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Abstract 
 

This paper presents a programming language for 
parallel computing based on code annotations. It has 
similar goals and philosophy as OpenMP but it is more 
tightly coupled to the object oriented paradigm. We 
include annotations for most common concurrency 
patterns and mechanisms, namely, one-way, futures, 
barriers, reads/writers and thread-local. Our current 
prototype is implemented using Java 5 annotations and 
AspectJ and provides a feasible and efficient 
alternative to the Java thread model. 
 
1. Introduction 
 

Multi-core and multiprocessor machines are 
becoming mainstream architectures. However, to take 
advantage of this type of architectures, applications 
should go through several modifications, as to specify 
tasks that can run in parallel and to perform 
synchronisation among tasks. This incurs in an 
additional burden to the programmer and may involve 
non-reversible changes to applications. 

Traditional thread programming can be used to 
convert a sequential application to a parallel 
counterpart, however it lacks of suitable abstractions to 
help the programmer to structure parallel applications 
and may require a considerable amount of code rewrite 
to fit into the thread parallelisation model. 

OpenMP [1] provides a more structured way to 
introduce parallelism into a sequential application. It 
includes parallel blocks and parallel loops (e.g. for), as 
well as a set of synchronisation directives for shared 
variables. Parallelism related concerns in OpenMP are 
specified through a set of directives that can be ignored 
by a non-compliant compiler, achieving a valid 
sequential program. This approach makes parallel code 
closer to sequential versions, softening the transition 
from sequential to parallel programming. OpenMP is 
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currently supported by important compilers, namely 
Intel, Microsoft and GNU compilers.  

There is still no official binding of OpenMP for 
Java and, most important, OpenMP is targeted for 
traditional structured programming and not for 
object-oriented programming models. As consequence, 
it can not take advantage of the structure of object 
oriented applications (e.g., classes and method calls). 

In this article we propose a framework comprising a 
set of annotations intended to replace OpenMP 
directives in the context of object oriented applications. 
In this approach we annotate classes, methods and 
instance variables instead of generic blocks of code, 
resulting in a more high level and object-based 
reasoning. The provided annotations include: 
@Oneway, which spawns a method call in a new 
thread; @Barrier, which blocks a set of threads until all 
have reached a certain point in program execution and 
@ThreadLocal, which creates a local instance variable 
per thread. 

The framework was implemented in Java using Java 
5 annotations [2] and AspectJ [3]. This approach 
provides a fully integration into the Java language, 
including compile time check of annotation syntax and 
direct generation of Java bytecodes, without 
intermediate compilation steps. This avoids a common 
problem, in pre-processor based approaches, of tracing 
an error to the correct point in source code. 

This work differs from other research works in the 
way it uses programmer based annotations to specify 
parallel execution and synchronisation, in a philosophy 
similar to OpenMP. It differs substantially from 
OpenMP, since annotations are provided at instance 
variable/method level and are fully integrated in an 
object oriented model. 

The remainder of this paper is organised as follows. 
Section 2 presents related work. Section 3 describes the 
proposed annotations from a programmer perspective. 
Section 4 overviews the current implementation of 
these annotations by means of Java 5 annotations and 
AspectJ. Section 5 shows several code examples and 
section 6 presents performance evaluation. The last 
section discusses obtained results and future work. 

 



2. Related Work 
 
Early work on objects and concurrency introduced 

several high level patterns and mechanisms to address 
the complexity of concurrent programs. One of these 
early efforts was concurrency annotations [4]. In this 
approach Eiffel programs are annotated to introduce a 
parallel semantic, i.e., an alterative semantic that 
supports parallel execution. Provided annotations 
include compatibility annotations (a generalisation of 
readers and writers methods), delayed acceptance 
based on Eiffel preconditions, autonomous objects 
(i.e., active) and asynchronous invocations. This model 
was recently ported to Java [5]. 

Another relevant effort was COOL [6], an extension 
to C++ that provides parallel methods that run on a 
separate thread and event synchronisation, a 
mechanism similar to Java monitors. Although this 
model has a philosophy similar to concurrency 
annotations it introduces new keywords to C++ to 
provide a parallel semantic. 

ProActive [7] includes active objects and automatic 
future method calls (a mechanism called wait-by-
necessity). ProActive does not rely on programmer 
annotation to express parallelisation issues, as it is 
based on a more implicit parallelisation model. 

A large amount of Java based approaches are 
concerned to Java distributed machines aimed to 
address distributed thread execution, supporting a 
single system image. Examples are cJVM [8], 
Hyperion [9], Jakal [10] and JESSICA2 [11]. These 
approaches rely on the Java thread model to introduce 
concurrency into sequential applications. 

An OpenMP bind for Java is presented in [12]. 
Directives are introduced through special Java 
comments. An external tool converts an annotated 
program standard to Java code. In [13] a similar bind is 
presented, better fitted into Java language philosophy 
and [14] presents an implementation on distributed 
memory systems by means of a DSM middleware. 

Our proposal differs from these previous efforts as 
we provide a richer set of annotations, fully integrated 
into an object oriented model. Additionally, we provide 
a complete implementation, based on Java 5 
annotations, built as an AspectJ library§. 

 
3. Annotations for Concurrent Execution 
 

Annotations are a metadata facility introduced in 
J2SE 5.0 (Tiger) [15] implemented as modifiers that 
can be added to the code, namely to classes, interfaces, 
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methods and fields. Java Tiger includes built-in 
annotations and supports the creation of new custom 
annotations. Annotations describe the elements 
behaviour which contributes to a better code 
comprehension about the program behaviour.  

Several annotations were implemented to describe 
concurrent behaviour. Such annotations are considered 
in the context of many widely known high-level 
constructs for concurrency [16][17], namely One-way, 
Future, Active Object, Barrier, Synchronised, 
Readers-Writer, Scheduler and Thread local. Each 
construct comprises one or more annotations, which 
can be used to describe specific element types, e.g. 
fields, methods or classes (Figure 1).  

 
@ClassAnnotation 
public class <class_name> { 
 @FieldAnnotation int x; 
  
 //... 
 @MethodAnnotation 
 public void execute(){} 
} 

Figure 1. Annotate elements 

Occurrences of annotated elements are intercepted 
by aspects to add the corresponding concurrent 
behaviour at those points (see section 4). 

We classify annotations into concurrency generation 
annotations and synchronisation annotations. Most 
annotations can be applied to a specific thread group, 
supplied as an annotation parameter. Concurrency 
generation annotations can associate the spawned 
thread to a specific group, while synchronisation 
annotations can be restricted to a specific thread group. 
This feature allows multiple annotations to coexist in 
the same point in the code. 

Synchronisation annotations also feature an optional 
lock id name. This allows several locks to coexist for 
the same object or sharing of locks among objects.  
 
3.1. One-way 
 

One-way mechanism [16] applies to methods that 
run on a thread of their own: the client never blocks, 
waiting for some result. One-way pertains only to 
asynchronous void method calls – when the method 
does return a value, a future (3.2) should be used.  

One-way usage follows the syntax: 
 
@Oneway(threadGroup=[thread group id], 
 saveState=[Yes|No]) 

 
@Oneway annotate methods which should be 

executed in parallel. A new thread will be created to 
execute each annotated method, associated to thread 



group specified in threadGroup parameter. When 
omitted, the new thread is associated with the thread 
group of the current thread. If the thread reference is 
required latter – e.g. to perform a join or sleep 
operation – the saveState parameter should be specified 
as True.  

The traditional fork and join algorithms require, in 
addition to the thread spawning mechanism, a way to 
synchronise (i.e., join) the main thread and spawned 
threads at some point in the application. Join 
operations are allowed by using 
@JoinBeforeExecution and @JoinAfterExecution 
annotations to force the current thread to wait for all 
threads created by it to terminate, before or after the 
annotated method execution. Similarly, 
@SleepBeforeExecution and @SleepAfterExecution 
forces the current thread to sleep during an amount of 
time specified by parameter time. Interruption of 
threads are also allowed using @Interrupt to interrupt 
all threads created by the current thread and 
@InterruptAll to interrupt all threads created in the 
annotation context.  

@OnewayExecutor is a less flexible One-way 
implementation, but more efficient for fine-grained, 
non-blocking methods as long as threads present in the 
thread pool are reused several times, reducing thread 
spawning overhead and avoiding the unrestrained 
creation of threads. It has the following syntax: 

 
@OnewayExecutor(executorId=”x”, 
 tasksGroup=[thread group id], 
 poolSize=[size], 

 chunkSize=[size]) 
 
OnewayExecutor uses java.util.concurrent.Executor 

service to execute one way method calls, which is 
based on Thread Pools. @OnewayExecutor supports 
some additional parameters. Each Executor is 
identified by an executorId and the number of threads 
in the thread pool is specified by poolSize. If omitted, 
the number of threads is the same as the number of 
processors (e.g., cores). Tasks submitted to the 
executor service can belong to a specific group 
(tasksGroup parameter) and can by agglomerated to 
reduce the number of tasks submitted to the executor. 
chunkSize parameter specifies the number of one way 
invocations agglomerated per each submitted task. By 
default chunk size is 1. Additional mechanisms deal 
with incomplete chunks (e.g., time out mechanisms). 

@OnewayExecutor does not support the sleep 
functionality, but is supports join operations (in 
specific executors and/or tasksGroups) and a cancel 
annotation, similar to @Interrupt. 
 

3.2. Futures 
 

Futures [16] allow two-way asynchronous 
invocations of methods that return a value to the client. 
Futures are join-based mechanisms based on data 
objects that automatically block when clients try to use 
their values before the corresponding computation is 
complete. During execution of methods, the Future is a 
placeholder for the value that has not yet computed. 

In typical situations, Futures are used when a 
variable stores the result of a computation, which will 
be used later. Consider the following code:  

a = someobject.compute(); 
...// other statements 
a.doSomething(); 

The compute method is executed by the new thread. 
Instead of blocking at the computation phase – i.e. 
during the execution of compute – the thread blocks 
when the variable is actually accessed – i.e. when the 
method doSomething is executed. 

Our annotation-based version of Future uses 
@Future annotation to annotate non-void methods 
invoked asynchronously and @FutureClient to 
annotate methods that use values returned in 
consequence of asynchronous method invocations. In 
addition, when the return type cannot be instantiated 
automatically (e.g., it requires specific parameters) the 
user should provide the method getFakeObject – which 
implements the code that instantiate the fake object.  

 
3.3. Active Object 

 
Active object decouples the invocation of methods 

from their execution [17]. Each object runs into its own 
thread of control. Whenever a client object invokes a 
method from an active object, the thread associated 
with the active object carries out the execution. Active 
object is an abstraction that merges objects with 
concurrency. One of the early systems to use active 
objects was ABCL [18].  

Several applications can benefit from the use of 
active objects. Client applications such as windowing 
systems and network browsers employ active objects 
to simplify concurrent, asynchronous network 
operations. Multi-threaded servers, producer/consumer 
and reader/writer applications are also well suited for 
the use of active objects.  

The creation of an active object involves the 
creation of several support structures, including a 
proxy object and a scheduler [17]. Our @ActiveObject 
annotation completely hides this complex structure 
behind a reusable aspect. 

 



3.4. Barrier 
 
Barrier establishes a set of synchronisation points 

where threads should synchronise. Each thread 
reaching one of that points blocks waiting for the other 
threads of the group.  

Methods where threads synchronise can be 
annotated either with @BarrierBeforeExecution or 
@BarrierAfterExecution, depending if it blocks before 
or after method execution. Element-pair values in 
annotations allow definition of parameter values that 
can be used in this case to store the number of blocking 
threads and the target thread group name. Element-pair 
values, namely nThreads and threadGroup should be 
assigned with the number of threads and the target 
thread group where the barrier should apply. For 
instance, for five threads blocking after method 
execution associated to thread group calculus, the 
annotation is: 

 
@BarrierAfterExecution (nThreads = 5,  
  threadGroup = "calculus") 
 
When the number of threads is not specified in 

barrier annotation the barrier waits for all spawned 
threads. 

 
3.5. Synchronised 

 
Synchronisation is implemented in Java language 

using the synchronized modifier on method declaration 
or using the block construct  

synchronized(<object>){ //... code }  

Each object holds its own lock, which is used to 
assure the exclusive access to methods or regions 
declared as synchronised. Although synchronized 
methods share the same object lock, synchronized 
block construct enables the use of other object lock, in 
order to have a single lock shared among multiple 
type-unrelated objects. 

Synchronised methods would be annotated with 
@Synchronized. As a consequence, each intercepted 
method or variable access uses the respective object 
lock to synchronise access to it. 

Optionally, the synchronised mechanism would use 
other lock instances to synchronise access to methods 
defined in different class instances. In order to identify 
a particular lock in the application, the parameter id 
should be settled. An id is associated univocally to a 
specific lock, which can be specified in the following 
manner: 

@Synchronized(id = "lockName") 

Contrasted with Java constructs, @Synchronized 
disallows fine-grain synchronisation, as long as 
annotations cannot be used to annotate single 
instructions or block of instructions. By resorting to 
refactoring we can move instructions to methods in 
order to annotate such code and then enable the same 
expressivity of Java constructs. 
 
3.6. Readers/Writer 

 
Synchronisation mechanism allows a single thread 

to enter in a critical section of code for reading or 
writing. Readers/Writer lock differentiates accesses 
that change object state from the ones that just read 
state, allowing multiple simultaneous readers or one 
writer. Access for reading is allowed when no writers 
are executing or waiting to access object state whereas 
writers can access when there are no writing or reading 
operations executing ([16]). Readers/Writer lock fits 
well when access is predominantly for reading 
purposes. This assumes that methods in a class can be 
cleanly semantically separated into those that read 
variables values - i.e. Readers - and those that change 
such values – i.e. Writers. 

@Reader and @Writer annotations describe reader 
and writer methods, respectively. Any of these 
annotations receives an optional id value, representing 
univocally the lock identity. A single lock is created 
per each id, enabling the association of methods from 
several classes to a specific lock in a similar way of 
synchronised mechanism. If id is not specified, the 
aspect uses a different lock per each object. 

 
3.7. Scheduler 

 
Usually, synchronisation mechanism implemented 

in OO languages - e.g. Java - is inflexible, as each 
monitor associated to an object restricts scheduling of 
threads in waiting state to monitor implementation. 
Scheduler pattern is independent of any scheduling 
policy, which is specified in a per case basis. 
Specification of a scheduling order can be determined 
dynamically accordingly to the state of the object 
and/or the method parameters passed on the call. 

Scheduler can be engaged into applications by the 
use of annotations. Hence, @Scheduled can be used 
with enumerated parameter values, in the form: 
 

@Scheduled( 
 order=Order.[FIFO | LIFO | 

 ordered| master | single], 
 threadGroup=[thread-group name]) 
 

@Scheduled annotation receives the scheduling 
order by parameter. Using FIFO, threads are selected 



to execute accordingly to the order they are queued, 
whilst LIFO selects threads in the inverse order. Using 
ordered, threads are selected in the order they were 
created. Ordered scheduling applies only to threads 
created by Oneway or Future annotations.  

Master and single scheduling are similar to the 
equivalent OpenMP directives and can be used to force 
a block of code to be executed by a single thread or by 
the master thread (first spawned thread). This can be 
particularly useful in applications where concurrency 
annotations introduce speculative execution as a means 
to avoid additional synchronisation. 

 
3.8. Thread Local 

 
Thread local variables are instantiated in a per 

thread basis. Consequently the variable scope is always 
the thread. Each thread local variable should be 
annotated with @ThreadLocal with the following 
syntax: 
 

@ThreadLocal(deepCopy=[yes|no],  
 reduce=[operationId]) 

 
Each access to an object variable annotated with 

@ThreadLocal will be forward to a thread specific 
local variable. Each thread local object is initialised 
with the value of the object outside the thread local 
context (i.e., thread context), if the first thread access is 
a read operation. Otherwise the thread local value is 
not initialised, since the first thread access is for 
writing. If deepCopy parameter is specified with yes, 
each thread local object is a deep copy of the original 
object.  

Some algorithms require the reduction of thread 
local variables in order to compute the object original 
variable. To perform reduction of variables after thread 
termination, the parameter reduce should be specified 
or a reduction function must be defined. In the former, 
operationId represents the preset reduction operation 
name, which can assume values like sum, avg, min or 
max. In the latter, the object to be reduced should 
define the operation that reduces that value with the 
following signature:  

 
Object reductionOperation( 

Object tLocal, Object objVar)  
 
Such method receives as parameter the thread local 

variable and the original object variable and returns the 
new object to be stored in the object variable.  

An alternative to @ThreadLocal that may be more 
efficient is the @ThreadLocalObject, which applies to 
classes. In this case, threads use a local copy of the 
target object on each method invocation. It is 

equivalent to the use of the thread local annotation in 
all object fields. This renders into less execution 
overhead that @ThreadLocal since the thread local 
value is implemented by changing the target of each 
method call.  
 

4. Implementation Overview 
 

AspectJ 5 enables aspects to quantify over Java 5 
annotations. In light of this, annotations have two 
roles: describe the elements (concurrent) behaviour and 
provide a hook for the aspects to compose the 
concurrent behaviour into the base program. Annotated 
elements are intercepted by the aspects which add the 
related behaviour at those points. 

Mechanisms associated with annotations are 
implemented in abstract aspects. Each abstract aspect 
holds the code required to add the behaviour associated 
with each annotation. Further information about 
creating reusable code in AspectJ (e.g., AspectJ 
libraries) can be found in [19][20]. 

Figure 2 shows a simplified One-way 
implementation in AspectJ. OnewayProtocol aspect 
defines the pointcut onewayAnnotation which 
intercepts the execution of methods annotated with 
@Oneway. The around statement wraps the execution 
of each intercepted method (by means of the proceed 
keyword) inside a Runnable object and creates a new 
thread to execute such method. 
 
public abstract aspect OnewayProtocol { 
 protected pointcut onewayAnnotation():  
   execution(@Oneway * *.*(..)); 
  
 void around(): onewayAnnotation(){ 
  Thread t = new Thread( new Runnable(){ 
    public void run(){ proceed(); } 
   } 
  ); 
  registerThread(t); // save to join later  
  t.start(); 
 } 
 ...// other advices and auxiliary methods 
} 

Figure 2.  One-way implementation 

Iterative algorithms can perform fine-grained 
method invocations. As the number of threads spawned 
by one-way is equal to the number of method 
invocations, the performance would be drastically 
reduced in such fine-grained methods. One-way 
executor presents considerable lower overheads, which 
can be further reduced by using task agglomeration 
(e.g., the chunk size). Figure 3 shows a simplified 
implementation of One-way Executor. Each method 
invocation is wrapped inside a Runnable object and 
inserted into a vector of objects created inside a 



CompositeTask object (a composite of Runnable 
objects, see [21]). When the number of calls reaches 
the chunk size, the composite is submitted for 
execution by the executor service. 

 
void around(): onewayChunk(){ 
 //...     
 Runnable t = new Runnable(){ 
  public void run(){ proceed(); } 
 }; 
 composite.add(t); // add call to composite 
 currentCall++; 
 if (currentCall==chunkSize) {  //  
   registerTask(executor.submit(composite)); 
   currentCall=0; 
   composite = new CompositeTask(); 
 } 
}    

Figure 3.  Implementation of the OnewayExecutor. 

 
5. Case Studies and Evaluation 
 

This section presents several case studies and 
performance results obtained by parallelising several 
JGF benchmarks [22] using the proposed annotations.  

The first case study is a financial simulation using 
Monte Carlo techniques to price products. A skeleton 
of the original code is presented in Figure 4. The 
application mainly consists on a for loop, where each 
iteration can be performed in parallel. At the end of 
each loop the result is accumulated in a Vector. 

 
public void runSerial() { 
 results = new Vector(nRunsMC); 
 PriceStock ps; 
 for(int iRun=0; iRun < nRunsMC; iRun++) { 
  ps = new PriceStock(); 
  ps.setInitAllTasks(initAllTasks); 
  ps.setTask(tasks.elementAt(iRun)); 
  ps.run(); 
  results.addElement(ps.getResult()); 
 } 
} 

Figure 4. Original Monte Carlo Simulation code. 

To annotate the previous code we need to refactor 
the loop into a separate method, as well as the line that 
accumulates the results in the Vector. Figure 5 presents 
the resulting code, including annotations required to 
parallelise this application. Method runIter is executed 
in a separate thread, method addResult is declared 
synchronised to provide thread-safe access to the 
vector. At the end of the runSerial method, the main 
thread waits for the completion of all spawned threads. 

 

@OnewayExecutor 
public void runIter(Object allTasks,  
    Object task, Vector results) 
 PriceStock ps = new PriceStock(); 
 ps.setInitAllTasks(initAllTasks); 
 ps.setTask(tasks.elementAt(iRun)); 
 ps.run(); 
 addResult(ps.getResult(),results); 
} 
 
@Synchronised 
public void addResult( Object o, Vector res){ 
 res.addElement(o); 
} 
 
@JoinAfterExecution 
public void runSerial() { 
 results = new Vector(nRunsMC); 
 for(int iRun=0; iRun < nRunsMC; iRun++) { 
  runIter(initAllTasks, 
    tasks.elementAt(iRun),results);} 
} 

Figure 5. Monte Carlo Simulation code after refactoring, 
including parallelism annotations 

In the previous example the final result does not 
depend on the order in which results are added to the 
Vector. However, it is possible enforce the original 
sequential order with ordered scheduling (see 3.7). 

The second case study from the JGF benchmarks is 
the ray tracer, which renders an image of sixty four 
spheres. The refactored code for this benchmark has a 
similar structure to code in previous case study, the 
main differences (see Figure 6) is that each thread that 
executes the renderLine call uses a different clone of 
the original RayTracer object (@ThreadLocalObject 
annotation) and that the checksum value must be 
reduced to a single value at the end of one-way calls. 

 
@ThreadLocalObject(reduce=Reductions.SUM) 
public class RayTracer { 
  long checksum=0; 
 
  @OneWay 
  public void renderLine(/* … */) 
    /*… */ 
  } 
 
  @JoinAfterExecution 
  public void render(Interval in) { 
    /* … */ 
    for(int y=0; y < in.height; y++) 
      renderLine(/* … */); 
    /* …*/ 
  } 
} 

Figure 6. RayTracer code with parallelism annotations 

Our last code example is an implementation of the 
classic Fibonacci recursive function (Figure 7). In this 
case study method compute is performed in a new 



thread (e.g., Future method call) and local variables r1 
and r2 are used to save future values. 

 
public class Fib { 
 
 @Future 
 @FutureClient 
 public long compute(long value) { 
  if (value <=1) return(value); 
  else{ 
   Fib f1 = new Fib(); 
   Fib f2 = new Fib(); 
   Long r1 = f1.compute(value-1); 
   Long r2 = f2.compute(value-2); 
   return (r1+r2); 
  } 
 } 
 

Figure 7. Fibonacci code with parallelism annotations 

 
6. Performance Evaluation 
 

The performance evaluation aims to show that the 
benefits of the framework do not impose significant 
performance degradation, when compared with 
traditional thread-based programming. We compare the 
performance of our framework against reference 
implementations from the Java Grande Forum (Java 
multithreaded benchmarks [22]). Presented results 
were collected on a 2-way machine with Xeon 5130 
2.0 GHz processors (Core2 processors with 4MB L2 
cache), 4 GB RAM DDR2 533MHz, running CentOS 
4.0, SUN JDK 1.5.0_3 in client mode and AspectJ 
Development Tool (AJDT) 1.4.0. All presented values 
are median of 5 runs. 
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Figure 8. Annotations (AN) versus Threads (JGF) fork/joins 

per second 

Figure 8 compares the number of spawned tasks per 
second in several implementations. The lowest two 

curves compare the traditional Java thread fork and 
join (using start and join methods of class Thread) and 
the @Oneway and @JoinAfterExecution annotations 
(AN – Thread curve). The results present the number of 
spawned tasks per second for a range of simultaneous 
threads (X-axis). The overhead, in this case, of the 
annotation framework is around 5% (74 µs versus 71 
µs per fork/join). 

When using the Java 5 task scheduling framework 
the overhead of thread creation drops more than one 
order of magnitude (3 µs, AN executor curve). Using 
chunk sizes (AN executor c10 and c100 curves) shows 
performance benefits for a high number of parallel 
tasks (respectively, 2 µs and 1 µs per tasks).  

Table 1 presents high level benchmarks for several 
JGF applications: Monte Carlo (size B), Ray Tracer 
(size B) and SOR (size C).  

 
 1 2 4 8 
JGF - RayTracer  30.01 16.21 16.86 
AN - RayTracer  

54.0 
30.24 16.29 17.46 

AN - Overhead (%) - 1 1 4 
JGF - Monte Carlo  20.69 11.41 11.78 
AN - Monte Carlo 

39.0 
20.89 11.49 11.85 

AN - Overhead (%) - 1 1 1 
JGF - SOR 09.19 07.78 20.14 
AN - SOR  

15.8 
10.00 08.14 08.17 

AN - Overhead (%) - 9 5 - 

Table 1. Annotations (AN) versus JGF multithreaded 
benchmarks (MT) execution time 

In Monte Carlo and RayTracer benchmarks the 
framework presents an overhead less than 5%. In both 
versions the Monte Carlo benchmark scales better due 
to higher memory locality (the Ray Tracer allocates 
many objects for intermediate calculations). 

The SOR application presents fine grained OneWay 
method calls. The execution time is around 16 seconds 
for 100 iterations on a matrix of 2000x2000 
(generating 400 000 one way calls, with an average 
execution of 40 microseconds per call). This justifies 
higher overhead of the annotation framework in this 
case (less than 10%) and the lower speed-up in this 
application. The JGF multithreaded version presents an 
unusual high overhead with more than 4 threads, due to 
the fine grained parallelism. 

The small overhead of the annotation framework is 
due to aspect overheads to implement annotation 
semantics. The AspectJ compiler can, in most cases, 
inline the concurrency code into the original classes, 
replacing the annotation. However, in several cases the 
code must be placed into a separate class that is called 



in the execution points were the annotation applies. 
Another source of overhead, more noticed in fine-
grained methods, is the creation of a Runnable object 
to represent each one-way call. This second source of 
overhead is the main responsible for the overhead in 
the SOR benchmark. 

 
7. Conclusion 
 

This article presents an annotation framework to 
build parallel programs. In this framework it is 
possible to built parallel applications that are still valid 
sequential applications, if annotations are ignored (a 
goal similar to OpenMP). The provided annotations are 
fully integrated into the object oriented paradigm 
However, since many current applications do not fully 
exploit the object oriented paradigm, re-factorings may 
be required to make the base code amenable for 
annotations. 

The framework provides a rich set of annotations to 
build efficient parallel applications. The current 
implementation, using Java 5 annotations and AspectJ, 
presents very low overheads, when compared with 
Java thread-based applications. 

Current work includes the support for distributed 
memory systems and new annotations to support 
efficient execution on this type of machines. 
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