.

6.2. Size of Log
Since a log grows linearly with work done during partition,
any realistic estimate of log size has to be derived from
empirical data. Our analysis is based on about 4GB of file
reference traces to AFS and Coda obtained over a peaiod of
10 weeks from 20 Coda workstations. The usage profile
captured in these traces is typical of research and
educational environments. These traces were used as input
to a simulation of the logging component of the resolution
subsystem.

2 I 0

2

Bytes per Hour
Oto100

3

Percentage of Volumes
65.91%

517.4 (384
578.9 08.1)
927.9 (1 0

loo5 (120)
194.0 (45)
329.9 (10s)
369.1 (1 0

4 1 129.2 (15s)
2 307.1 (323)
3 463.7 0 7 4
5 779.6 (67.7)
7 1019.4 (l4d)
10 18375 (133)

I I I

1.7 (ai)
127 (is)
120 (lo)
205 (21)
265 (1.7)
39.5 (25)

0.2 0.0)
0.2 0
0.2 @l)
0.7 0
0.3 (ai)

11.0 (nq

0.1 (nq
8.8 (13)
8.8 (1.2)

12.2 64)
13.6 (1.2)
11.7 (2.4

24%
6.8%
6.096
4.0%
4.6%
43%

2 8 @3)
10.6 (22)
16.3 (3.1)
30.9 (6.1)

133.3 (139)
45.4 @4

0.2 (nq
0.2 (nq

5.7 (4.9
0.6 0.6)

7.2 (1.4)
17.1 (1.2)

0.1 0
4.2 0s)
8.2 03

12.2 64)
129 (4.2)
185 (1.7)

23 W)
6.2 (13)
7.6 (02)

13.1 (03)
2553 (58)
97.7 (132)

2.8%
55%
4.9%
5.4%
53%
10.3%

7.6 (03)
26.1 (611)
38.8 (17.7)
43.6 (99)
78.4 (296)

114.0 (16.7)

0.7 (an

2.8 (U)

1.3 (1.0)

7.2 (s3)
17.1 (s.3)
17.6 (18.1)

5.4 (1.7)

17.2 (W
20.3 (1-

50.2 (212)
78.3 (12.8)

24.2 (13)

5.9%
85%
8.4%
5.6%
7.7%
6.2%

Thir data wu obtdned from e x p a i ” uiq the same hrdwuc canfig& u forT.ble 1. Thenumbcrspn~tcdbae arc the
mernvrluerfromthreeuidIof ucbupnimmt. Filpuuinpumtbesw uc rt.rduddcvi.riaa&

Table 2: Resolution Time After Work at All Replicas

The simulator assumes that all activity in a trace occurs
while panithed. and maintains a history of log growth at
15-minute inwals for each volume in the system. For
each directory update in the trace, the simulator increments
thecomspondtng volume’s log length by the size of the
log recoLd that would have been genaated by a Coda
server. At the end of simulation, the average and peak log
growth rates for each volume can be obtained from its

Table 3 shows the dishibution of long-team average rate of

This average is computed by dividing the final log size for
a volume by the time between the first and last updates on
it. It is clear from Table 3 that long-team log growth is
relatively low, averaging about 94 bytes per hour.

Focusing only on long-term average log growth rate can be
misleading. since user activity is often bursty. A few hours
of intense activity during a partition can generate much
longer logs than thatpredictedby Table 3. To estimate the
log length induced by peak activity, we examined the
statistical distribution of hourly log p w t h rate8 for al l
volumes in OUT simulation. Fv 5 shows this
distribution. ova W% of all data points 8n less than
lKB, and over 99.5% are less than 1OKB. The highest
value observed was 141KB. but this occurred only once.

A w a s t c ~ s f design would have to cope with the highest
growth rate during the longest partition. A more realistic
design would use a log adequate far a large fraction ofthe

hismy.

log growth over all the volumes encounteffd in our traces.

20.4596
200 to 300 4.55%

6.82% 1 z; I y 2 1
Thk dru W U ariasdby trrce-busd limaLtioa md

fa44 AFS md cod.volrrmu over lpcMdd 10 we&
f- m wol~ltltiaar.

Table 3: Long-Term Average Log Growth Rates

s h w a tbe dirtributiaa d Img-tcm a v q e pow& nta

anticipated wenarb. Since hourly gmwth is less than
l0KB in 99.5% of our data points. and since an hour-long
partition could have slra&lled two consecutive hours of
peak activity, we infer that a 20KB log will be adequate for
most hour-long partitions in our environmeat More
generally, a partition of N hours could have straddled N+1
consecutive hours of peak activity. Hence a log of lo(N+l)
KB would be wxmmuy. If a Coda serves were to hold 100
volumes (a typical numbex at AFS * ns), the total
log space needed M the server would be (N+l) MB.

21 1

7. Status and Future Work
Today, Coda runs on IBM RTs, Decstation 31009 and
5oooS, and 386-based laptops such as h e Toshiba 5200 and
IBM PS/2-LX40. A smaU user community has been using
Coda on a daily basis as its primary data repcwitory since
April 1990. All development work on Coda is done in
Coda itself. As of June 1992 there was nearly 1GB of
triply-replicated data in Coda A prototype of the
resolution subsystem described in this paper has been
operational since May 1991.

Our immediate plans are to provide support for transparent
resolution of crossdirectory mames, as discussed in
Section 5.3.4. In the longer tenn. we plan to explore the
use of rule-based hemistics far dimtory resolution. Such
heuristics cau be exploited by sopslisticated applications
and end users to customize the resolution of conflicting
partirioIleddirectoryupdates.

8. Related Work
The use of optimistic replication for high availability was
e x p I d by a number of reseslrchers in the d y 1980s.
including Garcia-Molina[41. BlauStein[lI. and
Davidson [2]. Their work is summarized in the excellent
survey by Davidson e€ al[3]. Most of this work was done
in the Context of a distributed transactional model, and does
not directly apply to Unix file systems.

Locus [13] was the fm distributed ftle system to use

optimistic replication and to recognize that Unix semantics
could be used for directory resolution. But the proposed
ideas were not succeddy implemented in the original
system. More recently, Guy[6] has developed an
implementation of directory resolution in the context of
Ficus. a descendant of Locus.

The Coda approach of logging directory updates is
conceptually simpler than the Ficus approach of inferring
these updates fmn the final states of replicas. The two
approaches also differ in their imptications for resolution
performance. In Coda. perfommy depends only on the
amount of pgmtioned activity. In FICUS, both directory size
and degree of replication are dominant factors in the
perfamance of resolution.

Like Coda, Ficw preserves inh" * about deleted
objects in cmkx to detect removehpdate conflictr. But the
systems differ markedly in their approach to reclaiming
space pertaining to these objects. Ficus uses a complex
distributed garbage collection algorithm w b s e scalability
is open to question. Coda. in contrasf uses the much
simpler strategy of allowing each site to unilaterally
reclaimreswrcesvialogwraparound Thisprovidesa
cleariy-defioed trade-off between usability and resource
usage. one we believe is essential in any practical system.
Finally, we believe that the presence of an explicit log will
make it easier to separate palicy and tnah" * i n
resolution, thereby simplifying the implementation of
heuristic-based resolution.

212

9. Conclusion
Although mnqmally simple, log-based directory
resolution has turned out to be more complex to implaeat
than we orighdly expected. One some of complexity is
the need to consider many pathological situations during
the computing of compensating o p e ” . Anorher
some is the need to ensure that all steps of the resolution
prowl are robust in the face of failures. We have
achieved this by making the protocol idempotent, An
alteanative strategy would have been to use distributed
transactions. However, that appmach would have required
us to xun the risk of blocking in case of coordinatoT failure.
It would have also been comm to Coda’s gened
philosophy of using optimistic strategies whenever
possible, to improve aansparency from the user’s
perspective.

Our experience with log-based resolution has been highly
positive. Our initial amcans about excessive space usage
for logging have proved baseless. The speed of resolution
is excellent, and is rarely noticeable in normal operation.
Overall, we believe that a log-- strategy is indeed
appropriate for directory resolution in a distributed fie
system that suppons optimistic replication.

Acknowledgements
The possibility of using logging for directory resolution
was first suggested by James Kistler. We are indebted to
Lily Mumma for the file reference traces used in Section
6.2, and to Maria Okasaki for the AFS file size Statistics
used in our directory resolution benchmarl. We also wish
to express our appreciation to the other members of the
Coda project: Hank Mashbum, Brian Noble, Gowthami
Rajendran, and David Steere.

References
Blaustein, B., Garcia-MOW H.. Ries, DR.,
chilenskas, RM., Kaufman, C.W.
Maintaining Replicated Databases Even in the

F%axmceofNetworkPartitions.
In Proceedings of the IEEE 16th Electrical and

Aerospace Systems Confrrcne. September.
1983.

Davidson, SB.
An Optimistic Protocol for Partitioned Distributed

PhD thesis, Department of Electrical
Databave Systems.

and Computer Science, F’rinceton University.
1982.

Davidson, SB., Garcia-Molina, H.. Skeen, D.
CoIlsistency in Pamtioned Networks.
ACM Computing Survcys 17(3), September, 1985.

Garcia-Molina, H.. Allen, T., Blaustein. B.,
chilenskas, RM., Ries. DB.
Data-Patch: Intqrating Inconsistent Copies of a

Databese A f m a Partition.
In Proceedings of the 3rd IEEE Symposium on

Reliability in Distributed Sojbvare and
Database Systems. October, 1983.

Guy, R.G.
A Replicated Fdesystem Wgn for a Distributed

Master’s thesis. Department of computer Science.
Univedy of California, Los Angeles, 1987.

Guy,R.G.,Popek,G.J.
Reconciling pardally replicated name spaces.
Technical Repart CSD-9oo010, University of

California, Los Angeles, April, 1990.
Kistler, JJ., Satyanarayanan, M.
Disconnected Opaation in the Coda File System.
ACM Transactions on Computer Sys tem 10(1),

Mashbum, H., Satyanarayanan, M.
RVM: Recoverable Virtual Memory User Manual
School of Computer Science. Camegie Mellon

Satyanarayanan, M., Siegel, E.H.
Parallel Communication in a Large Distributed

IEEE Transactions on Computers 39(3). March,

Satyanarayanan,M.,Kistler, JJ..Kumar,P..
OlarsaLi. MB., Siegel.E.H., Steere, D.C.
Coda: A Highly Available File System for a

D i s e i b u t e d W o r k ” E ” e n t .
IEEE Transactions on Computers 39(4), Apd,

1990.

unix system.

February. 1992.

University, 1991.

Environmmt.

1990.

satyanarayanan, M.
Scalable, Secure, and Highly Available Distributed
F* Access.

IEEE Computer 23(5), May. 1990.

Satyanarayanan. M.
The I n f l w of Scale on Distributed Fde System

IEEE Transactions on Sofrwote Engineering 18(1),

WalLa, B., popdr, G., English, R., Kline. C.,
Thicl, G..
Tbe LOCUS Distributed Opera@ System.
In Proceedings of the 9th ACM Sympodwn on

Design-

January, 1992.

Operating System Principles. October, 1983.

213

