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Abstract 
optimistic replicltion is m imparrrnt technique for 
achieving high avdability in distributed file systans. A 
key problem m optimistic rephtim is using d c  
b w l e d g e  of objects to resolve co"mt updates from 
multiple partitions. In this paper, we describe how the 
Coda File System resolves pllrtitionsd updareg to 

updates is a simple yet efficient and powerful teclmique for 
directory resolution m Unix file systems. Mersurementr 
from our implementatkm show that the time for resolution 
is typically less than 1096 of the time for paforming the 
original set of partitioned updates. Analysis based on file 
traces fnnn our envinm" indicate that a log size of 2 
MB per hour of padtion should be ample for typical 

dirCCtOIkS. The C U U d  I d t  Of Our Work is th.t &g&g Of 

smers. 

1. Introduction 
Optimistic replication is an effective technique for 
aaaining high availability in distributed file systms[31. 
The term ''Optimistic" refers to tbe fact that concumnt 
updates are allowed in multiple network partitions. A 
pessimistic scheme, in contrast, allows updates in at most 
one partition. An optimistic strategy provides higher data 
availability but cannot guarantee data consistency 8ccoss 
partitions. Therefore optimistic replication is PrefaaMe 

when coping with it is less onerous than being denied 
u p d a t e ~ ~ g n c ~ f ~ .  ThaeissUbs€arltial 
evidence to suggest that this combination of circumstances 
is often ptesent in distributed Unix file systems [71. 

A key problem in Optimistic replidon is dewting when 
an object has been updated collcurrently in multiple 

transparently m q e d  without violating semantic 
constraints. Concumnt updates that can be mexged are 
called benign. Other updates are called conflicting. 

When Closely-spaced seqraential Write-sharing is ran, and 

partitions. and deterrmrun * ' g w h c ~ t h o s e u p d a t e s c a n b e  

Without semantic knowledge all concurrent partitioned 
updates to an object must be treated as conflicting. and 
meqed manually by the user. Manual resolution is 
undesirable because it reduces the overall usability of the 
system. 

An extremely important object., with known semantics, in 
Unix Ne systems is a directory. We refex to the process of 
examining replicas of a directory, deducing the set of 
partitioned updates and merging them using Unix 
semantics as directory resolution. It has two important 
sideeffects. First, benign updates are propagated to al l  
replicas, thus making them identical. Second, directories 
with conflicting updates are marked unusable and 
pregetvedforfufuaaemanualrepair. 

In this paper we describe how the Codcl File 
Systcm [lo, 111 exploits Unix directory semantics to 
effectively support optimistic re.pliauion. The central 
result of our work is that logging of directory updates is a 
simple yet efficient and powerful technique for directory 
resolution. An imphmtation of k t o r y  resolution is 
complete, and is used on a daily basis by a small user 
community. M e a " e n t s  from our implementation show 
that the time for resolution is epproxlmate * ly 10% of the 
time for perfannins the original se€ of p a r t i t i d  U-. 
Aualysis based on Ne traces from ouremhnunent indicate 
that a log size of 2 MB per hour of partition should be 
ample for typical servers. 

2. Coda File System 
Coda is designed for a typical m h  and development 
environment and is in- for applications like electronic 
mail, bulletin boards, document prepamion and prog" 
devclopmealt. It is not inttnded to be used for applications 
like- that exhibit high -of fine-grain write- 
shsring. Codacoosistsofalargecoktionofuntrusted 
Unix clients and a much smauet number of trusted Unix 
file seaveas. Each clieat has a local disk and can 
communicate with the servexs ova  a high bandwidth 
network At certain times, a client may be temporarily 
unable to communicate with some or all of the servers due 
toa~ornctworkfa i lm.  
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Clients view Coda as a single, location-transpannt shared 
Unix file system. The Coda namesp~ce is mapped to 
individual file se" at the gnrnularity of subaes called 
volumes. At each client, a cack manager (Venus) 
dynamically obtains and caches volume mappings. 

Coda uses two distinct, but complementary, mechanisms to 
achieve high availability. The first m e d " ,  s e w  
replication, allows volumes to have &-write replicar at 
more than one server. This reduces the probability of an 
object becoming unavailable due to failures. 'Lhe second 
", disconnected operation, takes effect when no 
server is acuxsible. While discomc WVenuSSaViCeS 
file requesrs by relying solely on the contents of its cache. 
When disoonnection ends Venus propeeatw m o d i b h u  
and r e v ~ t s  to serverreplication. 

2.1. Replica Control Algorithm 
The set of replication sites for a volume is its volume 
sforuge grow (VSG). The s u b w  of a VSG that is cllczently 
accessible is a client's accessible VSG (AVSG). File 
system requests are senriced by Venus from its cache. If 
the cache does not contain the iatestcopy of aa object 
Venus contacts the AVSG. The prutocol for aumsing 
objects from the mers is reod-s t~dldata-one  I 
write-uil. 
earlier [IO], we only present a summary here 

Read accesses return the latest accessible copy of an object. 
To serviceacache miss, Venus one server from 
the object's AVSG as the prqferred server and obtains both 
dataandstatusinformationfromit. Inparallclitobtains 

call that caused the cache miss retams m y  only if 

otherwise the object neads lesolutial. validity of the 
cached objects is maintained by callbacks. 

'Ihe update protocol, which is execwd when a directory is 
modified or a file is closed after being wrirtesl, p" 
changes in parallel to all accessible replicas. It collsjsts of 
two phases, cop1 and COPZ. when cop stands f a  Coda 
optimistic protocol. In COPI, each AVSQ membex exccutes 
the operation and stamps its replica with a client-generated 
tag called a storcid. COPZ distributes a data stmctllre called 
the L(pd4tc set, which sum- the climt's knowledge of 
who pedormed the cop1 opemion SUCCtSSfUIy. llle 
update set. dong with the storeid, is used to maintab the 
vetsion i n f o "  used during resolution. 

since this protocol has been dedbe!d in detail 

Status information from otha AV= me!Jnkrs. The System 

the i n f d o n  from dl AVSG h khtkd. 

2.2. Directory Updates 
Coda directories umsist of a series of name-identifm pairs 
that map names to specific objects in the system. coda 
supposts the Unix interface for maring, removing and 

changing directory entries as well as modifying individual 
Objects. Directory entries ~ 8 n  be insetted via the creat, 
link or mkdir system calls, removed via the unlink or 
rmdir system calls. and changed via the rename system 
call. Unlike Unix, Coda allows hard links only within a 
directory. consequently, the coda naming hierarchy is 
constrained tobeasuicttretratherthanan acyclic graph. 

Dinctay updates are indcgcnderu of one a n o k  as long 
as they do not refmncc the same object A set of 
indepndent updates can beexecuted in any order resulting 
inthesamefinalsystemstate. Forexam~operations 
"create foo" and "create bar" in diffant 
dkctories are indeptndent. By definition, independent 
k t o q  updates are benign since we are only interested in 
W r i t G W r i t e ~ t s .  

Directay updates that are not independent are also benign 

* N m l N m  conflicts: Two different objects 
with the samenameareinsemdin adirectory 
indiff~tparti t ions.  

.RemovclUpdotc conflctts: An enuy is 
m v e d  fiun a directory in one partition but 
thecorresposldm * g object a its descendants are 
lpwtatedinaMthapattitian. 
UpdorclUpdruc conflicts: A directary's mea 
data. such as its w x s s  list, is updated in two 
[x m m  @tions. 

.ReMmelRe~mc conflicts: An object is 
moved into dif€amt directories in two 

unless they cOcfeSpOnd to one of the following situations: 

partitions. 

The first thret cases w a  first identified by Guy in the 
context of the Locus Ne system [51. The fourth category 
does not exist in Guy's classification because his model 
does not restrict the naminghierarchy tobeatree. 

3. Overview of Directory Resolution 
partitioned updates on an object are detected the first time 
i t i s~a f tez twoormorepg l t i t ionsreconnec t  If 
Venus detects a versiaa mismatch amongst the replicas 
while servicing a cache miss, it a&ts the p e f d  server 
to perfam resoIutioll and pauses. If resoiution is 
successful,Venusretriessenicithecachemiss. Inthis 
case, resolution is completely r l a " t  to applications 
and USCIS. The only " b l e  effect is a slight delay in 
t h c ~ o f t h e s y s l e m d  Ifnsdutron ' is 

Venus retrans an ezrot as the result of the 
system call thatgareratedthccache miss. 

Dinctory resolutioll is performed entirely on senen, with 
clients being mpoasible only for its activation. This 
dichotomy is crucial to meeting Coda's goal of scalrrbility 
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without compromising secun'ry. Relying on clients to 
detect partitioned updates eliminates the need for elaborate 
machinery on servers to keep a;lck of the state of 
connectivity of other servers. Such machinery has to be 
present on clients anyway to guarantee coherence. This is 
consistent with our strategy of enhancing scalability by 
using client resources rather than server resources wherever 
possible [ 121. 

A logical extension of this shategy would make clients 
rather than servers perform resolution. Unfortunately, this 
would compromk security because the process of 
resolution may require examination and modification of 
regions of the file system for which the user at the client 
performing the resolution has no access privileges. Our 
assumption that a client is only as trusmaithy as its user 
requires us to perform such operations on servers. 

Coda performs resolution lazily: although there may be 
many partitioned updates in a volume, the system only 
resolves those objects needed to satisfy the triggering 
system call. An aggressive approach to resolution would, 
in contrast, strive to eliminate all unresolved partitioned 
updates as soon as partitions reconnect. Our s m g y  
minimizes the latency of systems calls that trigger 
resolution. It also reduces the peak deinands made on 
servers immediately after recovery from a crash or network 
partition. Its main drawback is that unresolved partitioned 
updates may persist until a further crash or partition, thus 
increasing the chances of stale data being used or a 
conflicting update being made. A compromise would be to 
perform resolution lazily when triggered by a client, but to 
conduct aggressive resolution in the background during 
periods of low server load. Our usage experience so far 
with Coda has not indicated the need for such a hybrid 
policy. 

The resolution subsystem is responsible for classifying 
partitioned updates, propagating benign updates, and 
preserving evidence from conflicting updates. To perform 
this function, the subsystem maintains data strucmes at 
each m e r  and executes a resolution protocol involving 
the AV.% of the object being resolved. We describe the 
design of the data sUuctures, their use during resolution 
and the resolution protocol in the following sections. 

4. The Resolution Log 
Every replica of a volume in Coda is associated with a data 
structure known as its resolution log. Conceptually, a 
resolution log contains the entire list of mutating directory 
operations on a replica since its creation. In practice, of 
course, logs are of finite length and only the tail is 
preserved. The size of the log is specified when creating a 
volume, but can be later adjusted by a system 
administrator. 

4.1. Log Storage 
Resolution requires log modifications to be made in a fault- 
tolerant manner. Each m&ication should be pmnt 
as well as urom'c with respect to the directory update it 
reflects. We achieve this by placing both the resolution log 
and directory contents in recoverable virtual memory and 
modifying them within the same transaction. This is 
implemented using a lightweight transactional package 
called RVM [81. 

RVM suppom local, non-nested transactions on data 
structures mapped into a process' virtual memory. It 
provides the basic transactional propemes * of atomicity and 
permanence by using a NO-UNWIRGDO write-ahead value 
log that records committed updates to recoverable virtual 
memory. periodically, the modifications represented by 
the log records are applied to the committed image of 
virtual memory on disk to reclaim space used by those 
records. By placing the resolution log in RVM, we combine 
the well-known strengths of opemtion logging and value 
lwging. 

Our decision to associate resolution logs with volumes was 
motivated by a numbex of considerations. First, a per- 
volume log achieves a reasonable balance between 
resource usage and efficiency. A single log per server 
would have achieved better utilization of RVM, but would 
have given us no control over the usage of RVM by 
individual users. At the other extreme, a per-directory log 
would have been more effiknt since helevant entries 
would not have to be examined during resolution. But that 
approach would have resulted in much greater intemal 
fragmentation of RVM. A second consideration is that a 
per-volume log is consistent with Coda's policy of 
associating disk quocas with volumes. A final 
consideraton is that the operands of system calls in Coda 
may span dktories but not a volume boundary. 
Consequently, a volume is the smallest encapsulating unit 
whose log is guaranteed to contain all the infarmation 
needed to resolve an update. 
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t ypede f  s t r u c t  
I 
unsigned S e N e r i d ;  
V lceS to re Id  s t o r e i d ;  I*ofpLirypchllbl 
unaigned opcode; I* ofpLirnvurion*I 
Vnode I d dvnode: I*/idof pLiriki.erory *I 
l ong  nex t  index; I* dincrory b g  W*I 
l ong  previndex;  I* dincrory b g  W *I 
]common-log; 

s t r u c t  c r ea t e - log  
I 
cormnon-log cl; 
c h a r  *name; ZfEL */ 
VnodeId cvnode; IbfidofnmuchiU*I 
1 ;  

(b) Entry for File Creation 

(a) Refix of Every Entry 
Figure 1: A Simple Log Entry 

s t r u c t  rmdir-log 
( 
common-log c l ;  19 p+ 91 

c h a r  "me; 1. of&&udcW*l 
VnodeId cvnode; I*jidofhkUlchild*l 
i n t  head: I* po*urto &leudchildr b g  * I  
i n t  count ;  I* length of hkud chidr b g * l  
ViceS to re Id  c s id :  I* *mid of hkud cwd ' I  
1; 

(a) Entry for Directory Deletion 

s t r u c t  rename-log 
I 

unsigned s r c t g t ;  I* wuImlouorkv##frpcrurul*l 
s t r u c t  

common-log c1; I' p* ' I  

1 I* i#o clbou mwce *I 
c h a r  'oldname; 
VnodeId cvnode; 

I rename-src; 
VnodeId OtherDlrV; I*fidofoJurpawN * I  
S t K U C t  

{ I' i#o clbobour -a *I 
c h a r  
i n t  t g t e x i s t e d :  I* wa#amold&rg~~&kUl? *I 
VnodeId TgtVnode; I'fidofold&rg#l ' I  
union 

*newname: 

{I* i$o clbobour old &&U$ * # I  *I 
ViceVersVec TgtGhostW; I' ifilwuafil. *I 
s t r u c t  

( I *  ifitwora dirutory *I 
i n t  head: 
i n t  count ;  
I TgtGhostLog; 

1 TgtGhost; 
1 rename-t g t  ; 

I ;  

(b) Entry for Rename 

Figure 2: More Complex Log Entries 

42. Log Format 
The organizaeion of the resolution log meets three 
requirements. First, it makes efficient use of log storage. 
Second, it supports efficient recording of updates during 
n o d  operation, as well as efficient haversal of log 
enties during resolution. Third, it contains all the 
information needed to perform resolution. 

The first two requirements are met by organizing the log 
physically on a per-volume basis, but logically on a per- 
directory basis. The log for a directory is realized as a 
doubly-linked chain of log entries embedded in the volume 
log. Recording a directory updateconsists of finding a free 
entry in the volume log. lmking it to the end of the 
directory's log. and filling in the fields of the entry. During 
resolution, it is usually sufficient to examine the log entries 
of the directory being resolved. Only on rare occasions is it 
necessary to examine the logs of other directories. 

To meet the third requirement, each log entry has to 
contain the opcode of the corresponding system call, names 
of new Coda objects created by the call, and the low-level 

unique identifiers (calledfi) of all Coda objects created, 
deleted or modified by the call. In addition each enay 
contains the storeid of the cOrreSpOnding update in Coda. 
Figure 1 shows the log entry for a simple directory 
operation in Coda such as file creation. 

Log entries for deletions are m m  complex. They contain 
the state of the object when deleted to unambiguously 
detect removelupdafe conflicts during resolution. For a 
deleted file, the final state is encoded in its Coda version 
vector [lo]. For a dew directory, this infamation 
consists of a pointer to its resolution log, as shown in 
Figure 2a 

The most complex log entry, shown in Figm 2b. 
cOrreSpOndS to the rename operation. Such an may is 
created in each of the logs of the two directories affected 
by the operation. Since a rename may delete. an existing 
target, the log entry contains sufficient information to also 
detect any ensuing remove/update conflicts. 
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Sitel Site2 Site3 

(a) Step 1: Compute LCE 

Remove 

local entries 

(b) Step 2: Discard useless entries and merge 1 - gs (c) Step 3: Perform operations - Fina log state 
Thic f i p e  shows the ncpr d the canpcnmtion algaithm. The algorithm is being exeCUtCd at site 2 and the dirrctory i r  replicated at 
h sewen site 1. sire 2 and si& 3. ?he bdmg is diffmt for updatu in diffemnt pprtitionr. ’Ihe f i r  shows (a) the logr made 
av.il.ble to sife 2. (b) how the mmpauating opentioar 8 ~ c  cnlculated and (c) the 1% 81 sitc 2 just lfter it eXUZltCs the canpensating 
operatioas. 

Figure 3: The Compensation Algorithm at Site 2 

5. The Resolution Algorithm 
Resolution uses the log from each replica to deduce and 
propagate the set of partitioned updates to all replicas. For 
this purpose, each replica’s log is made available to every 
member of the AVSG. In Section 5.1, we focus on the 
actions at a single server. Next, in Section 5.2, we describe 
how resolution is coordinated among multiple servers. 
Finally, in Section 5.3, we idenhfy a number of 
complications that can arise in resolution and show how 
they can be handled. 

5.1. Compensation at One Site 
The compensa’on algorithm is executed at each AVSG 
member after that mer has received the log of every other 
member of the AVSG. For the purpose of this discussion, 
the server at which the algorithm is executing is called the 
local serveG all other AVSG members are called remote 
servers. The goal of the compensation algorithm is to use 
the logs of all replicas to compute the set of partitioned 
updates missed by the local semr and to apply a sequence 
of updates to compensate for the missed updates. 
Detection of conflicts, if any, is a side effect of the 
algorithm. The algorithm proceeds in three steps as shown 
in Figure 3. 

In the first step, the set of all partitioned updates is 
deduced. This is done by scanning each log backwards 
starting from the last entry and finding the most recent 
entry that exists in all logs. This is called the latest 
common enrry (LCE), and repsents the most m n t  point 
when all the replicas were identid Resolution relies on 
the invariant that entries in each log after the LCE 
correspond to exactly the set of partitioned updates. This 

invariant follows from two observations. First, if entries 
with the same storeid are found in the logs of a set of 
replicas, it implies that these replicas successfully 
participated in the same update. Second, the Coda update 
protocol guarantees that updates succeed only at replicas 
that are already identical. Entries prior to the LCE are not 
used and can be discarded for the subsequent steps of this 
algorithm. 

In the second step, the set of updates missed by the local 
server are deduced from the set of all partitioned updates. 
The partitioned updates from each replica’s log are merged 
and the duplicate entries removed. Then the log entries 
corresponding to partitioned updates already performed at 
the local server are removed. Due to dependencies 
behveen log entries from one server, the merge must 
mainrain their order. For example, the enhy for rmdir 
f oo must follow the entry for mkdir f oo because these 
operations do not commute. But log entries from different 
servers can be merged in any order. 

In the third step the updates missed by the local server are 
executed. These updates modify permanent data structures 
in RVM and are all performed within a single transaction. If 
a serious failure such as running out of disk space occurs 
during the transaction, the entire step is aborted and the 
algorithm fails. Updates that invert each others’ effects are 
not executed at all. Before executing each update, the 
seavex e n s m  that the muking state will not violate any 
semantic invariant. If this is not the case, it marks the 
object that was to be modified in conflict As each update 
is performed, a log record reflecting this mutation is 
spooled to the resolution log. Once the entire list of 
updates has been applied. the encapsulating transaction 
commits and the compensation algorithm at this site is 
complete. 
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Phase 1 Phase 2 Phasa 3 Phase 4 

'Ibis liggurc shows the sequence of RPCs during rrsdution. The client V invoku resolution by nominating server SI as amdinam. The 
four phases of tbc pmocol are executed at three subordinate servers SI, S2 and S3. The d e  labeled SI is shaded when the server is 
acting as coordinator and unshaded when it is acting as subordinate. If a mnflict is dewred in phase 3. it is distributed via an extn Rpc 
befae phase 4. 

Figure 4: Phases of the Resolution Protocol 

5.2. The Resolution Protocol 
In this section we describe how resolution is coordinated 
between multiple servers. The resolution protocol is 
coordinator-driven, with one AVSG site acting as 
coordinator and the others acting as subordinates. The 
resolution protocol proceeds in four phases, as shown in 
Figure 4. To improve performance. the coordinator uses a 
parallel RPC mechanism [9] to communicate with 
subordinates. 

The protocol serves two purposes. First, it dismbutes 
resolution logs to all AVSG sites so that each can execute 
the compensation algorithm described earlier. Second, it 
distributes the final result of resolution to all AVSG sites. 
Prior to the execution of the protocol, some of the 
participating replicas may differ from others. At the end of 
the protocol, either all these replicas are identical and ready 
for immediate use, or have been marked in conflict and are 
unavailable until manually repaired. 

Our description below describes the events in the absence 
of failures. However, the protocol is designed to be 
resilient to subordinate, coordinator or network failures. If 
a subordinate fails, the coordinator times out and excludes 
it from subsequent phases of the protocol. If the 
coordinator fails, the client times out and restarts the 
protocol, nominating another coordinator. Network 
failures appear as a remote site crash to each host at either 
end of the link. In all cases. local atomicity of actions is 
guaranteed by RVM at each site. 

5.2.1. Phase 1: Locking 
Resolution begins with the coordinator requesting each VSG 
site to lock its replica of the volume containing the 
directory being resolved. The sites that respond to this 
request become the subordinates of the resolution promcol; 
other sites are ignored in the rest of the promcol. All 
responding sites must indicate successful lock acquisition; 
otherwise the protocol is aborted and an error code returned 
to the triggering client. The client retries the call after a 
few seconds. If the error persists after ten retries, it is 
passed on to the application trying to access the object. 

A resolution lock excludes all other mutarions on a replica, 
including those from normal updates, manual repairs or any 
other instances of directory resolution in that volume. But 
nonmutating operations such as reading a file or listing a 
directory in the volume are permitted. Although locking at 
finer granularity would improve concurrency, it would be 
more complex to implement. Our experience so far 
suggests that this complexity is not warranted. 

The resolution lock is held for the entire duration of the 
protocol, and times out in the event of a coordinator crash 
or network failure. The value of this timeout has to be 
greatex than the longest expected resolution time, and is set 
conservatively to 10 minutes in our implementation. 

5.23. Phase 2: Log Collection and Merging 
In this phase, the log entries needed for resolution are 
collected by the coordinator. Each subordinate first 
extracts the log of the directory being resolved from its 
volume log. It then scans the extracted log, composes a list 
of other objects whose logs might also be needed, and 
extracts those logs recursively. For example, if a subtree is 
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deleted during a partition, the logs of all the directories in 
the subtree are needed to resolve its parent Therefore, 
each subordinate’s log is of dif€emt size. The coofdinator 
merges the logs received f” all the subordinates into a 
linear data structure that preserves the identification of each 
log. 

The need for a se- phase just to collect logs is specific 
to our implementation. It requires the coordinator to 
allocate buffers before receiving the logs. Since each 
subordinate’s log can be of different length, the maximum 
size of each log is calculated during phase 1, and the log 
transferred only in the second phase. 

5.23. Phase 3: Log Distribution and Compensation 
This phase begins with the COO- sending the merged 
logs to subordinates. At this point, each subordinate has 
logs from every accessible replica, and can perfarm the 
compensation algorithm described in Section 5.1. Each 
subordinate returns a list of conflicts, if any, that arose 
during this phase. 

Although resolution may be successN at a subordinate, the 
fate of resolution at other sites is still unknown. As a 
precaution against premature tennhuion of the protow1 
due to coo- failure, each subordinate marks its 
replica with a unique storeid. This ensures that any future 
comparison involving the replica in its current state will 
trigger resolution again. 

Having each s u b u r d i ~ t e  compute its own compensating 
operations exploits the parallelism inherent in this task. 
This opportunity would have been lost, had we chosen the 
alternative strategy of having the coordinatot compute the 
compensating options for each subordinate. But the 
latter approach would have involved less data rransfer, 
since the coordinatu would have shipped compensation 
lists rather than the larger merged logs. 

53A. Phase 4: Unlocking 
In the normal case, phase 3 succeeds at all subordinates. 
The coardinator sends out a new storeid in phase 4, thus 
marking all the replicas as equal. The subordinates release 
their resolution locks, and the coonham returns to the 
Client. 

If thereturn code to phase 3 f” any subordime indicates 
conflict, the coordinatot executes an additional step in the 
protocol to distribute conflict information to all 
subordinates. Phase 4 then merely consists of releasing 
resolution locks, and retuming control to the client with an 
error indicating a conflict. 

5.3. Complications 

53.1. Coping with Finite Logs 
Our discussion so far has ignored the fact that log space is 
fiNte. Coda keeps log lengths to a minimum by 
discarding, at the earliest opportunity, portions of logs that 
will never be needed in future resolutions. Once an update 
has been reflected at all replicas, its log enuy will become 
the LCE for any future resolutions. Hence older entries can 
be discarded resulting in a log with just a single enny. 
Confirmation that an update has been propagated to all 
replicas is available from two sources. In normal 
operation, the COP2 phase of the update pnxocol distributes 
this information. During resolution, the coodinator 
distributes this information in phase 4. Logs grow only 
when some replicas are inaccessible, as repcxted by either 
of these sowes. 

What does a server do when a log becomes full? One 
approach would be to disallow updates to that volume until 
resolution is done. The other approach, used in Coda. is to 
allow updates to continue by overwriting entries at the head 
of the log. This causes the LCE to be lost, a condition that 
will be reported as a conflict by the compensation 
a l p i t h m  of any fume resolution. The Coda strategy 
enhances update availability and provides an easily- 
understood madeoff between resource usage and usability: 
the largex a log, the lower the likelihood of having to resort 
to manual repair. However, it would be a simple matter to 
make the choice between disallowing updates and 
overwriting log enuies a volumespecific parameter. 

53.2. Resolving with Partial VSG 
When resolution pmceeds without all VSG members, 
partitioned updates must be repropagated when other 
members become accessible. To prevent a site from 
perfarming the same operation twice, Coda logs updates 
during resolution with the storeid of the original update. 
The log entry contains the same information as the original 
update’s enuy to ensure correctness of future resolutions 
even if the site where the original update was performed 
becomes inaccessible. 

Log entries spooled during resolution do not provide the 
same guarantee as that provided by e n d  for client- 
initiated updates: if two replicas’ logs have the same log 
entry, the replicas need not have been identical at that 
point So step 1 of the compensation algorithm that 
computes the LCE must ignoae log records spooled during 
resolution. This is achieved by using different families of 
opcodes for log entries of client-initiated updates and 
resolution updates. 
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533. Manual Repairs and Resolution 
Manual repairs allow the user to perform arbitrary 
operations at each replica. Once a replica is repaid, its 
log is truncated and a log entry reflecting the repair is 
spooled. The storeid far this entry will be the LCE in 
future resolutions. If a repair is performed when some VSG 
members are missing, future resolutions him by the 
recovecy of missing vso members will failbecause M LCE 
will be found. Hence the user will have to manually repair 
the object again. Only a repair perfarmed when all vso 
members are up will restore the ability to perform 
transparent resolution. 

53.4. Cross-Directory Renames 
A rename openition may involve directorim far apart in the 
naming hierarchy. It is necessary to resolve both the 

be dependent on other partitioned renames. To correctly 
handle these cascacM dependemies, the transitive closure 
of al l  k t o r i e s  affected by a sequence of renames must be 

Analysis of file system traces from our environment shows 

directory renames. In the light of their relatively rare 
occltrrence. we have chosen not to address transparent 

implementation. But we do guarantee detection of such 
renames, and mark both parents in conflict The next 
version of our system will suppart this missing 
functionality. 

source and target parents simultaneously because each may 

resolved together. 

that less than 3% of all directory updates are cross- 

resolution of c"y renames in our Cumnt 

6. Evaluation 
A log-based approach to directmy resolution incurs time 
and space overheads. The time overhead occurs mainly 
during resolution. with logging being an almost negligible 
contributor in our implementation. The space overhead 
arises from the need to maintain logs at servers. Therest of 
this section answexs the two obvious questions that follow 
from these observathx 

How well does resolution perform? 

How fast does the log grow during partition? 

6.1. Performance of Resolution 

6.1.1. Metric 
A fair estimate of the ovahead due to resolution must 

then anz more partitioned updates to resolve. Hence the 
metric we use in our evaluation is the ratio of two times: 
resolution rinrc and work W .  Resolution time is the 
elapsed time between detection of a partitioned update and 

account far the fact that d u t i o n  will take longer when 

return of control to the client after successful resolution. 
Wark time is the sum of the elapsed rimes for performing 
the or ig id  set of partitioned updates. 

Resolution time is Perceptible to the first user to access a 
directory after the end of a network failure that resulted in 
resolvable partitioned updates. The elapsed time for failed 
reso/ution is less important, since it is swamped by the time 
formanualresolution. 

An inaease in partitioned activity lengthens phases 2 and 3 
of the resolution protocol. Phase 2 talres longer because 
larger logs are shipped to the CoOrdinatoT . phase3takes 
longer because of an innease in the translllssl 'ontimeto 
ship a large maged log to the subordinates. and because 
of an in- in the times at the subonham for 

An 
incrase in the numbs of nplicas also increases resolution 
time because CommuniCatiOa oveheads are higher, and the 
computing of compensating opedons by subordinates 
takes longer. 

computing and applying compensating operations. 

6.12. Experiment Design 
To quantify the above effects, we conducted a series of 
carcfuUy controlled exptzimem using a synthetic 
benchmark. Oneinsmnceofthebenchmark,refemxltoas 
a work unit, consists of 104 directory updates. The 
execution of a warkuaitproceeds in three steps: 

o(re8tiOn of U) new objects, co118i8tiag of 14 
Nes. 4 subdirectories, 1 link and 1 symbolic 
link. These numbers approximate the 
observed composition of typical user 
dinctariesinourenvironment. 

.simulation of edita activity on the newly- 
created files. This is done by creating, then 
removing, a chtckpoint file for each. 

.simulation of C++ compiler activity on the 
newlycreated Nes. For each such file, fo0.c. a 
fh foo..c is & next, a file foo..o is 

removed. 
c"i$ then reaamed tofoo.0; finally foo..c is 

An experiment consists of first measuring the work time 
for perfarming a variable number of work units on each of 
n partitioned replicas of a directory. Then the partitions 
between the replicas are healed, resolution is trigged. and 
the resolution time is lI"d 

We performed two sets of experiments, one involving 
partiDioDed work only at one replica, and the other 
involving partitioned wark at all replicas. In each set, we 
examined c o n f i g "  involving 2.3 and 4 replicas. For 
each configuration, we varied the load from 1 to 10 work 
units. 
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I Rep I Load I Workllmc I R d u t i o n  Tim ~sccona 
Fador (seconds) Total 

I 1 I 
2 1 

2 
3 
5 
7 
10 

27.9 (0.4) 

69.7 (63) 
111.6 (69) 
188.0 (10) 

15 (OD) 
2 9  (0.1) 
4.5 (OD) 
7.8 (0.1) 

120 (0.1) 
18.2 (OA) 

3 1 285 gl) 
2 79.5 0-5) 
3 118.1 (10.7) 
5 224.8 (10.2) 
7 337.1 (9s) 
10 475.2 (7.2) 

1.9 (00) 
3.7 (0.1) 
5.8 (03) 
9.0 (03) 

I 12.7 (03) , 19.7 (03) ’ 
4 1 

2 
3 
5 
7 
10 

27.9 (02) 20  (0.4) 
78.6 (7-0) 3.7 (ao) 

1095 (3.2) 5.6 (or) 
218.8 0.9) 9.7 (0.1) 

525.2 (5.7) 25.0 (45) 

341.7 (90) 14.5 (0.6) 

I I I I 

1 

4.2 (0.0) 
7.4 (0.1) 

11.6 (0.1) 
17.6 (0.4) 

I 
1.7 (0.m 6.7% 
3.4 (0.1) 4.7% 
5.4 (0.2) 4.6% 
8.6 (0.3) 4.0% 

122 p.3 3.8% 
19.0 (0.3) 4.1% 

I 

5.2 (0.1) 
9.3 (0.2) 

’Ihir data was obuined using a Decstatica 3100 arith 16MB of memory as dient, and Decrtatica 5 o o O m  with 32MB of m c m q  M 

scwm camnunicating over an Ethemet. The numbers pmaented here are mean vpluw fmn three trials of uch experiment Fig- m 
pumthems are. staodard deviations. 

Table 1: Resolution Time After Work at One Replica 

6.13. Results 
Tables 1 and 2 present the means and standard deviations 
of work and resolution times observed in three trials of 
each experiment They also indicate the contributions of 
individual phases to total resolution time. The tables 
indicate that resolution time increases primarily with load, 
and secondarily with the replication factor. 

The primary conclusion to be drawn from this data is that a 
log-based strategy for directory resolution is quite efficient, 
taking no more than 10% of the work time in all our 
experiments. This holds even up to a load of 10 at a 
replidon factor of 4, corresponding to over lo00 updates 
being performed on each of 4 replicas of a directory. 

The tables show that phases 1 and 4 contribute very little to 
the overall resolution time. Since these phases merely do 
locking and unlocking, the time for them should be 
independent of load. But, as a sanity check in our current 
implementation, the coordinatoT collects the replicas to 
venfy equality before unlocking in Phase 4. This accounts 
for the dependence of this phase on load and replication 
factor in our experiments. 

Phase 2 consists of extraction and shipping of logs by 
subordinates. The time for this is dependent on the total 
lengths of the logs, which is only related to the total 
amount of work. This is apparent in Table 1 where the 
time for phase 2 increases with load but is invariant with 
degree of replication. The times for Phase 2 in Table 2 are 

significantly higher than in Table 1. This is a cotlsequence 
of our parallel RFT implementation. A large log fetch 
from one site and zero-length log fetches from the others is 
much more efficient than a number of smaller, equal-sized 
log fetches from each site. 

Phase 3 is typically the dominant contributor to the total 
time for resolution. This is not surprising, since the bulk of 
work for resolution occurs here. This includes the shipping 
of merged logs, computation of compensating operations, 
and application of these operations. 

Table 1 also shows that resolution time grows linearly with 
workload unlike work time which grows supra-linearly. 
This is because of interactions with the RVM package. At 
higher loads, the time for truncating the RVM log gets 
included in the worktime but not in the resolution time 
because the client’s RVM log is much smaller than the 
Servers’ RVM log. 

6.2. Size of Log 
Since a log grows linearly with work done during partition, 
any realistic estimate of log size has to be derived from 
empirical data. Our analysis is based on about 4GB of file 
reference traces to AFS and Coda obtained over a peaiod of 
10 weeks from 20 Coda workstations. The usage profile 
captured in these traces is typical of research and 
educational environments. These traces were used as input 
to a simulation of the logging component of the resolution 
subsystem. 
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114.0 (16.7) 
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Table 2: Resolution Time After Work at All Replicas 

The simulator assumes that all activity in a trace occurs 
while panithed. and maintains a history of log growth at 
15-minute inwals for each volume in the system. For 
each directory update in the trace, the simulator increments 
thecomspondtng volume’s log length by the size of the 
log recoLd that would have been genaated by a Coda 
server. At the end of simulation, the average and peak log 
growth rates for each volume can be obtained from its 

Table 3 shows the dishibution of long-team average rate of 

This average is computed by dividing the final log size for 
a volume by the time between the first and last updates on 
it. It is clear from Table 3 that long-team log growth is 
relatively low, averaging about 94 bytes per hour. 

Focusing only on long-term average log growth rate can be 
misleading. since user activity is often bursty. A few hours 
of intense activity during a partition can generate much 
longer logs than thatpredictedby Table 3. To estimate the 
log length induced by peak activity, we examined the 
statistical distribution of hourly log p w t h  rate8 for al l  
volumes in OUT simulation. Fv 5 shows this 
distribution. ova W% of all data points 8n less than 
lKB, and over 99.5% are less than 1OKB. The highest 
value observed was 141KB. but this occurred only once. 

A w a s t c ~ s f  design would have to cope with the highest 
growth rate during the longest partition. A more realistic 
design would use a log adequate far a large fraction ofthe 

hismy. 

log growth over all the volumes encounteffd in our traces. 

20.4596 
200 to 300 4.55% 

6.82% 1 z; I y 2  1 
Thk dru W U  ariasdby trrce-busd limaLtioa md 

fa44 AFS md cod.volrrmu over lpcMdd 10 we& 
f- m wol~ltltiaar. 

Table 3: Long-Term Average Log Growth Rates 

s h w a  tbe dirtributiaa d Img-tcm a v q e  pow& nta 

anticipated wenarb. Since hourly gmwth is less than 
l0KB in 99.5% of our data points. and since an hour-long 
partition could have slra&lled two consecutive hours of 
peak activity, we infer that a 20KB log will be adequate for 
most hour-long partitions in our environmeat More 
generally, a partition of N hours could have straddled N+1 
consecutive hours of peak activity. Hence a log of lo(N+l) 
KB would be wxmmuy. If a Coda serves were to hold 100 
volumes (a typical numbex at AFS * ns), the total 
log space needed M the server would be (N+l) MB. 
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7. Status and Future Work 
Today, Coda runs on IBM RTs, Decstation 31009 and 
5oooS, and 386-based laptops such as h e  Toshiba 5200 and 
IBM PS/2-LX40. A smaU user community has been using 
Coda on a daily basis as its primary data repcwitory since 
April 1990. All development work on Coda is done in 
Coda itself. As of June 1992 there was nearly 1GB of 
triply-replicated data in Coda A prototype of the 
resolution subsystem described in this paper has been 
operational since May 1991. 

Our immediate plans are to provide support for transparent 
resolution of crossdirectory mames, as discussed in 
Section 5.3.4. In the longer tenn. we plan to explore the 
use of rule-based hemistics far dimtory resolution. Such 
heuristics cau be exploited by sopslisticated applications 
and end users to customize the resolution of conflicting 
partirioIleddirectoryupdates. 

8. Related Work 
The use of optimistic replication for high availability was 
e x p I d  by a number of reseslrchers in the d y  1980s. 
including Garcia-Molina[41. BlauStein[lI. and 
Davidson [2]. Their work is summarized in the excellent 
survey by Davidson e€ al[3]. Most of this work was done 
in the Context of a distributed transactional model, and does 
not directly apply to Unix file systems. 

Locus [13] was the fm distributed ftle system to use 

optimistic replication and to recognize that Unix semantics 
could be used for directory resolution. But the proposed 
ideas were not succeddy  implemented in the original 
system. More recently, Guy[6] has developed an 
implementation of directory resolution in the context of 
Ficus. a descendant of Locus. 

The Coda approach of logging directory updates is 
conceptually simpler than the Ficus approach of inferring 
these updates fmn the final states of replicas. The two 
approaches also differ in their imptications for resolution 
performance. In Coda. perfommy depends only on the 
amount of pgmtioned activity. In FICUS, both directory size 
and degree of replication are dominant factors in the 
perfamance of resolution. 

Like Coda, Ficw preserves inh" * about deleted 
objects in cmkx to detect removehpdate conflictr. But the 
systems differ markedly in their approach to reclaiming 
space pertaining to these objects. Ficus uses a complex 
distributed garbage collection algorithm w b s e  scalability 
is open to question. Coda. in contrasf uses the much 
simpler strategy of allowing each site to unilaterally 
reclaimreswrcesvialogwraparound Thisprovidesa 
cleariy-defioed trade-off between usability and resource 
usage. one we believe is essential in any practical system. 
Finally, we believe that the presence of an explicit log will 
make it easier to separate palicy and tnah" * i n  
resolution, thereby simplifying the implementation of 
heuristic-based resolution. 

212 



9. Conclusion 
Although mnqmally simple, log-based directory 
resolution has turned out to be more complex to implaeat 
than we orighdly expected. One some of complexity is 
the need to consider many pathological situations during 
the computing of compensating o p e ” .  Anorher 
some is the need to ensure that all  steps of the resolution 
prowl are robust in the face of failures. We have 
achieved this by making the protocol idempotent, An 
alteanative strategy would have been to use distributed 
transactions. However, that appmach would have required 
us to xun the risk of blocking in case of coordinatoT failure. 
It would have also been comm to Coda’s gened 
philosophy of using optimistic strategies whenever 
possible, to improve aansparency from the user’s 
perspective. 

Our experience with log-based resolution has been highly 
positive. Our initial amcans about excessive space usage 
for logging have proved baseless. The speed of resolution 
is excellent, and is rarely noticeable in normal operation. 
Overall, we believe that a log-- strategy is indeed 
appropriate for directory resolution in a distributed fie 
system that suppons optimistic replication. 
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