
An Annotation-Based Framework for Parallel Computing*

C. A. Cunha1, J. L. Sobral2
1Departamento de Informática, Instituto Politécnico de Viseu, Portugal

2Departamento de Informática, Universidade do Minho, Braga, Portugal

Abstract

This paper presents a programming language for
parallel computing based on code annotations. It has
similar goals and philosophy as OpenMP but it is more
tightly coupled to the object oriented paradigm. We
include annotations for most common concurrency
patterns and mechanisms, namely, one-way, futures,
barriers, reads/writers and thread-local. Our current
prototype is implemented using Java 5 annotations and
AspectJ and provides a feasible and efficient
alternative to the Java thread model.

1. Introduction

Multi-core and multiprocessor machines are
becoming mainstream architectures. However, to take
advantage of this type of architectures, applications
should go through several modifications, as to specify
tasks that can run in parallel and to perform
synchronisation among tasks. This incurs in an
additional burden to the programmer and may involve
non-reversible changes to applications.

Traditional thread programming can be used to
convert a sequential application to a parallel
counterpart, however it lacks of suitable abstractions to
help the programmer to structure parallel applications
and may require a considerable amount of code rewrite
to fit into the thread parallelisation model.

OpenMP [1] provides a more structured way to
introduce parallelism into a sequential application. It
includes parallel blocks and parallel loops (e.g. for), as
well as a set of synchronisation directives for shared
variables. Parallelism related concerns in OpenMP are
specified through a set of directives that can be ignored
by a non-compliant compiler, achieving a valid
sequential program. This approach makes parallel code
closer to sequential versions, softening the transition
from sequential to parallel programming. OpenMP is

* This work was supported by PPC-VM project (Portable Parallel
Computing Based on Virtual Machines, POSI/CHS/47158/2002) and
by SeARCH (Services & Advanced Computing with HTC/HPC,
CONC-REEQ/443/EEI/2005) both funded by Portuguese FCT
(POSI) and European funds (FEDER).

currently supported by important compilers, namely
Intel, Microsoft and GNU compilers.

There is still no official binding of OpenMP for
Java and, most important, OpenMP is targeted for
traditional structured programming and not for
object-oriented programming models. As consequence,
it can not take advantage of the structure of object
oriented applications (e.g., classes and method calls).

In this article we propose a framework comprising a
set of annotations intended to replace OpenMP
directives in the context of object oriented applications.
In this approach we annotate classes, methods and
instance variables instead of generic blocks of code,
resulting in a more high level and object-based
reasoning. The provided annotations include:
@Oneway, which spawns a method call in a new
thread; @Barrier, which blocks a set of threads until all
have reached a certain point in program execution and
@ThreadLocal, which creates a local instance variable
per thread.

The framework was implemented in Java using Java
5 annotations [2] and AspectJ [3]. This approach
provides a fully integration into the Java language,
including compile time check of annotation syntax and
direct generation of Java bytecodes, without
intermediate compilation steps. This avoids a common
problem, in pre-processor based approaches, of tracing
an error to the correct point in source code.

This work differs from other research works in the
way it uses programmer based annotations to specify
parallel execution and synchronisation, in a philosophy
similar to OpenMP. It differs substantially from
OpenMP, since annotations are provided at instance
variable/method level and are fully integrated in an
object oriented model.

The remainder of this paper is organised as follows.
Section 2 presents related work. Section 3 describes the
proposed annotations from a programmer perspective.
Section 4 overviews the current implementation of
these annotations by means of Java 5 annotations and
AspectJ. Section 5 shows several code examples and
section 6 presents performance evaluation. The last
section discusses obtained results and future work.

2. Related Work

Early work on objects and concurrency introduced

several high level patterns and mechanisms to address
the complexity of concurrent programs. One of these
early efforts was concurrency annotations [4]. In this
approach Eiffel programs are annotated to introduce a
parallel semantic, i.e., an alterative semantic that
supports parallel execution. Provided annotations
include compatibility annotations (a generalisation of
readers and writers methods), delayed acceptance
based on Eiffel preconditions, autonomous objects
(i.e., active) and asynchronous invocations. This model
was recently ported to Java [5].

Another relevant effort was COOL [6], an extension
to C++ that provides parallel methods that run on a
separate thread and event synchronisation, a
mechanism similar to Java monitors. Although this
model has a philosophy similar to concurrency
annotations it introduces new keywords to C++ to
provide a parallel semantic.

ProActive [7] includes active objects and automatic
future method calls (a mechanism called wait-by-
necessity). ProActive does not rely on programmer
annotation to express parallelisation issues, as it is
based on a more implicit parallelisation model.

A large amount of Java based approaches are
concerned to Java distributed machines aimed to
address distributed thread execution, supporting a
single system image. Examples are cJVM [8],
Hyperion [9], Jakal [10] and JESSICA2 [11]. These
approaches rely on the Java thread model to introduce
concurrency into sequential applications.

An OpenMP bind for Java is presented in [12].
Directives are introduced through special Java
comments. An external tool converts an annotated
program standard to Java code. In [13] a similar bind is
presented, better fitted into Java language philosophy
and [14] presents an implementation on distributed
memory systems by means of a DSM middleware.

Our proposal differs from these previous efforts as
we provide a richer set of annotations, fully integrated
into an object oriented model. Additionally, we provide
a complete implementation, based on Java 5
annotations, built as an AspectJ library§.

3. Annotations for Concurrent Execution

Annotations are a metadata facility introduced in
J2SE 5.0 (Tiger) [15] implemented as modifiers that
can be added to the code, namely to classes, interfaces,

§The AspectJ library can be downloaded from the PPC-VM web
page at http://gec.di.uminho.pt/ppc-vm

methods and fields. Java Tiger includes built-in
annotations and supports the creation of new custom
annotations. Annotations describe the elements
behaviour which contributes to a better code
comprehension about the program behaviour.

Several annotations were implemented to describe
concurrent behaviour. Such annotations are considered
in the context of many widely known high-level
constructs for concurrency [16][17], namely One-way,
Future, Active Object, Barrier, Synchronised,
Readers-Writer, Scheduler and Thread local. Each
construct comprises one or more annotations, which
can be used to describe specific element types, e.g.
fields, methods or classes (Figure 1).

@ClassAnnotation
public class <class_name> {
 @FieldAnnotation int x;

 //...
 @MethodAnnotation
 public void execute(){}
}

Figure 1. Annotate elements

Occurrences of annotated elements are intercepted
by aspects to add the corresponding concurrent
behaviour at those points (see section 4).

We classify annotations into concurrency generation
annotations and synchronisation annotations. Most
annotations can be applied to a specific thread group,
supplied as an annotation parameter. Concurrency
generation annotations can associate the spawned
thread to a specific group, while synchronisation
annotations can be restricted to a specific thread group.
This feature allows multiple annotations to coexist in
the same point in the code.

Synchronisation annotations also feature an optional
lock id name. This allows several locks to coexist for
the same object or sharing of locks among objects.

3.1. One-way

One-way mechanism [16] applies to methods that
run on a thread of their own: the client never blocks,
waiting for some result. One-way pertains only to
asynchronous void method calls – when the method
does return a value, a future (3.2) should be used.

One-way usage follows the syntax:

@Oneway(threadGroup=[thread group id],
 saveState=[Yes|No])

@Oneway annotate methods which should be

executed in parallel. A new thread will be created to
execute each annotated method, associated to thread

group specified in threadGroup parameter. When
omitted, the new thread is associated with the thread
group of the current thread. If the thread reference is
required latter – e.g. to perform a join or sleep
operation – the saveState parameter should be specified
as True.

The traditional fork and join algorithms require, in
addition to the thread spawning mechanism, a way to
synchronise (i.e., join) the main thread and spawned
threads at some point in the application. Join
operations are allowed by using
@JoinBeforeExecution and @JoinAfterExecution
annotations to force the current thread to wait for all
threads created by it to terminate, before or after the
annotated method execution. Similarly,
@SleepBeforeExecution and @SleepAfterExecution
forces the current thread to sleep during an amount of
time specified by parameter time. Interruption of
threads are also allowed using @Interrupt to interrupt
all threads created by the current thread and
@InterruptAll to interrupt all threads created in the
annotation context.

@OnewayExecutor is a less flexible One-way
implementation, but more efficient for fine-grained,
non-blocking methods as long as threads present in the
thread pool are reused several times, reducing thread
spawning overhead and avoiding the unrestrained
creation of threads. It has the following syntax:

@OnewayExecutor(executorId=”x”,
 tasksGroup=[thread group id],
 poolSize=[size],

 chunkSize=[size])

OnewayExecutor uses java.util.concurrent.Executor

service to execute one way method calls, which is
based on Thread Pools. @OnewayExecutor supports
some additional parameters. Each Executor is
identified by an executorId and the number of threads
in the thread pool is specified by poolSize. If omitted,
the number of threads is the same as the number of
processors (e.g., cores). Tasks submitted to the
executor service can belong to a specific group
(tasksGroup parameter) and can by agglomerated to
reduce the number of tasks submitted to the executor.
chunkSize parameter specifies the number of one way
invocations agglomerated per each submitted task. By
default chunk size is 1. Additional mechanisms deal
with incomplete chunks (e.g., time out mechanisms).

@OnewayExecutor does not support the sleep
functionality, but is supports join operations (in
specific executors and/or tasksGroups) and a cancel
annotation, similar to @Interrupt.

3.2. Futures

Futures [16] allow two-way asynchronous
invocations of methods that return a value to the client.
Futures are join-based mechanisms based on data
objects that automatically block when clients try to use
their values before the corresponding computation is
complete. During execution of methods, the Future is a
placeholder for the value that has not yet computed.

In typical situations, Futures are used when a
variable stores the result of a computation, which will
be used later. Consider the following code:

a = someobject.compute();
...// other statements
a.doSomething();

The compute method is executed by the new thread.
Instead of blocking at the computation phase – i.e.
during the execution of compute – the thread blocks
when the variable is actually accessed – i.e. when the
method doSomething is executed.

Our annotation-based version of Future uses
@Future annotation to annotate non-void methods
invoked asynchronously and @FutureClient to
annotate methods that use values returned in
consequence of asynchronous method invocations. In
addition, when the return type cannot be instantiated
automatically (e.g., it requires specific parameters) the
user should provide the method getFakeObject – which
implements the code that instantiate the fake object.

3.3. Active Object

Active object decouples the invocation of methods

from their execution [17]. Each object runs into its own
thread of control. Whenever a client object invokes a
method from an active object, the thread associated
with the active object carries out the execution. Active
object is an abstraction that merges objects with
concurrency. One of the early systems to use active
objects was ABCL [18].

Several applications can benefit from the use of
active objects. Client applications such as windowing
systems and network browsers employ active objects
to simplify concurrent, asynchronous network
operations. Multi-threaded servers, producer/consumer
and reader/writer applications are also well suited for
the use of active objects.

The creation of an active object involves the
creation of several support structures, including a
proxy object and a scheduler [17]. Our @ActiveObject
annotation completely hides this complex structure
behind a reusable aspect.

3.4. Barrier

Barrier establishes a set of synchronisation points

where threads should synchronise. Each thread
reaching one of that points blocks waiting for the other
threads of the group.

Methods where threads synchronise can be
annotated either with @BarrierBeforeExecution or
@BarrierAfterExecution, depending if it blocks before
or after method execution. Element-pair values in
annotations allow definition of parameter values that
can be used in this case to store the number of blocking
threads and the target thread group name. Element-pair
values, namely nThreads and threadGroup should be
assigned with the number of threads and the target
thread group where the barrier should apply. For
instance, for five threads blocking after method
execution associated to thread group calculus, the
annotation is:

@BarrierAfterExecution (nThreads = 5,
 threadGroup = "calculus")

When the number of threads is not specified in

barrier annotation the barrier waits for all spawned
threads.

3.5. Synchronised

Synchronisation is implemented in Java language

using the synchronized modifier on method declaration
or using the block construct

synchronized(<object>){ //... code }

Each object holds its own lock, which is used to
assure the exclusive access to methods or regions
declared as synchronised. Although synchronized
methods share the same object lock, synchronized
block construct enables the use of other object lock, in
order to have a single lock shared among multiple
type-unrelated objects.

Synchronised methods would be annotated with
@Synchronized. As a consequence, each intercepted
method or variable access uses the respective object
lock to synchronise access to it.

Optionally, the synchronised mechanism would use
other lock instances to synchronise access to methods
defined in different class instances. In order to identify
a particular lock in the application, the parameter id
should be settled. An id is associated univocally to a
specific lock, which can be specified in the following
manner:

@Synchronized(id = "lockName")

Contrasted with Java constructs, @Synchronized
disallows fine-grain synchronisation, as long as
annotations cannot be used to annotate single
instructions or block of instructions. By resorting to
refactoring we can move instructions to methods in
order to annotate such code and then enable the same
expressivity of Java constructs.

3.6. Readers/Writer

Synchronisation mechanism allows a single thread

to enter in a critical section of code for reading or
writing. Readers/Writer lock differentiates accesses
that change object state from the ones that just read
state, allowing multiple simultaneous readers or one
writer. Access for reading is allowed when no writers
are executing or waiting to access object state whereas
writers can access when there are no writing or reading
operations executing ([16]). Readers/Writer lock fits
well when access is predominantly for reading
purposes. This assumes that methods in a class can be
cleanly semantically separated into those that read
variables values - i.e. Readers - and those that change
such values – i.e. Writers.

@Reader and @Writer annotations describe reader
and writer methods, respectively. Any of these
annotations receives an optional id value, representing
univocally the lock identity. A single lock is created
per each id, enabling the association of methods from
several classes to a specific lock in a similar way of
synchronised mechanism. If id is not specified, the
aspect uses a different lock per each object.

3.7. Scheduler

Usually, synchronisation mechanism implemented

in OO languages - e.g. Java - is inflexible, as each
monitor associated to an object restricts scheduling of
threads in waiting state to monitor implementation.
Scheduler pattern is independent of any scheduling
policy, which is specified in a per case basis.
Specification of a scheduling order can be determined
dynamically accordingly to the state of the object
and/or the method parameters passed on the call.

Scheduler can be engaged into applications by the
use of annotations. Hence, @Scheduled can be used
with enumerated parameter values, in the form:

@Scheduled(
 order=Order.[FIFO | LIFO |

 ordered| master | single],
 threadGroup=[thread-group name])

@Scheduled annotation receives the scheduling
order by parameter. Using FIFO, threads are selected

to execute accordingly to the order they are queued,
whilst LIFO selects threads in the inverse order. Using
ordered, threads are selected in the order they were
created. Ordered scheduling applies only to threads
created by Oneway or Future annotations.

Master and single scheduling are similar to the
equivalent OpenMP directives and can be used to force
a block of code to be executed by a single thread or by
the master thread (first spawned thread). This can be
particularly useful in applications where concurrency
annotations introduce speculative execution as a means
to avoid additional synchronisation.

3.8. Thread Local

Thread local variables are instantiated in a per

thread basis. Consequently the variable scope is always
the thread. Each thread local variable should be
annotated with @ThreadLocal with the following
syntax:

@ThreadLocal(deepCopy=[yes|no],
 reduce=[operationId])

Each access to an object variable annotated with

@ThreadLocal will be forward to a thread specific
local variable. Each thread local object is initialised
with the value of the object outside the thread local
context (i.e., thread context), if the first thread access is
a read operation. Otherwise the thread local value is
not initialised, since the first thread access is for
writing. If deepCopy parameter is specified with yes,
each thread local object is a deep copy of the original
object.

Some algorithms require the reduction of thread
local variables in order to compute the object original
variable. To perform reduction of variables after thread
termination, the parameter reduce should be specified
or a reduction function must be defined. In the former,
operationId represents the preset reduction operation
name, which can assume values like sum, avg, min or
max. In the latter, the object to be reduced should
define the operation that reduces that value with the
following signature:

Object reductionOperation(

Object tLocal, Object objVar)

Such method receives as parameter the thread local

variable and the original object variable and returns the
new object to be stored in the object variable.

An alternative to @ThreadLocal that may be more
efficient is the @ThreadLocalObject, which applies to
classes. In this case, threads use a local copy of the
target object on each method invocation. It is

equivalent to the use of the thread local annotation in
all object fields. This renders into less execution
overhead that @ThreadLocal since the thread local
value is implemented by changing the target of each
method call.

4. Implementation Overview

AspectJ 5 enables aspects to quantify over Java 5
annotations. In light of this, annotations have two
roles: describe the elements (concurrent) behaviour and
provide a hook for the aspects to compose the
concurrent behaviour into the base program. Annotated
elements are intercepted by the aspects which add the
related behaviour at those points.

Mechanisms associated with annotations are
implemented in abstract aspects. Each abstract aspect
holds the code required to add the behaviour associated
with each annotation. Further information about
creating reusable code in AspectJ (e.g., AspectJ
libraries) can be found in [19][20].

Figure 2 shows a simplified One-way
implementation in AspectJ. OnewayProtocol aspect
defines the pointcut onewayAnnotation which
intercepts the execution of methods annotated with
@Oneway. The around statement wraps the execution
of each intercepted method (by means of the proceed
keyword) inside a Runnable object and creates a new
thread to execute such method.

public abstract aspect OnewayProtocol {
 protected pointcut onewayAnnotation():
 execution(@Oneway * *.*(..));

 void around(): onewayAnnotation(){
 Thread t = new Thread(new Runnable(){
 public void run(){ proceed(); }
 }
);
 registerThread(t); // save to join later
 t.start();
 }
 ...// other advices and auxiliary methods
}

Figure 2. One-way implementation

Iterative algorithms can perform fine-grained
method invocations. As the number of threads spawned
by one-way is equal to the number of method
invocations, the performance would be drastically
reduced in such fine-grained methods. One-way
executor presents considerable lower overheads, which
can be further reduced by using task agglomeration
(e.g., the chunk size). Figure 3 shows a simplified
implementation of One-way Executor. Each method
invocation is wrapped inside a Runnable object and
inserted into a vector of objects created inside a

CompositeTask object (a composite of Runnable
objects, see [21]). When the number of calls reaches
the chunk size, the composite is submitted for
execution by the executor service.

void around(): onewayChunk(){
 //...
 Runnable t = new Runnable(){
 public void run(){ proceed(); }
 };
 composite.add(t); // add call to composite
 currentCall++;
 if (currentCall==chunkSize) { //
 registerTask(executor.submit(composite));
 currentCall=0;
 composite = new CompositeTask();
 }
}

Figure 3. Implementation of the OnewayExecutor.

5. Case Studies and Evaluation

This section presents several case studies and
performance results obtained by parallelising several
JGF benchmarks [22] using the proposed annotations.

The first case study is a financial simulation using
Monte Carlo techniques to price products. A skeleton
of the original code is presented in Figure 4. The
application mainly consists on a for loop, where each
iteration can be performed in parallel. At the end of
each loop the result is accumulated in a Vector.

public void runSerial() {
 results = new Vector(nRunsMC);
 PriceStock ps;
 for(int iRun=0; iRun < nRunsMC; iRun++) {
 ps = new PriceStock();
 ps.setInitAllTasks(initAllTasks);
 ps.setTask(tasks.elementAt(iRun));
 ps.run();
 results.addElement(ps.getResult());
 }
}

Figure 4. Original Monte Carlo Simulation code.

To annotate the previous code we need to refactor
the loop into a separate method, as well as the line that
accumulates the results in the Vector. Figure 5 presents
the resulting code, including annotations required to
parallelise this application. Method runIter is executed
in a separate thread, method addResult is declared
synchronised to provide thread-safe access to the
vector. At the end of the runSerial method, the main
thread waits for the completion of all spawned threads.

@OnewayExecutor
public void runIter(Object allTasks,
 Object task, Vector results)
 PriceStock ps = new PriceStock();
 ps.setInitAllTasks(initAllTasks);
 ps.setTask(tasks.elementAt(iRun));
 ps.run();
 addResult(ps.getResult(),results);
}

@Synchronised
public void addResult(Object o, Vector res){
 res.addElement(o);
}

@JoinAfterExecution
public void runSerial() {
 results = new Vector(nRunsMC);
 for(int iRun=0; iRun < nRunsMC; iRun++) {
 runIter(initAllTasks,
 tasks.elementAt(iRun),results);}
}

Figure 5. Monte Carlo Simulation code after refactoring,
including parallelism annotations

In the previous example the final result does not
depend on the order in which results are added to the
Vector. However, it is possible enforce the original
sequential order with ordered scheduling (see 3.7).

The second case study from the JGF benchmarks is
the ray tracer, which renders an image of sixty four
spheres. The refactored code for this benchmark has a
similar structure to code in previous case study, the
main differences (see Figure 6) is that each thread that
executes the renderLine call uses a different clone of
the original RayTracer object (@ThreadLocalObject
annotation) and that the checksum value must be
reduced to a single value at the end of one-way calls.

@ThreadLocalObject(reduce=Reductions.SUM)
public class RayTracer {
 long checksum=0;

 @OneWay
 public void renderLine(/* … */)
 /*… */
 }

 @JoinAfterExecution
 public void render(Interval in) {
 /* … */
 for(int y=0; y < in.height; y++)
 renderLine(/* … */);
 /* …*/
 }
}

Figure 6. RayTracer code with parallelism annotations

Our last code example is an implementation of the
classic Fibonacci recursive function (Figure 7). In this
case study method compute is performed in a new

thread (e.g., Future method call) and local variables r1
and r2 are used to save future values.

public class Fib {

 @Future
 @FutureClient
 public long compute(long value) {
 if (value <=1) return(value);
 else{
 Fib f1 = new Fib();
 Fib f2 = new Fib();
 Long r1 = f1.compute(value-1);
 Long r2 = f2.compute(value-2);
 return (r1+r2);
 }
 }

Figure 7. Fibonacci code with parallelism annotations

6. Performance Evaluation

The performance evaluation aims to show that the
benefits of the framework do not impose significant
performance degradation, when compared with
traditional thread-based programming. We compare the
performance of our framework against reference
implementations from the Java Grande Forum (Java
multithreaded benchmarks [22]). Presented results
were collected on a 2-way machine with Xeon 5130
2.0 GHz processors (Core2 processors with 4MB L2
cache), 4 GB RAM DDR2 533MHz, running CentOS
4.0, SUN JDK 1.5.0_3 in client mode and AspectJ
Development Tool (AJDT) 1.4.0. All presented values
are median of 5 runs.

1,E+04

1,E+05

1,E+06

1,E+07

1 10 100 1000

Threads/Tasks

Fo
rk

/J
oi

n
pe

r s
ec

on
d

AN - executor - c100
AN - executor - c10
AN - executor
JGF - Thread
AN - Thread

Figure 8. Annotations (AN) versus Threads (JGF) fork/joins

per second

Figure 8 compares the number of spawned tasks per
second in several implementations. The lowest two

curves compare the traditional Java thread fork and
join (using start and join methods of class Thread) and
the @Oneway and @JoinAfterExecution annotations
(AN – Thread curve). The results present the number of
spawned tasks per second for a range of simultaneous
threads (X-axis). The overhead, in this case, of the
annotation framework is around 5% (74 µs versus 71
µs per fork/join).

When using the Java 5 task scheduling framework
the overhead of thread creation drops more than one
order of magnitude (3 µs, AN executor curve). Using
chunk sizes (AN executor c10 and c100 curves) shows
performance benefits for a high number of parallel
tasks (respectively, 2 µs and 1 µs per tasks).

Table 1 presents high level benchmarks for several
JGF applications: Monte Carlo (size B), Ray Tracer
(size B) and SOR (size C).

 1 2 4 8
JGF - RayTracer 30.01 16.21 16.86
AN - RayTracer

54.0
30.24 16.29 17.46

AN - Overhead (%) - 1 1 4
JGF - Monte Carlo 20.69 11.41 11.78
AN - Monte Carlo

39.0
20.89 11.49 11.85

AN - Overhead (%) - 1 1 1
JGF - SOR 09.19 07.78 20.14
AN - SOR

15.8
10.00 08.14 08.17

AN - Overhead (%) - 9 5 -

Table 1. Annotations (AN) versus JGF multithreaded
benchmarks (MT) execution time

In Monte Carlo and RayTracer benchmarks the
framework presents an overhead less than 5%. In both
versions the Monte Carlo benchmark scales better due
to higher memory locality (the Ray Tracer allocates
many objects for intermediate calculations).

The SOR application presents fine grained OneWay
method calls. The execution time is around 16 seconds
for 100 iterations on a matrix of 2000x2000
(generating 400 000 one way calls, with an average
execution of 40 microseconds per call). This justifies
higher overhead of the annotation framework in this
case (less than 10%) and the lower speed-up in this
application. The JGF multithreaded version presents an
unusual high overhead with more than 4 threads, due to
the fine grained parallelism.

The small overhead of the annotation framework is
due to aspect overheads to implement annotation
semantics. The AspectJ compiler can, in most cases,
inline the concurrency code into the original classes,
replacing the annotation. However, in several cases the
code must be placed into a separate class that is called

in the execution points were the annotation applies.
Another source of overhead, more noticed in fine-
grained methods, is the creation of a Runnable object
to represent each one-way call. This second source of
overhead is the main responsible for the overhead in
the SOR benchmark.

7. Conclusion

This article presents an annotation framework to
build parallel programs. In this framework it is
possible to built parallel applications that are still valid
sequential applications, if annotations are ignored (a
goal similar to OpenMP). The provided annotations are
fully integrated into the object oriented paradigm
However, since many current applications do not fully
exploit the object oriented paradigm, re-factorings may
be required to make the base code amenable for
annotations.

The framework provides a rich set of annotations to
build efficient parallel applications. The current
implementation, using Java 5 annotations and AspectJ,
presents very low overheads, when compared with
Java thread-based applications.

Current work includes the support for distributed
memory systems and new annotations to support
efficient execution on this type of machines.

8. References

[1] OpenMP architecture review board, OpenMP
Application Program Interface, Version 2.5, May 2005,
http://www.openmp.org
[2] Sun Microsystems, Inc. Java Specification Requests JSR
175: A Metadata Facility for the Java Programming
Language.
[3] http://www.eclipse.org/aspectj/
[4] K. Löhr, Concurrency Annotations for Reusable
Software, Communications of the ACM, vol. 36, no. 9,
September 1993.
[5] M. Haustein, K. Löhr, JAC: Declarative Java
Concurrency, Concurrency and Computation: Practice and
Experience, vol. 18, no. 5, April 2006.
[6] R. Chandra, A. Gupta, J. Hennesy, COOL: An Object
Based Language for Parallel Programming, IEEE Computer,
vol. 27, no. 8, August 1994.
[7] F. Baude, L. Baduel, D. Caromel, A. Contes, F. Huet,
M. Morel and R. Quilici, Programming, Composing,
Deploying for the Grid, GRID COMPUTING: Software

Environments and Tools, Jose C. Cunha and Omer F. Rana
(Eds), Springer Verlag, January 2006.
[8] Y. Aridor, M. Factor, A. Teperman, cJVM: A Single
System Image of a JVM on a Cluster, International
Conference on Parallel Processing, Wakamatsu, Japan,
September 1999.
[9] G. Antoniu, L. Bougé, P. Hatcher. , M. MacBeth, K.
McGuigan, R. Namyst, The hyperion system: Compiling
multi-threaded java bytecode for distributed execution,
Parallel Computing, vol. 27, no. 10, September 2001.
[10] R. Veldema, R. Bhoedjang, H. Bal, Jackal, a
compiler based implementation of java for clusters of
workstations, ACM PPoPP’01, Utah, USA, June 2001.
[11] W. Zhu, C. Wang, F. Lau, JESSICA2: Distributed Java
Virtual Machine with Transparent Thread Migration Support,
IEEE Cluster 2002, Chicago, USA, September 2002.
[12] J. Bull, M. Kambites, JOMP—an OpenMP-like
interface for Java, Proceedings of the ACM 2000 conference
on Java Grande, California, June 2000.
[13] M. Klemm, R. Veldema, M. Bezold M. Philippsen, A
Proposal for OpenMP for Java, Second International
Workshop on OpenMP (IWOMP 2006), Reims, France, June
2006.
[14] M. Klemm, M. Bezold, R. Veldema, M. Philippsen,
JaMP: An Implementation of OpenMP for a Java DSM,
Proceedings of the 12th Workshop on Compilers for Parallel
Computers, La Coruna, Spain, January 2006.
[15] Java 1.5 Specification,
http://java.sun.com/j2se/1.5.0/docs/api/index.html
[16] D. Lea, Concurrent Programming in Java, Second
edition, Addison-Wesley, 1999.
[17] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Wiley & Sons 2000.
[18] A. Yonezawa, ABCL: an Object-Oriented Concurrent
System, MIT Press, 1990.
[19] C. Cunha, J. Sobral, M. Monteiro, Reusable Aspect-
Oriented Implementations of Concurrency Patterns and
Mechanisms, AOSD’06, Bonn, Germany, March 2006.
[20] J. Hannemann, G. Kiczales, Design Pattern
implementation in Java and in AspectJ, OOPSLA 2002,
Seattle, USA, November 2002.
[21] E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design Patterns – Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.
[22] J. Smith, J. Bull, J. Obdrzálek, A Parallel Java Grande
Benchmark Suite, Supercomputing 2001 (SC’01), Denver,
November 2001.

