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Abstra
t: In this work we are interested in the problem of s
heduling and redistributing data

on master-slave platforms. We 
onsider the 
ase were the workers possess initial loads, some of

whi
h having to be redistributed in order to balan
e their 
ompletion times.

We examine two di�erent s
enarios. The �rst model assumes that the data 
onsists of inde-

pendent and identi
al tasks. We prove the NP-
ompleteness in the strong sense for the general


ase, and we present two optimal algorithms for spe
ial platform types. Furthermore we propose

three heuristi
s for the general 
ase. Simulations 
onsolidate the theoreti
al results.

The se
ond data model is based on Divisible Load Theory. This problem 
an be solved in

polynomial time by a 
ombination of linear programming and simple analyti
al manipulations.

Key-words: Master-slave platform, s
heduling, data redistribution, one-port model, indepen-

dent tasks, divisible load theory.



Stratégies d'ordonnan
ement et de redistribution de données

sur plate-formes en étoile

Résumé : Dans 
e travail on s'interesse au problème d'ordonnan
ement et de redistribution

de données sur plates-formes maître-es
laves. On 
onsidère le 
as où les es
laves possèdent des

données initiales, dont quelques-unes doivent être redistribuées pour équilibrer leur dates de �n.

On examine deux s
énarios di�érents. Le premier modèle suppose que les données sont des

tâ
hes indépendantes identiques. On prouve la NP-
omplétude dans le sens fort pour le 
as

général, et on présente deux algorithmes pour des plates-formes spé
iales. De plus on propose trois

heuristiques pour le 
as général. Des résultats expérimentaux obtenus par simulation viennent à

l'appui des résultats théoriques.

Mots-
lés : Plate-forme maître-es
lave, ordonnan
ement, équilibrage de 
harge, modèle un-port,

tâ
hes indépendantes, tâ
hes divisibles.
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1 Introdu
tion

In this work we 
onsider the problem of s
heduling and redistributing data on master-slave ar-


hite
tures in star topologies. Be
ause of variations in the resour
e performan
e (CPU speed or


ommuni
ation bandwidth), or be
ause of unbalan
ed amounts of 
urrent load on the workers,

data must be redistributed between the parti
ipating pro
essors, so that the updated load is better

balan
ed in terms that the overall pro
essing �nishes earlier.

We adopt the following abstra
t view of our problem. There are m+1 parti
ipating pro
essors
P0, P1, . . . , Pm, where P0 is the master. Ea
h pro
essor Pk, 1 ≤ k ≤ m initially holds Lk data

items. During our s
heduling pro
ess we try to determine whi
h pro
essor Pi should send some

data to another worker Pj to equilibrate their �nishing times. The goal is to minimize the global

makespan, that is the time until ea
h pro
essor has �nished to pro
ess its data. Furthermore

we suppose that ea
h 
ommuni
ation link is fully bidire
tional, with the same bandwidth for

re
eptions and sendings. This assumption is quite realisti
 in pra
ti
e, and does not 
hange the


omplexity of the s
heduling problem, whi
h we prove NP-
omplete in the strong sense.

We examine two di�erent s
enarios for the data items that are situated at the workers. The

�rst model supposes that these data items 
onsist in independent and uniform tasks, while the

other model uses the Divisible Load Theory paradigm (DLT) [4℄.

The 
ore of DLT is the following: DLT assumes that 
ommuni
ation and 
omputation loads


an be fragmented into parts of arbitrary size and then distributed arbitrarily among di�erent

pro
essors to be pro
essed there. This 
orresponds to perfe
t parallel jobs: They 
an be split into

arbitrary subtasks whi
h 
an be pro
essed in parallel in any order on any number of pro
essors.

Beaumont, Mar
hal, and Robert [2℄ treat the problem of divisible loads with return messages

on heterogeneous master-worker platforms (star networks). In their framework, all the initial load

is situated at the master and then has to be distributed to the workers. The workers 
ompute their

amount of load and return their results to the master. The di�
ulty of the problem is to de
ide

about the sending order from the master and, at the same time, about the re
eiving order. In this

paper problems are formulated in terms of linear programs. Using this approa
h the authors were

able to 
hara
terize optimal LIFO

1

and FIFO

2

strategies, whereas the general 
ase is still open.

Our problem is di�erent, as in our 
ase the initial load is already situated at the workers. To the

best of our knowledge, we are the �rst to ta
kle this kind of problem.

Having dis
ussed the reasons and ba
kground of DLT, we dwell on the interest of the data

model with uniform and independent tasks. Contrary to the DLT model, where the size of load


an be diversi�ed, the size of the tasks has to be �xed at the beginning. This leads to the �rst

point of interest: When tasks have di�erent sizes, the problem is NP 
omplete be
ause of an ob-

vious redu
tion to 2-partition [12℄. The other point is a positive one: there exists lots of pra
ti
al

appli
ations who use �xed identi
al and independent tasks. A famous example is BOINC [5℄,

the Berkeley Open Infrastru
ture for Network Computing, an open-sour
e software platform for

volunteer 
omputing. It works as a 
entralized s
heduler that distributes tasks for parti
ipating

appli
ations. These proje
ts 
onsists in the treatment of 
omputation extensive and expensive s
i-

enti�
 problems of multiple domains, su
h as biology, 
hemistry or mathemati
s. SETI�home [22℄

for example uses the a

umulated 
omputation power for the sear
h of extraterrestrial intelligen
e.

In the astrophysi
al domain, Einstein�home [11℄ sear
hes for spinning neutron stars using data

from the LIGO and GEO gravitational wave dete
tors. To get an idea of the task dimensions, in

this proje
t a task is about 12 MB and requires between 5 and 24 hours of dedi
ated 
omputation.

As already mentioned, we suppose that all data are initially situated on the workers, whi
h

leads us to a kind of redistribution problem. Existing redistribution algorithms have a di�erent

obje
tive. Neither do they 
are how the degree of imbalan
e is determined, nor do they in
lude

the 
omputation phase in their optimizations. They expe
t that a load-balan
ing algorithm has

already taken pla
e. With help of these results, a redistribution algorithm determines the required


ommuni
ations and organizes them in minimal time. Renard, Robert, and Vivien present some

1

Last In First Out

2

First In First Out

INRIA
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optimal redistribution algorithms for heterogeneous pro
essor rings in [20℄. We 
ould use this

approa
h and redistribute the data �rst and then enter in a 
omputation phase. But our problem

is more 
ompli
ated as we suppose that 
ommuni
ation and 
omputation 
an overlap, i.e., every

worker 
an start 
omputing its initial data while the redistribution pro
ess takes pla
e.

To summarize our problem: as the parti
ipating workers are not equally 
harged and/or be-


ause of di�erent resour
e performan
e, they might not �nish their 
omputation pro
ess at the

same time. So we are looking for me
hanisms on how to redistribute the loads in order to �nish

the global 
omputation pro
ess in minimal time under the hypothesis that 
harged workers 
an


ompute at the same time as they 
ommuni
ate.

The rest of this report is organized as follows: Se
tion 2 presents some related work. The

data model of independent and identi
al tasks is treated in Se
tion 3: In Se
tion 3.2 we dis
uss

the 
ase of general platforms. We are able to prove the NP-
ompleteness for the general 
ase

of our problem, and the polynomiality for a restri
ted problem. The following se
tions 
onsider

some parti
ular platforms: an optimal algorithm for homogeneous star networks is presented in

Se
tion 3.3, Se
tion 3.4 treats platforms with homogenous 
ommuni
ation links and heteroge-

neous workers. The presentation of some heuristi
s for heterogeneous platforms is the subje
t

in Se
tion 3.5. Simulative test results are shown in Se
tion 4. Se
tion 5 is devoted to the DLT

model. We propose a linear program to solve the s
heduling problem and propose formulas for

the redistribution pro
ess.

2 Related work

Our work is prin
ipally related with three key topi
s. Sin
e the early nineties Divisible Load

Theory (DLT) has been assessed to be an interesting method of distributing load in parallel


omputer systems. The out
ome of DLT is a huge variety of s
heduling strategies on how to

distribute the independent parts to a
hieve maximal results. As the DLT model 
an be used on a

vast variety of inter
onne
tion topologies like trees, buses, hyper
ubes and so on, in the literature

theoreti
al and appli
ative elements are widely dis
ussed. In his arti
le Robertazzi gives Ten Rea-

sons to Use Divisible Load Theory [21℄, like s
alability or extending realism. Probing strategies

[13℄ were shown to be able to handle unknown platform parameters. In [8℄ evaluations of e�
ien
y

of DLT are 
ondu
ted. The authors analyzed the relation between the values of parti
ular pa-

rameters and the e�
ien
y of parallel 
omputations. They demonstrated that several parameters

in parallel systems are mutually related, i.e., the 
hange of one of these parameters should be

a

ompanied by the 
hanges of the other parameters to keep e�
ien
y. The platform used in this

arti
le is a star network and the results are for appli
ations with no return messages. Optimal

s
heduling algorithms in
luding return messages are presented in [1℄. The authors are treating

the problem of pro
essing digital video sequen
es for digital TV and intera
tive multimedia. As a

result, they propose two optimal algorithms for real time frame-by-frame pro
essing. S
heduling

problems with multiple sour
es are examined [17℄. The authors propose 
losed form solutions for

tree networks with two load originating pro
essors.

Redistribution algorithms have also been well studied in the literature. Unfortunately

already simple redistribution problems are NP 
omplete [15℄. For this reason, optimal algorithms


an be designed only for parti
ular 
ases, as it is done in [20℄. In their resear
h, the authors

restri
t the platform ar
hite
ture to ring topologies, both uni-dire
tional and bidire
tional. In the

homogeneous 
ase, they were able to prove optimality, but the heterogenous 
ase is still an open

problem. In spite of this, other e�
ient algorithms have been proposed. For topologies like trees

or hyper
ubes some results are presented in [25℄.

The load balan
ing problem is not dire
tly dealt with in this paper. Anyway we want

to quote some key referen
es to this subje
t, as the results of these algorithms are the starting

point for the redistribution pro
ess. Generally load balan
ing te
hniques 
an be 
lassi�ed into

two 
ategories. Dynami
 load balan
ing strategies and stati
 load balan
ing. Dynami
 te
hniques

might use the past for the predi
tion of the future as it is the 
ase in [7℄ or they suppose that the

load varies permanently [14℄. That is why for our problem stati
 algorithms are more interesting:

RR n° 0123456789
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we are only treating star-platforms and as the amount of load to be treated is known a priory

we do not need predi
tion. For homogeneous platforms, the papers in [23℄ survey existing results.

Heterogeneous solutions are presented in [19℄ or [3℄. This last paper is about a dynami
 load

balan
ing method for data parallel appli
ations, 
alled the working-manager method: the

manager is supposed to use its idle time to pro
ess data itself. So the heuristi
 is simple: when

the manager does not perform any 
ontrol task it has to work, otherwise it s
hedules.

3 Load balan
ing of independent tasks using the one-port

bidire
tional model

3.1 Framework

In this part we will work with a star network S = P0, P1, . . . , Pm shown in Figure 1. The pro
essor

P0 is the master and the m remaining pro
essors Pi, 1 ≤ i ≤ m, are workers. The initial data are

distributed on the workers, so every worker Pi possesses a number Li of initial tasks. All tasks

are independent and identi
al. As we assume a linear 
ost model, ea
h worker Pi has a (relative)


omputing power wi for the 
omputation of one task: it takes X.wi time units to exe
ute X tasks

on the worker Pi. The master P0 
an 
ommuni
ate with ea
h worker Pi via a 
ommuni
ation link.

A worker Pi 
an send some tasks via the master to another worker Pj to de
rement its exe
ution

time. It takes X.ci time units to send X units of load from Pi to P0 and X.cj time units to send
these X units from P0 to a worker Pj . Without loss of generality we assume that the master is

not 
omputing, and only 
ommuni
ating.

P1

P0

PiP2 Pm

w1 wm

cmc1

wi

cic2

w2

Figure 1: Example of a star network.

The platforms dealt with in se
tions 3.3 and 3.4 are a spe
ial 
ase of a star network: all


ommuni
ation links have the same 
hara
teristi
s, i.e., ci = c for ea
h pro
essor Pi, 1 ≤ i ≤ k.
Su
h a platform is 
alled a bus network as it has homogeneous 
ommuni
ation links.

We use the bidire
tional one-port model for 
ommuni
ation. This means, that the master


an only send data to, and re
eive data from, a single worker at a given time-step. But it 
an

simultaneously re
eive a data and send one. A given worker 
annot start an exe
ution before it

has terminated the re
eption of the message from the master; similarly, it 
annot start sending

the results ba
k to the master before �nishing the 
omputation.

The obje
tive fun
tion is to minimize the makespan, that is the time at whi
h all loads have

been pro
essed. So we look for a s
hedule σ that a

omplishes our obje
tive.

3.2 General platforms

Using the notations and the platform topology introdu
ed in Se
tion 3.1, we now formally present

the S
heduling Problem for Master-Slave Tasks on a Star of Heterogeneous Pro-


essors (SPMSTSHP).

INRIA
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Worker 
 w load

P1 1 1 13

P2 8 1 13

P3 1 9 0

P4 1 10 0

Figure 2: Platform parameters.

P4

t = 0 t = M

P2

P3

P1

Figure 3: Example of an optimal s
hedule on a

heterogeneous platform, where a sending worker

also re
eives a task.

De�nition 1 (SPMSTSHP).

Let N be a star-network with one spe
ial pro
essor P0 
alled �master" and m workers. Let

n be the number of identi
al tasks distributed to the workers. For ea
h worker Pi, let wi be the


omputation time for one task. Ea
h 
ommuni
ation link, linki, has an asso
iated 
ommuni
ation

time ci for the transmission of one task. Finally let T be a deadline.

The question asso
iated to the de
ision problem of SPMSTSHP is: �Is it possible to redistribute

the tasks and to pro
ess them in time T?�.

One of the main di�
ulties seems to be the fa
t that we 
annot partition the workers into dis-

joint sets of senders and re
eivers. There exists situations where, to minimize the global makespan,

it is useful, that sending workers also re
eive tasks. (You will see later in this report that we 
an

suppose this distin
tion when 
ommuni
ations are homogeneous.)

We 
onsider the following example. We have four workers (see Figure 2 for their parameters)

and a makespan �xed to M = 12. An optimal solution is shown in Figure 3: Workers P3 and P4 do

not own any task, and they are 
omputing very slowly. So ea
h of them 
an 
ompute exa
tly one

task. Worker P1, who is a fast pro
essor and 
ommuni
ator, sends them their tasks and re
eives

later another task from worker P2 that it 
an 
ompute just in time. Note that worker P1 is both

sending and re
eiving tasks. Trying to solve the problem under the 
onstraint that no worker

also sends and re
eives, it is not feasible to a
hieve a makespan of 12. Worker P2 has to send

one task either to worker P3 or to worker P4. Sending and re
eiving this task takes 9 time units.

Consequently the pro
essing of this task 
an not �nish earlier than time t = 18.

Another di�
ulty of the problem is the overlap of 
omputation and the redistribution pro
ess.

Subsequently we examine our problem negle
ting the 
omputations. We are going to prove an

optimal polynomial algorithm for this problem.

3.2.1 Polynomiality when 
omputations are negle
ted

Examining our original problem under the supposition that 
omputations are negligible, we get

a 
lassi
al data redistribution problem. Hen
e we eliminate the original di�
ulty of the overlap

of 
omputation with the data redistribution pro
ess. We suppose that we already know the

imbalan
e of the system. So we adopt the following abstra
t view of our new problem: the m
parti
ipating workers P1, P2, . . . Pm hold their initial uniform tasks Li, 1 ≤ i ≤ m. For a worker Pi

the 
hosen algorithm for the 
omputation of the imbalan
e has de
ided that the new load should

be Li − δi. If δi > 0, this means that Pi is overloaded and it has to send δi tasks to some other

pro
essors. If δi < 0, Pi is underloaded and it has to re
eive −δi tasks from other workers. We

have heterogeneous 
ommuni
ation links and all sent tasks pass by the master. So the goal is to

determine the order of senders and re
eivers to redistribute the tasks in minimal time.

RR n° 0123456789



8 L. Mar
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As all 
ommuni
ations pass by the master, workers 
an not start re
eiving until tasks have

arrived on the master. So to minimize the redistribution time, it is important to 
harge the master

as fast as possible. Ordering the senders by non-de
reasing ci-values makes the tasks at the earliest
possible time available.

Suppose we would order the re
eivers in the same manner as the senders, i.e., by non-de
reasing

ci-values. In this 
ase we 
ould start ea
h re
eption as soon as possible, but always with the

restri
tion that ea
h task has to arrive �rst at the master (see Figure 4(b)). So it 
an happen that

there are many idle times between the re
eptions if the tasks do not arrive in time on the master.

That is why we 
hoose to order the re
eiver in reversed order, i.e., by non-in
reasing ci-values (
f.
Figure 4(
)), to let the tasks more time to arrive. In the following lemma we even prove optimality

of this ordering.

P1 P2 P4

P0

P3

δ1 = 3 δ4 = −2

c4 = 3

δ2 = 1

c2 = 5 c3 = 1

c1 = 2

δ3 = −2

(a) Example of load imbalan
e

on a heterogeneous platform

with 4 workers.

T = 14

{

{

P1

P2

P3

P4

senders

receivers

(b) The re
eivers are ordered by non-

de
reasing order of their ci-values.

{

T = 12

{

P1

P2

P3

P4

receivers

senders

(
) The re
eivers are ordered by non-

in
reasing order of their ci-values.

Figure 4: Comparison of the ordering of the re
eivers.

Theorem 1. Knowing the imbalan
e δi of ea
h pro
essor, an optimal solution for heteroge-

neous star-platforms is to order the senders by non-de
reasing ci-values and the re
eivers by non-

in
reasing order of ci-values.

Proof. To prove that the s
heme des
ribed by Theorem 1 returns an optimal s
hedule, we take

a s
hedule S′

omputed by this s
heme. Then we take any other s
hedule S. We are going to

transform S in two steps into our s
hedule S′
and prove that the makespans of the both s
hedules

hold the following inequality: M(S′) ≤M(S).
In the �rst step we take a look at the senders. The sending from the master 
an not start

before tasks are available on the master. We do not know the ordering of the senders in S but

we know the ordering in S′
: all senders are ordered in non-de
reasing order of their ci-values. Let

i0 be the �rst task sent in S where the sender of task i0 has a bigger ci-value than the sender

of the (i0 + 1)-th task. We then ex
hange the senders of task i0 and task (i0 + 1) and 
all this

new s
hedule Snew. Obviously the re
eption time for the se
ond task is still the same. But as

INRIA
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you 
an see in Figure 5, the time when the �rst task is available on the master has 
hanged: after

the ex
hange, the �rst task is available earlier and ditto ready for re
eption. Hen
e this ex
hange

improves the availability on the master (and redu
es possible idle times for the re
eivers). We use

this me
hanism to transform the sending order of S in the sending order of S′
and at ea
h time

the availability on the master is improved. Hen
e at the end of the transformation the makespan

of Snew is smaller than or equal to that of S and the sending order of Snew and S′
is the same.

t t

Pi0

Pi0+1

Pi0

Pi0+1

Figure 5: Ex
hange of the sending order makes tasks available earlier on the master.

In the se
ond step of the transformation we take 
are of the re
eivers (
f. Figures 6 and 7).

Having already 
hanged the sending order of S by the �rst transformation of S into Snew , we start

here dire
tly by the transformation of Snew. Using the same me
hanism as for the senders, we 
all

j0 the �rst task su
h that the re
eiver of task j0 has a smaller ci-value than the re
eiver of task

j0 + 1. We ex
hange the re
eivers of the tasks j0 and j0 + 1 and 
all the new s
hedule Snew(1) .

j0 is sent at the same time than previously, and the pro
essor re
eiving it, re
eives it earlier than

it re
eived j0+1 in Snew. j0+1 is sent as soon as it is available on the master and as soon as the


ommuni
ation of task j0 is 
ompleted. The �rst of these two 
onditions had also to be satis�ed

by Snew. If the se
ond 
ondition is delaying the beginning of the sending of the task j0 + 1 from

the master, then this 
ommuni
ation ends at time tin + cπ′(j0) + cπ′(j0+1) = tin + cπ(j0+1) + cπ(j0)
and this 
ommuni
ation ends at the same time than under the s
hedule Snew ( here π(j0) (π

′(j0))
denotes the re
eiver of task j0 in s
hedule Snew (Snew(1) , respe
tively)). Hen
e the �nish time of

the 
ommuni
ation of task j0 + 1 in s
hedule Snew(1) is less than or equal to the �nish time in

the previous s
hedule. In all 
ases, M(Snew(1)) ≤ M(Snew). Note that this transformation does

not 
hange anything for the tasks re
eived after j0+1 ex
ept that we always perform the s
heduled


ommuni
ations as soon as possible. Repeating the transformation for the rest of the s
hedule

Snew we redu
e all idle times in the re
eptions as far as possible. We get for the makespan

of ea
h s
hedule Snew(k) : M(Snew(k)) ≤ M(Snew) ≤ M(S). As after these (�nite number of)

transformations the order of the re
eivers will be in non-de
reasing order of the ci-values, the
re
eiver order of Snew(∞) is the same as the re
eiver order of S′

and hen
e we have Snew(∞) = S′
.

Finally we 
on
lude that the makespan of S′
is smaller than or equal to any other s
hedule S and

hen
e S′
is optimal.

t t
idle idle

{ {

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)

Figure 6: Ex
hange of the re
eiving order suits better with the available tasks on the master.

3.2.2 NP-
ompleteness of the original problem

Now we are going to prove the NP-
ompleteness in the strong sense of the general problem. For

this we were strongly inspired by the proof of Dutot [10, 9℄ for the S
heduling Problem for

Master-Slave Tasks on a Tree of Heterogeneous Pro
essors (SPMSTTHP). This proof
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t t
idle

{

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)

Figure 7: Deletion of idle time due to the ex
hange of the re
eiving order.

uses a two level tree as platform topology and we are able to asso
iate the stru
ture on our star-

platform. We are going to re
all the 3-partition problem whi
h is NP-
omplete in the strong sense

[12℄.

De�nition 2 (3-Partition).

Let S and n be two integers, and let (yi)i∈1..3n be a sequen
e of 3n integers su
h that for ea
h

i, S
4 < yi <

S
2 .

The question of the 3-partition problem is �Can we partition the set of the yi in n triples su
h

that the sum of ea
h triple is exa
tly S?".

Theorem 2. SPMSTSHP is NP-
omplete in the strong sense.

Proof. We take an instan
e of 3-partition. We de�ne some real numbers xi, 1 ≤ i ≤ 3n, by
xi =

1
4S+ yi

8 . If a triple of yi has the sum S, the 
orresponding triple of xi 
orresponds to the sum

7S
8 and vi
e versa. A partition of yi in triples is thus equivalent to a partition of the xi in triples

of the sum

7S
8 . This modi�
ation allows us to guarantee that the xi are 
ontained in a smaller

interval than the interval of the yi. E�e
tively the xi are stri
tly in
luded between

9S
32 and

5S
16 .

Redu
tion. For our redu
tion we use the star-network shown in Figure 8. We 
onsider the

following instan
e of SPMTSHP: Worker P owns 4n tasks, the other 4n workers do not hold

any task. We work with the deadline T = E + nS + S
4 , where E is an enormous time �xed to

E = (n+ 1)S. The 
ommuni
ation link between P and the master has a c-value of S
4 . So it 
an

send a task all

S
4 time units. Its 
omputation time is T + 1, so worker P has to distribute all its

tasks as it 
an not �nish pro
essing a single task by the deadline. Ea
h of the other workers is

able to pro
ess one single task, as its 
omputation time is at least E and we have 2E > T , what
makes it impossible to pro
ess a se
ond task by the deadline.

P0

P

T+1 E

Q0Q1

E+SE+(n−1)S

Qn−1

S
8

S
8

S
4

EEEE

P2

E

P1 Pi

x1 x2 x3n−1 x3n

S
8

P3n−1 P3n

xi

Figure 8: Star platform used in the redu
tion.
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This stru
ture of the star-network is parti
ularly 
onstru
ted to reprodu
e the 3-partition

problem in the s
ope of a s
heduling problem. We are going to use the bidire
tional 1-port


onstraint to 
reate our triplets.

Creation of a s
hedule out of a solution to 3-partition. First we show how to 
onstru
t

a valid s
hedule of 4n tasks in time

S
4 + nS + E out of a 3-partition solution. To fa
ilitate the

le
ture, the pro
essors Pi are ordered by their xi-values in the order that 
orresponds to the

solution of 3-partition. So, without loss of generality, we assume that for ea
h j ∈ [0, n − 1],
x3j+1 + x3j+2 + x3j+3 = 7S

8 . The s
hedule is of the following form:

1. Worker P sends its tasks as soon as possible to the master, i.e., every

S
4 time units. So it is

guaranteed that the 4n tasks are sent in nS time units.

2. The master sends the tasks as soon as possible in in
oming order to the workers. The re
eiver

order is the following (for all j ∈ [0, n− 1]):

� Task 4j + 1, over link of 
ost x3j+1, to pro
essor P3j+1.

� Task 4j + 2, over link of 
ost x3j+2, to pro
essor P3j+2.

� Task 4j + 3, over link of 
ost x3j+3, to pro
essor P3j+3.

� Task 4j + 4, over link of 
ost

S
8 , to pro
essor Qn−1−j.

The distribution of the four tasks, 4j + 1, 4j + 2, 4j + 3, 4j + 4, takes exa
tly S time units

and the master needs also S time units to re
eive four tasks from pro
essor P . Furthermore, ea
h
xi is larger than

S
4 . Therefore, after the �rst task is sent, the master always �nishes to re
eive a

new task before its outgoing port is available to send it. The �rst task arrives at time

S
4 at the

master, whi
h is responsible for the short idle time at the beginning. The last task arrives at its

worker at time

S
4 +nS and hen
e it rests exa
tly E time units for the pro
essing of this task. For

the workers Pi, 1 ≤ i ≤ 3n, we know that they 
an �nish to pro
ess their tasks in time as they

all have a 
omputation power of E. The 
omputation power of the workers Qi, 0 ≤ i ≤ n− 1, is
E + i× S and as they re
eive their task at time

S
4 + (n− i− 1)× S + 7S

8 , they have exa
tly the

time to �nish their task.

Getting a solution for 3-partition out of a s
hedule. Now we prove that ea
h s
hedule of

4n tasks in time T 
reates a solution to the 3-partition problem.

As already mentioned, ea
h worker besides worker P 
an pro
ess at most one task. Hen
e due

to the number of tasks in the system, every worker has to pro
ess exa
tly one task. Furthermore

the minimal time needed to distribute all tasks from the master and the minimal pro
essing time

on the workers indu
es that there is no idle time in the emissions of the master, otherwise the

s
hedule would take longer than time T .
We also know that worker P is the only sending worker:

Lemma 1. No worker besides worker P sends any task.

Proof. Due to the platform 
on�guration and the total number of tasks, worker P has to send

all its tasks. This takes at least nS time units. The total emission time for the master is also nS
time units: as ea
h worker must pro
ess a task, ea
h of them must re
eive one. So the emission

time for the master is larger than or equal to

∑n
i=1 xi + n× S

8 = nS. As the master 
annot start

sending the �rst task before time

S
4 and as the minimum 
omputation power is E, then if the

master sends exa
tly one task to ea
h slave, the makespan is greater than or equal to T and if one

worker besides P sends a task, the master will at least send one additional task and the makespan

will be stri
tly greater than T .

Now we are going to examine the worker Qn−1 and the task he is asso
iated to.

Lemma 2. The task asso
iated to worker Qn−1 is one of the �rst four tasks sent by worker P .
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Proof. The 
omputation time of worker Qn−1 is E + (n − 1)S, hen
e its task has to arrive no

later than time S + S
4 . The �fth task arrives at the soonest at time

5S
4 + S

8 as worker P has to

send �ve tasks as the shortest 
ommuni
ation time is

S
8 . The following tasks arrive later than the

5-th task, so the task for worker Qn−1 has to be one of the �rst four tasks.

Lemma 3. The �rst three tasks are sent to some worker Pi, 1 ≤ i ≤ 3n.

Proof. As already mentioned, the master has to send without any idle time besides the initial

one. Hen
e we have to pay attention that the master always possesses a task to send when he

�nishes to send a task. While the master is sending to a worker Pi, worker P has the time to send

the next task to the master. But, if at least one of the �rst three tasks is sent to a worker Qi, the

sending time of the �rst three tasks is stri
tly inferior to

S
8 + 5

16S + 5
16S = 3

4S. Hen
e there is

obligatory an idle time in the emission of the master. This pause makes the s
hedule of 4n tasks

in time T infeasible.

A dire
t 
on
lusion of the two pre
edent lemmas is that the 4-th task is sent to worker Qn−1.

Lemma 4. The �rst three tasks sent by worker P have a total 
ommuni
ation time of

7
8S time

units.

Proof. Worker Qn−1 has a 
omputation time of E + (n− 1)S, it has to re
eive its task no later

than time

5
4S. This implies that the �rst three tasks are sent in a time no longer than

7
8S.

On the other side, the 5-th task arrives at the master no sooner than time 5
4S. As the master has

to send without idle time, the emission to worker Qn−1 has to persist until this date. Ne
essarily

the �rst three emissions of the master take at minimum a time

7
8S.

Lemma 5. S
heduling 4n tasks in a time T = S
4 + nS +E units of time allows to re
onstru
t an

instan
e of the asso
iated 3-partition problem.

Proof. In what pre
edes, we proved that the �rst three tasks sent by the master 
reate a triple

whose sum is exa
tly

7
8 . Using this property re
ursively on j for the triple 4j + 1, 4j + 2 and

4j + 3, we show that we must send the tasks 4j + 4 to the worker Qn−1−j. With this method

we 
onstru
t a partition of the set of xi in triples of sum

7
8 . These triples are a solution to the

asso
iated 3-partition problem.

Having proven that we 
an 
reate a s
hedule out of a solution of 3-partition and also that we


an get a solution for 3-partition out of a s
hedule, the proof is now 
omplete.

3.3 An algorithm for s
heduling on homogeneous star platforms: the

best-balan
e algorithm

In this se
tion we present the Best-Balan
e Algorithm (BBA), an algorithm to s
hedule on

homogeneous star platforms. As already mentioned, we use a bus network with 
ommuni
ation

speed c, but additionally we suppose that the 
omputation powers are homogeneous as well. So

we have wi = w for all i, 1 ≤ i ≤ m.

The idea of BBA is simple: in ea
h iteration, we look if we 
ould �nish earlier if we redistribute

a task. If so, we s
hedule the task, if not, we stop redistributing. The algorithm has polynomial

run-time. It is a natural intuition that BBA is optimal on homogeneous platforms, but the formal

proof is rather 
ompli
ated, as 
an be seen in Se
tion 3.3.2.
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3.3.1 Notations used in BBA

BBA s
hedules one task per iteration i. Let L
(i)
k denote the number of tasks of worker k after

iteration i, i.e., after i tasks were redistributed. The date at whi
h the master has �nished re
eiving
the i-th task is denoted bymaster_in(i)

. In the same way we 
allmaster_out(i) the date at whi
h

the master has �nished sending the i-th task. Let end
(i)
k be the date at whi
h worker k would �nish

to pro
ess the load it would hold if exa
tly i tasks are redistributed. The worker k in iteration i

with the biggest �nish time end
(i)
k , who is 
hosen to send one task in the next iteration, is 
alled

sender. We 
all receiver the worker k with smallest �nish time end
(i)
k in iteration i who is 
hosen

to re
eive one task in the next iteration.

In iteration i = 0 we are in the initial 
on�guration: All workers own their initial tasks

L
(0)
k = Lk and the makespan of ea
h worker k is the time it needs to 
ompute all its tasks:

end
(0)
k = L

(0)
k × w. master_in(0) = master_out(0) = 0.

3.3.2 The Best Balan
e Algorithm - BBA

We �rst sket
h BBA:

In ea
h iteration i do:

� Compute the time end
(i−1)
k it would take worker k to pro
ess L

(i−1)
k tasks.

� A worker with the biggest �nish time end
(i−1)
k is arbitrarily 
hosen as sender, he is 
alled

sender.

� Compute the temporary �nish times ẽnd
(i)

k of ea
h worker if it would re
eive from sender
the i-th task.

� A worker with the smallest temporary �nish time ẽnd
(i)

k will be the re
eiver, 
alled receiver.

If there are multiple workers with the same temporary �nish time ẽnd
(i)

k , we take the worker

with the smallest �nish time end
(i−1)
k .

� If the �nish time of sender is stri
tly larger than the temporary �nish time ẽnd
(i)

sender of

sender, sender sends one task to receiver and iterate. Otherwise stop.

Lemma 6. On homogeneous star-platforms, in iteration i the Best-Balan
e Algorithm (Al-

gorithm 1) always 
hooses as re
eiver a worker whi
h �nishes pro
essing the �rst in iteration

i− 1.

Proof. As the platform is homogeneous, all 
ommuni
ations take the same time and all 
ompu-

tations take the same time. In Algorithm 1 the master 
hooses as re
eiver in iteration i the worker
k that would end the earliest the pro
essing of the i-th task sent. To prove that worker k is also

the worker whi
h �nishes pro
essing in iteration i− 1 �rst, we have to 
onsider two 
ases:

� Task i arrives when all workers are still working.

As all workers are still working when the master �nishes to send task i, the master 
hooses
as re
eiver a worker whi
h �nishes pro
essing the �rst, be
ause this worker will also �nish

pro
essing task i �rst, as we have homogeneous 
onditions. See Figure 9(a) for an example:

the master 
hooses worker k as in iteration i − 1 it �nishes before worker j and it 
an thus

start 
omputing task i+ 1 earlier than worker j 
ould do.

� Task i arrives when some workers have �nished working.

If some workers have �nished working when the master 
an �nish to send task i, we are

in the situation of Figure 9(b): All these workers 
ould start pro
essing task i at the same
time. As our algorithm 
hooses in this 
ase a worker whi
h �nished pro
essing �rst (see line

13 in Algorithm 1), the master 
hooses worker k in the example.
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Pj

Pk

ẽnd
(i)

j

end
(i−1)
k

end
(i)
k

ẽnd
(i−1)

j


omputation


ommuni
ationi+ 1

i+ 1

i+ 1

i+ 1

(a) All workers are still pro
essing

Pj

Pk

end
(i−1)
k

end
(i−1)
j

ẽnd
(i)

j = ẽnd
(i)

k

i+ 1

i+ 1

i+ 1

i+ 1

(b) Some workers have already

�nished pro
essing

Figure 9: In iteration i: The master 
hooses whi
h worker will be the re
eiver of task i.

The aim of these s
hedules is always to minimize the makespan. So workers who take a long

time to pro
ess their tasks are interested in sending some tasks to other workers whi
h are less


harged in order to de
rease their pro
essing time. If a weakly 
harged worker sends some tasks

to another worker this will not de
rease the global makespan, as a strongly 
harged worker has

still its long pro
essing time or its pro
essing time might even have in
reased if it was the re
eiver.

So it might happen that the weakly 
harged worker who sent a task will re
eive another task in

another s
heduling step. In the following lemma we will show that this kind of s
hedule, where

sending workers also re
eive tasks, 
an be transformed in a s
hedule where this e�e
t does not

appear.

Lemma 7. On a platform with homogeneous 
ommuni
ations, if there exists a s
hedule S with

makespan M , then there also exists a s
hedule S′
with a makespan M ′ ≤ M su
h that no worker

both sends and re
eives tasks.

Proof. We will prove that we 
an transform a s
hedule where senders might re
eive tasks in a

s
hedule with equal or smaller makespan where senders do not re
eive any tasks.

sk

rj

sk

rj

si si

Figure 10: S
heme on how to break up sending 
hains.

If the master re
eives its i-th task from pro
essor Pj and sends it to pro
essor Pk, we say that

Pk re
eives this task from pro
essor Pj .

Whatever the s
hedule, if a sender re
eives a task we have the situation of a sending 
hain (see

Figure 10): at some step of the s
hedule a sender si sends to a sender sk, while in another step of

the s
hedule the sender sk sends to a re
eiver rj . So the master is o

upied twi
e. As all re
eivers

re
eive in fa
t their tasks from the master, it does not make a di�eren
e for them whi
h sender

sent the task to the master. So we 
an break up the sending 
hain in the following way: We look

for the earliest time, when a sending worker, sk, re
eives a task from a sender, si. Let rj be a

re
eiver that re
eives a task from sender sk. There are two possible situations:
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1. Sender si sends to sender sk and later sender sk sends to re
eiver rj , see Figure 11(a). This

ase is simple: As the 
ommuni
ation from si to sk takes pla
e �rst and we have homogeneous

ommuni
ation links, we 
an repla
e this 
ommuni
ation by an emission from sender si to
re
eiver rj and just delete the se
ond 
ommuni
ation.

2. Sender sk sends to re
eiver rj and later sender si sends to sender sk, see Figure 11(b). In this

ase the re
eption on re
eiver rj happens earlier than the emission of sender si, so we 
an

not use exa
tly the same me
hanism as in the previous 
ase. But we 
an use our hypothesis

that sender sk is the �rst sender that re
eives a task. Therefore, sender si did not re
eive any
task until sk re
eives. So at the moment when sk sends to rj , we know that sender si already
owns the task that it will send later to sender sk. As we use homogeneous 
ommuni
ations,
we 
an s
hedule the 
ommuni
ation si → rj when the 
ommuni
ation sk → rj originally

took pla
e and delete the sending from si to sk.

As in both 
ases we gain in 
ommuni
ation time, but we keep the same 
omputation time, we

do not in
rease the makespan of the s
hedule, but we transformed it in a s
hedule with one less

sending 
hain. By repeating this pro
edure for all sending 
hains, we transform the s
hedule S in

a s
hedule S′
without sending 
hains while not in
reasing the makespan.

rj

si

sk

time time

(a) Sender si sends to re
eiving sender sk and

then sender sk sends to re
eiver rj .

rj

si

sk

time time

(b) Sender sk sends �rst to re
eiver rj and

then re
eives from sender si.

Figure 11: How to break up sending 
hains, dark 
olored 
ommuni
ations are emissions, light


olored 
ommuni
ations represent re
eptions.

Proposition 1. Best-Balan
e Algorithm (Algorithm 1) 
al
ulates an optimal s
hedule S on

a homogeneous star network, where all tasks are initially lo
ated on the workers and 
ommuni
ation


apabilities as well as 
omputation 
apabilities are homogeneous and all tasks have the same size.

Proof. To prove that BBA is optimal, we take a s
hedule Salgo 
al
ulated by Algorithm 1. Then

we take an optimal s
hedule Sopt. (Be
ause of Lemma 7 we 
an assume that in the s
hedule Sopt

no worker both sends and re
eives tasks.) We are going to transform by indu
tion this optimal

s
hedule into our s
hedule Salgo.

As we use a homogeneous platform, all workers have the same 
ommuni
ation time c. Without

loss of generality, we 
an assume that both algorithms do all 
ommuni
ations as soon as possible

(see Figure 12). So we 
an divide our s
hedule Salgo in sa steps and Sopt in so steps. A step


orresponds to the emission of one task, and we number in this order the tasks sent. A

ordingly

the s-th task is the task sent during step s and the a
tual s
hedule 
orresponds to the load

distribution after the s �rst tasks. We start our s
hedule at time T = 0.
Let S(i) denote the worker re
eiving the i-th task under s
hedule S. Let i0 be the �rst step

where Sopt di�ers from Salgo, i.e., Salgo(i0) 6= Sopt(i0) and ∀i < i0, Salgo(i) = Sopt(i). We look for

a step j > i0, if it exists, su
h that Sopt(j) = Salgo(i0) and j is minimal.
We are in the following situation: s
hedule Sopt and s
hedule Salgo are the same for all tasks

[1..(i0 − 1)]. As worker Salgo(i0) is 
hosen at step i0, then, by de�nition of Algorithm 1, this

means that this worker �nishes �rst its pro
essing after the re
eption of the (i0 − 1)-th tasks (
f.
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Algorithm 1 Best-Balan
e Algorithm

1: /* initialization */

2: i← 0
3: master_in(i) ← 0
4: master_out(i) ← 0

5: ∀k L
(0)
k ← Lk

6: end
(0)
k ← L

(0)
k × w

7: /* the s
heduling */

8: while true do

9: sender← maxk end
(i)
k

10: master_in(i+1) ← master_in(i) + c
11: task_arrival_worker = max(master_in(i+1),master_out(i)) + c

12: ∀k ẽnd
(i+1)

k ← max(end
(i+1)
k , task_arrival_worker) + w

13: sele
t receiver su
h that ẽnd
(i+1)

receiver = mink ẽnd
(i+1)

k and if there are several pro
essors with

the same minimum ẽnd
(i+1)

k , 
hoose one with the smallest end
(i)
k

14: if end
(i)
sender ≤ ẽnd

(k+1)

receiver then

15: /* we 
an not improve the makespan anymore */

16: break

17: else

18: /* we improve the makespan by sending the task to the receiver */

19: master_out(i+1) ← task_arrival_worker

20: end
(i+1)
sender ← end

(i)
sender − w

21: L
(i+1)
sender ← L

(i)
sender − 1

22: end
(i+1)
receiver ← ẽnd

(i+1)

receiver

23: L
(i+1)
receiver ← L

(i)
receiver + 1

24: for all j 6= receiver and j 6= sender do

25: end
(i+1)
j ← end

(i)
j

26: L
(i+1)
j ← L

(i)
j

27: end for

28: i← i+ 1
29: end if

30: end while
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T = 0

1 2 3 n

1 2 n− 1 n

re
eptions by the master:

sendings from the master:

Figure 12: O

upation of the master.

Lemma 6). As Sopt and Salgo di�er in step i0, we know that Sopt 
hooses worker Sopt(i0) that
�nishes the s
hedule of its load after step (i0 − 1) no sooner than worker Salgo(i0).

Case 1: Let us �rst 
onsider the 
ase where there exists su
h a step j. So Salgo(i0) = Sopt(j)
and j > i0. We know that worker Sopt(j) under s
hedule Sopt does not re
eive any task between

step i0 and step j as j is 
hosen minimal.

We use the following notations for the s
hedule Sopt, depi
ted on Figures 13, 14, and 15:

Tj: the date at whi
h the re
eption of task j is �nished on worker Sopt(j), i.e., Tj = j× c+ c (the
time it takes the master to re
eive the �rst task plus the time it takes him to send j tasks).

Ti0 : the date at whi
h the re
eption of task i0 is �nished on worker Sopt(i0), i.e., Ti0 = i0× c+ c.

Fpred(j): time when 
omputation of task pred(j) is �nished, where task pred(j) denotes the last
task whi
h is 
omputed on worker Sopt(j) before task j is 
omputed.

Fpred(i0): time when 
omputation of task pred(i0) is �nished, where task pred(i0) denotes the
last task whi
h is 
omputed on worker Sopt(i0) before task i0 is 
omputed.

We have to 
onsider two sub-
ases:

� Tj ≤ Fpred(i0) (Figure 13(a)).

This means that we are in the following situation: the re
eption of task j on worker Sopt(j)
has already �nished when worker Sopt(i0) �nishes the work it has been s
heduled until step

i0 − 1.

In this 
ase we ex
hange the tasks i0 and j of s
hedule Sopt and we 
reate the following

s
hedule S′
opt:

S′
opt(i0) = Sopt(j) = Salgo(i0),

S′
opt(j) = Sopt(i0)

and ∀i 6= i0, j, S′
opt(i) = Sopt(i). The s
hedule of the other workers is kept un
hanged. All

tasks are exe
uted at the same date than previously (but maybe not on the same pro
essor).

Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0

Fpred(j)

Tj

Fpred(i0)

j + 1

i0i0

j + 1

i0 + k

j

j

i0 + k

i0

(a) Before the ex
hange.

Fpred(i0)

Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0
Tj

Tpred(j)

j

j + 1

i0

i0

j i0 + k

i0 + k

j + 1

i0

(b) After ex
hange.

Figure 13: S
hedule Sopt before and after ex
hange of tasks i0 and j.
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Now we prove that this kind of ex
hange is possible.

We know that worker Sopt(j) is not s
heduled any task later than step i0 − 1 and before

step j, by de�nition of j. So we know that this worker 
an start pro
essing task j when

task j has arrived and when it has �nished pro
essing its amount of work s
heduled until

step i0 − 1. We already know that worker Sopt(j) = Salgo(i0) �nishes pro
essing its tasks

s
heduled until step i0 − 1 at a time earlier than or equal to that of worker Sopt(i0) (
f.
Lemma 6). As we are in homogeneous 
onditions, 
ommuni
ations and pro
essing of a task

takes the same time on all pro
essors. So we 
an ex
hange the destinations of steps i0 and

j and keep the same moments of exe
ution, as both tasks will arrive in time to be pro
essed

on the other worker: task i0 will arrive at worker Sopt(j) when it is still pro
essing and the

same for task j on worker Sopt(i0). Hen
e task i0 will be sent to worker Sopt(j) = Salgo(i0)
and worker Sopt(i0) will re
eive task j. So s
hedule Sopt and s
hedule Salgo are the same for

all tasks [1..i0] now. As both tasks arrive in time and 
an be exe
uted instead of the other

task, we do not 
hange anything in the makespan M . And as Sopt is optimal, we keep the

optimal makespan.

� Tj ≥ Fpred(i0) (Figure 14(a)).

In this 
ase we have the following situation: task j arrives on worker Sopt(j), when worker

Sopt(i0) has already �nished pro
essing its tasks s
heduled until step i0 − 1.
In this 
ase we ex
hange the s
hedule destinations i0 and j of s
hedule Sopt beginning at

tasks i0 and j (see Figure 14). In other words we 
reate a s
hedule S′
opt:

∀i ≥ i0 su
h that Sopt(i) = Sopt(i0): S
′
opt(i) = Sopt(j) = Salgo(i0)

∀i ≥ j su
h that Sopt(i) = Sopt(j): S
′
opt(i) = Sopt(i0)

and ∀i ≤ i0 S′
opt(i) = Sopt(i). The s
hedule Sopt of the other workers is kept un
hanged. We

re
ompute the �nish times F
(s)
Sopt

(j) of workers Sopt(j) and Sopt(i0) for all steps s > i0.

Ti0

Fpred(j)

Tj

Fpred(i0)

Salgo(i0) = Sopt(j)

Sopt(i0)

i0 i0 + k

i0 i0 + k

j

j + 1j

j + 1

(a) Before ex
hange.

Tj

Fpred(i0)Fpred(j)

Ti0

Sopt(i0)

Salgo(i0) = Sopt(j)

i0

j + 1

i0 + k

j

i0j j + 1

i0 + ki0

(b) After ex
hange.

Figure 14: S
hedule Sopt before and after ex
hange of lines i0 and j.

Now we prove that this kind of ex
hange is possible. First of all we know that worker Salgo(i0)
is the same as the worker 
hosen in step j under s
hedule Sopt and so Salgo(i0) = Sopt(j).
We also know that worker Sopt(j) is not s
heduled any tasks later than step i0−1 and before
step j, by de�nition of j. Be
ause of the 
hoi
e of worker Salgo(i0) = Sopt(j) in Salgo, we

know that worker Sopt(j) has �nished working when task j arrives: at step i0 worker Sopt(j)
�nishes earlier than or at the same time as worker Sopt(i0) (Lemma 6) and as we are in the


ase where Tj ≥ Fpred(i0), Sopt(j) has also �nished when j arrives. So we 
an ex
hange the

destinations of the workers Sopt(i0) and Sopt(j) in the s
hedule steps equal to, or later than,

step i0 and pro
ess them at the same time as we would do on the other worker. As we have

shown that we 
an start pro
essing task j on worker Sopt(i0) at the same time as we did

on worker Sopt(j), and the same for task i0, we keep the same makespan. And as Sopt is

optimal, we keep the optimal makespan.

Case 2: If there does not exist a j, i.e., we 
an not �nd a s
hedule step j > i0 su
h that worker

Salgo(i0) is s
heduled a task under s
hedule Sopt, so we know that no other task will be s
heduled
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on worker Salgo(i0) under the s
hedule Sopt. As our algorithm 
hooses in step s the worker that

�nishes task s+1 the �rst, we know that worker Salgo(i0) �nishes at a time earlier or equal to that
of Sopt. Worker Salgo(i0) will be idle in the s
hedule Sopt for the rest of the algorithm, be
ause oth-

erwise we would have found a step j. As we are in homogeneous 
onditions, we 
an simply displa
e
task i0 from worker Sopt(i0) to worker Salgo(i0) (see Figure 15). As we have Sopt(i0) 6= Salgo(i0)
and with Lemma 6 we know that worker Salgo(i0) �nishes pro
essing its tasks until step i0 − 1 at

a time earlier than or equal to Sopt(i0), and we do not downgrade the exe
ution time be
ause we

are in homogeneous 
onditions.

Ti0

F
(pred(i0))
Salgo

(Salgo(i0)) F
pred((i0))
Sopt

(Sopt(i0))

Sopt(i0)

Salgo(i0)

i0

i0 + ki0

i0 + ki0

(a) Before displa
ing

Ti0

F
(pred(i0))
Sopt

(Sopt(i0))

Sopt(i0)

Salgo(i0)

F
(pred(i0))
Salgo

(Salgo(i0))

i0i0 + k

i0 + k

i0

i0

(b) After displa
ing

Figure 15: S
hedule Sopt before and after displa
ing task i0.

On
e we have done the ex
hange of task i0, the s
hedules Sopt and Salgo are the same for all

tasks [1..i0]. We restart the transformation until Sopt = Salgo for all tasks [1..min(sa, so)] s
hed-
uled by Salgo.

Now we will prove by 
ontradi
tion that the number of tasks s
heduled by Salgo, sa, and Sopt,

so, are the same. After min(sa, so) transformation steps Sopt = Salgo for all tasks [1..min(sa, so)]
s
heduled by Salgo. So if after these steps Sopt = Salgo for all n tasks, both algorithms redistributed

the same number of tasks and we have �nished.

We now 
onsider the 
ase sa 6= so. In the 
ase of sa > so, Salgo s
hedules more tasks than Sopt.

At ea
h step of our algorithm we do not in
rease the makespan. So if we do more steps than Sopt,

this means that we s
heduled some tasks without 
hanging the global makespan. Hen
e Salgo is

optimal.

If sa < so, this means that Sopt s
hedules more tasks than Salgo does. In this 
ase, after sa
transformation steps, Sopt still s
hedules tasks. If we take a look at the s
hedule of the (sa+1)-th
task in Sopt: regardless whi
h re
eiver Sopt 
hooses, it will in
rease the makespan as we prove

now. In the following we will 
all salgo the worker our algorithm would have 
hosen to be the

sender, ralgo the worker our algorithm would have 
hosen to be the re
eiver. sopt and ropt are
the sender and re
eiver 
hosen by the optimal s
hedule. Indeed, in our algorithm we would have


hosen salgo as sender su
h that it is a worker whi
h �nishes last. So the time worker salgo �nishes
pro
essing is Fsalgo

= M(Salgo). Salgo 
hooses the re
eiver ralgo su
h that it �nishes pro
essing

the re
eived task the earliest of all possible re
eivers and su
h that it also �nishes pro
essing the

re
eiving task at the same time or earlier than the sender would do. As Salgo did not de
ide to

send the (sa+1)-th task, this means, that it 
ould not �nd a re
eiver whi
h �tted. Hen
e we know,
regardless whi
h re
eiver Sopt 
hooses, that the makespan will stri
tly in
rease (as Salgo = Sopt for

all [1..sa]). We take a look at the makespan of Salgo if we would have s
heduled the (sa+1)-th task.
We know that we 
an not de
rease the makespan anymore, be
ause in our algorithm we de
ided

to keep the s
hedule un
hanged. So after the emission of the (sa+1)-th task, the makespan would
be
ome M(Salgo) = Fralgo

≥ Fsalgo
. And Fralgo

≤ Fropt , be
ause of the de�nition of re
eiver ralgo.
As M(sopt) ≥ Fropt , we have M(Salgo) ≤ M(Sopt). But we de
ided not to do this s
hedule as
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M(Salgo) is smaller before the s
hedule of the (sa + 1)-th task than afterwards. Hen
e we get

that M(Salgo) < M(Sopt). So the only possibility why Sopt sends the (sa + 1)-th task and still

be optimal is that, later on, ropt sends a task to some other pro
essor rk. (Note that even if we


hoose Sopt to have no su
h 
hains in the beginning, some might have appeared be
ause of our

previous transformations). In the same manner as we transformed sending 
hains in Lemma 7,

we 
an suppress this sending 
hain, by sending task (sa + 1) dire
tly to rk instead of sending to

ropt. With the same argumentation, we do this by indu
tion for all tasks k, (sa + 1) ≤ k ≤ so,
until s
hedule Sopt and Salgo have the same number so = sa and so Sopt = Salgo and hen
e

M(Sopt) = M(Salgo).

Complexity: The initialization phase is in O(m), as we have to 
ompute the �nish times for

ea
h worker. The while loop 
an be run at maximum n times, as we 
an not redistribute more

than the n tasks of the system. Ea
h iteration is in the order of O(m), whi
h leads us to a total

run time of O(m× n).

3.4 S
heduling on platforms with homogeneous 
ommuni
ation links

and heterogeneous 
omputation 
apa
ities

In this se
tion we present an algorithm for star-platforms with homogeneous 
ommuni
ations and

heterogeneous workers, the Moore Based Binary-Sear
h Algorithm (MBBSA). For a given

makespan, we 
ompute if there exists a possible s
hedule to �nish all work in time. If there is one,

we optimize the makespan by a binary sear
h. The plan of the se
tion is as follows: In Se
tion 3.4.1

we present an existing algorithm whi
h will be the basis of our work. The framework and some

usefull notations are introdu
ed in Se
tion 3.4.2, whereas the real algorithm is the subje
t of

Se
tion 3.4.3.

3.4.1 Moore's algorithm

In this se
tion we present Moore's algorithm [6, 18℄, whose aim is to maximize the number

of tasks to be pro
essed in-time, i.e., before tasks ex
eed their deadlines. This algorithm gives a

solution to the 1||
∑

Uj problem when the maximum number, among n tasks, has to be pro
essed

in time on a single ma
hine. Ea
h task k, 1 ≤ k ≤ n, has a pro
essing time wk and a deadline dk,
before whi
h it has to be pro
essed.

Moore's algorithm works as follows: All tasks are ordered in non-de
reasing order of their

deadlines. Tasks are added to the solution one by one in this order as long as their deadlines are

satis�ed. If a task k is out of time, the task j in the a
tual solution with the largest pro
essing

time wj is deleted from the solution.

Algorithm 2 [6, 18℄ solves in O(n logn) the 1||
∑

Uj problem: it 
onstru
ts a maximal set σ of

early jobs.

Algorithm 2 Moore's algorithm

1: Order the jobs by non-de
reasing deadlines: d1 ≤ d2 ≤ · · · ≤ dd
2: σ ← ∅; t← 0
3: for i := 1 to n do

4: σ ← σ ∪ {i}
5: t← t+ wi

6: if t > di then
7: Find job j in σ with largest wj value

8: σ ← σ\{j}
9: t← t− wj

10: end if

11: end for
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3.4.2 Framework and notations for MBBSA

We keep the star network of Se
tion 3.1 with homogeneous 
ommuni
ation links. In 
ontrast

to Se
tion 3.3 we suppose m heterogeneous workers who own initially a number Li of identi
al

independent tasks.

Let M denote the obje
tive makespan for the sear
hed s
hedule σ and fi the time needed by

worker i to pro
ess its initial load. During the algorithm exe
ution we divide all workers in two

subsets, where S is the set of senders (si ∈ S if fi > M) and R the set of re
eivers (ri ∈ R

if fi < M). As our algorithm is based on Moore's, we need a notation for deadlines. Let d
(k)
ri

be the deadline to re
eive the k-th task on re
eiver ri. lsi denotes the number of tasks sender

i sends to the master and lri stores the number of tasks re
eiver i is able to re
eive from the

master. With help of these values we 
an determine the total amount of tasks that must be sent

as Lsend =
∑

si
lsi . The total amount of task if all re
eivers re
eive the maximum amount of tasks

they are able to re
eive is Lrecv =
∑

ri
lri . Finally, let Lsched be the maximal amount of tasks

that 
an be s
heduled by the algorithm.

3.4.3 Moore based binary sear
h algorithm - MBBSA

Prin
iple of the algorithm: Considering the given makespan we determine over
harged work-

ers, whi
h 
an not �nish all their tasks within this makespan. These over
harged workers will

then send some tasks to under
harged workers, su
h that all of them 
an �nish pro
essing within

the makespan. The algorithm solves the following two questions: Is there a possible s
hedule su
h

that all workers 
an �nish in the given makespan? In whi
h order do we have to send and re
eive

to obtain su
h a s
hedule?

The algorithm 
an be divided into four phases:

Phase 1 de
ides whi
h of the workers will be senders and whi
h re
eivers, depending of the

given makespan (see Figure 16). Senders are workers whi
h are not able to pro
ess all their

initial tasks in time, whereas re
eivers are workers whi
h 
ould treat more tasks in the given

makespan M than they hold initially. So sender Pi has a �nish time fi > M , i.e., the time

needed to 
ompute their initial tasks is larger than the given makespan M . Conversely, Pi

is a re
eiver if it has a �nish time fi < M . So the set of senders in the example of Figure 16


ontains s1 and sv, and the set of re
eivers r1, r2, and ru.

T = 0 T = M

r1

s1

r2

ru

sv

tasks whi
h 
an not be 
omputed in time

tasks whi
h 
an be 
omputed in time

Figure 16: Initial distribution of the tasks to the workers, dark 
olored tasks 
an be 
omputed

in-time, light 
olored tasks will be late and have to be s
heduled on some other workers.

Phase 2 �xes how many transfers have to be s
heduled from ea
h sender su
h that the senders

all �nish their remaining tasks in time. Sender si will have to send an amount of tasks

lsi =
⌈
fsi−T

wsi

⌉
(i.e., the number of light 
olored tasks of a sender in Figure 16).
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Phase 3 
omputes for ea
h re
eiver the deadline of ea
h of the tasks it 
an re
eive, i.e., a pair

(d
(i)
rj , rj) that denotes the i-th deadline of re
eiver rj . Beginning at the makespan M one

measures when the last task has to arrive on the re
eiver su
h that it 
an be pro
essed in

time. So the latest moment that a task 
an arrive so that it 
an still be 
omputed on re
eiver

rj is T − wrj , and so on. See Figure 17 for an example.


omputation of initial tasks Lri

Frj

re
eiver rj

T − 1× wrjT − (lrj − 1)× wrj

T − lrj × wrj T − 2× wrj

MT = 0

d
(lrj )
rj d

(lrj−1)
rj d

(1)
rjd

(2)
rj

Figure 17: Computation of the deadlines d
(k)
rj for worker rj .

Phase 4 is the proper s
heduling step: The master de
ides whi
h tasks have to be s
heduled on

whi
h re
eivers and in whi
h order. In this phase we use Moore's algorithm. Starting at

time t = c (this is the time, when the �rst task arrives at the master), the master 
an start

s
heduling the tasks on the re
eivers. For this purpose the deadlines (d, rj) are ordered by

non-de
reasing d-values. In the same manner as in Moore's algorithm, an optimal s
hedule

σ is 
omputed by adding one by one tasks to the s
hedule: if we 
onsider the deadline (d, rj),
we add a task to pro
essor rj . The 
orresponding pro
essing time is the 
ommuni
ation time
c of rj . So if a deadline is not met, the last re
eption is suppressed from σ and we 
ontinue.

If the s
hedule is able to send at least Lsend tasks the algorithm su

eeds, otherwise it fails.

Algorithm 3 des
ribes MBBSA in pseudo-
ode. Note that the algorithm is written for heteroge-

neous 
onditions, but here we study it for homogeneous 
ommuni
ation links.

Theorem 3. MBBSA (Algorithm 3) su

eeds to build a s
hedule σ for a given makespan M , if

and only if there exists a s
hedule with makespan less than or equal to M , when the platform

is made of one master, several workers with heterogeneous 
omputation power but homogeneous


ommuni
ation 
apabilities.

Proof. Algorithm 2 (Moore's Algorithm) 
onstru
ts a maximal set σ of early jobs on a single

ma
hine s
heduling problem. So we are going to show that our algorithm 
an be redu
ed to this

problem.

As we work with a platform with homogeneous 
ommuni
ations, we do not have to 
are about

the arrival times of jobs at the master, apart from the �rst job. Our deadlines 
orrespond to the

latest moments, at whi
h tasks 
an arrive on the workers su
h that they 
an be pro
essed in-time

(see Figure 17). So we have a 
ertain number Lrecv of possible re
eptions for all re
eivers.

Phases 1 to 3 prepare our s
heduling problem to be similar to the situation in Algorithm 2 and

thus to be able to use it.

In phase 1 we distinguish whi
h pro
essors have to be senders, whi
h have to be re
eivers.

With Lemma 7 we know that we 
an partition our workers in senders and re
eivers (and workers

whi
h are none of both), be
ause senders will never re
eive any tasks. Phase 2 
omputes the

number of tasks Lsend that has to be s
heduled. Phase 3 
omputes the (d
(k)
rj , rj)-values, i.e., the

deadlines d
(k)
rj for ea
h re
eiver rj . Step 4 is the proper s
heduling step and it 
orresponds to

Moore's algorithm. It 
omputes a maximal set σ of in-time jobs, where Lsched is the number of

s
heduled tasks.

The algorithm returns true if the number of s
heduled tasks Lsched is bigger than, or equal

to, the number of tasks to be sent Lsend.

Now we will prove that if there exists a s
hedule whose makespan is less than, or equal to, M ,

Algorithm 3 builds one and returns true. Consider an optimal s
hedule σ∗
with a makespan M .

We will prove that Algorithm 3 will return true.
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Algorithm 3 Algorithm for star-platforms with homogeneous 
ommuni
ations and heterogeneous

workers

1: /* Phase 1: Initialization */

2: initialize fi for all workers i, fi = Li × wi

3: 
ompute R and S, order S by non-de
reasing values ci su
h that cs1 ≤ cs2 ≤ . . .
4: /* Phase 2: Preparing the senders */

5: for all si ∈ S do

6: lsi ←
⌈
fsi−T

wsi

⌉

7: if

⌊
T
csi

⌋
< lsi then

8: /* M too small */

9: return (false, ∅)
10: end if

11: end for

12: total number of tasks to send: Lsend ←
∑

si
lsi

13: /* Phase 3: Preparing the re
eivers */

14: D ← ∅
15: for all ri ∈ R do

16: lri ← 0
17: while fri ≤M − (lri + 1)× wri do

18: lri ← lri + 1

19: d
(lri )
ri ←M − (lri × wri)

20: D ← D ∪ (d
(lri )
ri , ri)

21: end while

22: end for

23: number of tasks that 
an be re
eived: Lrecv ←
∑

ri
lri

24: /* Phase 4: The master s
hedules */

25: senders send in non-de
reasing order of values csi to the master
26: order deadline-list D by non-de
reasing values of deadlines dri and rename the deadlines in

this order from 1 to Lrecv

27: σ ← ∅; t← cs1 ; Lsched = 0;
28: for i = 1 to Lrecv do

29: (di, ri)← i-th element (d
(j)
rk , rk) of D

30: σ ← σ ∪ {ri}
31: t← t+ cri
32: Lsched ← Lsched + 1
33: if t > di then
34: Find (dj , rj) in σ su
h that crj value is largest

35: σ ← σ\{(dj , rj)}
36: t← t− crj
37: Lsched ← Lsched − 1
38: end if

39: end for

40: return ((Lsched ≥ Lsend), σ)
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We have 
omputed, for ea
h re
eiver rj , lrj the maximal number of tasks rj 
an pro
ess after

having �nished to pro
ess its initial load. Let Nrj denote the number of tasks re
eived by rj
in σ∗

, Nrj ≤ lrj . For all re
eivers rj we know the number Nrj of s
heduled tasks. So we have

L∗
sched =

∑
rj
Nrj . As in an optimal s
hedule all tasks sent by the senders are pro
essed on

the re
eivers, we know that L∗
sched = L∗

send. Let us denote D the set of deadlines 
omputed in

our algorithm for the s
heduling problem of whi
h σ∗
is an optimal solution. We also de�ne the

following set D∗ =
⋃

i

⋃
1≤j≤Nri

(M − j × wri , ri) of the Nrj latest deadlines for ea
h re
eiver rj .

Obviously D∗ ⊆ D. The set of tasks in σ∗
is exa
tly a set of tasks that respe
ts the deadlines in

D∗
. The appli
ation of the algorithm of Moore on the same problem returns a maximal solution

if there exists a solution. With D∗ ⊂ D, we already know that there exists a solution with L∗
sched

s
heduled tasks. So Moore's algorithm will return a solution with Lsched ≥ Lsched∗, as there are
more possible deadlines. On the other side, we have L∗

send ≥ Lsend as Lsend is the minimal number

of tasks that have to be sent to �t in the given makespan. So we get that Lsched ≥ Lsend. As

we return true in our algorithm if Lsched ≥ Lsend, we will return true whenever there exists a

s
hedule whose makespan is less than, or equal to, M .

Frj

re
eiver rj

T = 0


omputation of initial tasks Lri

M
d
(1)
rjd

(2)
rjd

(3)
rjd

(4)
rjd

(5)
rj

nrj = 1 nrj = 2 nrj = 3

nrj = 3nrj = 2nrj = 1

Figure 18: Number of loads s
heduled to re
eiver rj in order to its deadlines.

Now we prove that if Algorithm 3 returns true there exists a s
hedule whose makespan is

less than, or equal to, M . Our algorithm returns true, if it has found a s
hedule σ where

Lsched ≥ Lsend. If Lsched = Lsend then the s
hedule σ found by our algorithm is a s
hedule whose

makespan is less than, or equal to, M . If Lsched > Lsend, we take the Lsend �rst elements of σ,
whi
h still de�nes a s
hedule whose makespan is less than, or equal to, M .

Proposition 2. Algorithm 4 returns in polynomial time an optimal s
hedule σ for the following

s
heduling problem: minimizing the makespan on a star-platform with homogeneous 
ommuni
a-

tion links and heterogeneous workers where the initial tasks are lo
ated on the workers.

Proof. We perform a binary sear
h for a solution in a starting interval of [min(fi),max(fi)]. As
we are in heterogeneous 
omputation 
onditions, we have heterogeneous wi-values, 1 ≤ i ≤ m,

wi ∈ Q. The 
ommuni
ations instead are homogeneous, so we have ci = c, 1 ≤ i ≤ m, c ∈ Q. Let

the representation of the values be of the following form:

wi =
αi

βi

, αi, βi ∈ N× N∗,

where αi and βi are prime between ea
h other,

ci = c =
γ

δ
, γ, δ ∈ N× N∗,

where γ and δ are prime between ea
h other.

Let λ be the least 
ommon multiple of the denominators βi and δi, λ = l
m{βi, δ}, 1 ≤ i ≤ m.

As a 
onsequen
e for any i in [1..m] λ×wi ∈ N, λ× ci ∈ N. Now we have to 
hoose the pre
ision

whi
h allows us to stop our binary sear
h. For this, we take a look at the possible �nish times of

the workers: all of them are linear 
ombinations of the di�erent ci and wi-values. So if we multiply

all values with λ we get integers for all values and the smallest gap between two �nish times is at

least 1. So the pre
ision p, i.e., the minimal gap between two feasible �nish times, is p = 1
λ
.
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Algorithm 4 Algorithm to optimize the makespan.

/∗ idea: make a binary sear
h of M ∈ [min(fi),max(fi)] ∗/
input: wi =

αi

βi
, αi, βi ∈ N× N∗

, ci =
γi

δi
, γi, δi ∈ N× N∗

λ← l
m{βi, δi}, 1 ≤ i ≤ m
precision← 1

λ

lo← min(fi); hi← max(fi);
pro
edure binary-Sear
h(lo, hi):

gap← |lo− hi|
while gap > precision do

M ← (lo+ hi)/2
found← MBBSA (M)

if 6 found then
/* M is too small */

lo←M
else

/* M is maybe too big */

hi←M
σ ← found s
hedule

end if

gap← |lo− hi|
end while

return σ

Complexity: The maximal number of di�erent values M we have to try 
an be 
omputed as

follows: we examine our algorithm in the interval [min(fi)..max(fi)]. The possible values have an
in
rement of

1
λ
. So there are (max(fi)−min(fi))× λ possible values for M .

So the 
omplexity of the binary sear
h is O(log((max(fi) − min(fi)) × λ)). Now we have to

prove that we stay in the order of the size of our problem. Our platform parameters c and wi are

given in the form wi =
αi

βi
and c = γi

δ
. So it takes log(αi)+log(βi) to store a wi and log(γ)+log(δ)

to store a c. So our entry E has the following size:

E =
∑

i

log(αi) +
∑

i

log(βi) + log(γ) + log(δ) +
∑

i

log(Li)

We 
an do the following estimation:

E≥
∑

i

log(βi) + log(δ) = log

(
∏

i

βi × δ

)
≥ log(λ)

So we already know that our 
omplexity is bounded by O(|E|+ log(max(fi)−min(fi))). We 
an

simplify this expression: O(|E|+ log(max(fi)−min(fi))) ≤ O(|E|+ log(max(fi))). It remains to
upperbound log(max(fi)).

Remember max(fi) is de�ned as max(fi) = maxi(Li × wi) = Li0 × wi0 . Thus log(max(fi)) =
log(Li0)+log(wi0). Li0 is a part of the input and hen
e its size 
an be upper-bounded by the size of

the input E. In the same manner we 
an upperbound log(wi0 ) by log(wi0 ) = log(αi0 )+ log(βi0) ≤
E.

Assembling all these upperbounds, we get O(log((max(fi) − min(fi)) × λ)) ≤ O(3|E|) and

hen
e our proposed algorithm needs O(|E|) steps for the binary sear
h. The total 
omplexity

�nally is O(|E| ×max(nm, n2)), where n is the number of s
heduled tasks and m the number of

workers.
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3.5 Heuristi
s for heterogeneous platforms

As there exists no optimal algorithm to build a s
hedule in polynomial runtime (unless P = NP) for

heterogeneous platforms, we propose three heuristi
s. A 
omparative study is done in Se
tion 4.

� The �rst heuristi
 
onsists in the use of the optimal algorithm for homogeneous platforms

BBA (see Algorithm 1). On heterogeneous platforms, at ea
h step BBA optimizes the lo
al

makespan.

� Another heuristi
 is the utilization of the optimal algorithm for platforms with homogeneous


ommuni
ation links MBBSA (see Algorithm 3). The reason why MBBSA is not optimal on

heterogeneous platforms is the following: Moore's algorithm, that is used for the s
heduling

step, 
ares about the tasks already on the master, but it does not assert if the tasks have

already arrived. The use of homogeneous 
ommuni
ation links eliminated this di�
ulty. We


an observe that in the 
ases where the over
harged workers (i.e., the senders) 
ommuni
ate

faster than the under
harged workers (i.e., the re
eivers), MBBSA is also optimal. However,

the problem with this statement is that we do not know a priori whi
h pro
essors will work

as senders. So in the 
ase of heterogeneous platforms, where sending workers have faster


ommuni
ation links than re
eiving ones, the results will be optimal.

� We propose a third heuristi
: the Reversed Binary-Sear
h Algorithm (see Algorithm 5

for details). This algorithm 
opies the idea of the introdu
tion of deadlines. Contrary

to MBBSA this algorithm traverses the deadlines in reversed order, wherefrom the name.

Starting at a given makespan, R-BSA s
hedules all tasks as late as possible until no more

task 
an be s
heduled.

R-BSA 
an be divided into four phases:

Phase 1 is the same as in MBBSA. It de
ides whi
h of the workers will be senders and

whi
h re
eivers, depending of the given makespan (see Figure 16).

Phase 2 �xes how many transfers have to be s
heduled from ea
h sender su
h that the

senders all �nish their remaining tasks in time. This phase is also identi
al to MBBSA.

Phase 3 
omputes for ea
h re
eiver at whi
h time it 
an start with the 
omputation of the

additional tasks, this is in general the given makespan.

Phase 4 again is the proper s
heduling step: Beginning at the makespan we �ll ba
kward

the idle times of the re
eiving workers. So the master de
ides whi
h tasks have to be

s
heduled on whi
h re
eivers and in whi
h order. The master 
hooses a worker that


an start to re
eive the task as late as possible and still �nish it in time.

4 Simulations

In this se
tion we present the results of our simulation experien
es of the presented algorithms

and heuristi
s on multiple platforms. We study the heuristi
s that we presented in Se
tion 3.5.

4.1 The simulations

All simulations were made with SimGrid [16, 24℄. SimGrid is a toolkit that provides several fun
-

tionalities for the simulation of distributed appli
ations in heterogeneous distributed environments.

The toolkit is distributed into several layers and o�ers several programming environments, su
h as

XBT, the 
ore toolbox of SimGrid or SMPI, a library to run MPI appli
ations on top of a virtual

environment. The a

ess to the di�erent 
omponents is ensured via Appli
ation Programming

Interfa
es (API). We use the module MSG to 
reate our entities.
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Algorithm 5 Reversed Binary-Sear
h Algorithm

1: /* Phase 1: Initialization */

2: T ←M ; Lsched ← 0; σ ← ∅

3: ∀k L
(0)
k ← Lk

4: initialize endi for all workers i: endi = Li × wi

5: 
ompute R and S, order S by non-de
reasing values ci: cs1 ≤ cs2 ≤ . . .
6: master_in← cs1
7: /* Phase 2: Preparing the senders */

8: for all si ∈ S do

9: lsi ←
⌈
endsi

−T

wsi

⌉

10: if

⌊
T
csi

⌋
< lsi then

11: /* M too small */

12: return (false, ∅)
13: end if

14: end for

15: total number of tasks to be sent: Lsend ←
∑

si
lsi

16: /* Phase 3: Determination of the last deadline */

17: for all ri ∈ R do

18: if endri ≤ T then

19: beginri ← T
20: end if

21: end for

22: /* Phase 4: The s
heduling */

23: while true do

24: 
hoose receiver su
h that it is the worker that 
an start re
eiving it as late as possible, i.e.,

maxi (min(begini − wi, T ))− ci is maximal and that the s
hedule is feasible: the task must

�t in the idle gap of the worker: (beginreceiver − wreceiver ≥ endreceiver) and the task has

to be arrived at the master: (beginreceiver − wreceiver − creceiver ≥ master_in).
25: if no receiver′ found then
26: return ((Lsched ≤ Lsend), σ)
27: end if

28: beginreceiver ← beginreceiver − wreceiver

29: T ← beginreceiver − creceiver
30: Lsched ← Lsched + 1
31: σ ← σ ∪ {receiver}
32: i← i+ 1
33: end while
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The simulations were made on automati
ally 
reated random platforms of four types: We

analyze the behavior on fully homogeneous and fully heterogeneous platforms and the mixture of

both, i.e., platforms with homogeneous 
ommuni
ation links and heterogeneous workers and the


onverse. For every platform type 1000 instan
es were 
reated with the following 
hara
teristi
s:

In absolute random platforms, the random values for ci and wi vary between 1 and 100, whereas

the number of tasks is at least 50. In another test series we make some 
onstraints on the


ommuni
ation and 
omputation powers. In the �rst one, we de
ide the 
ommuni
ation power

to be inferior to the 
omputation power. In this 
ase the values for the 
ommuni
ation power

vary between 20 and 50 and the 
omputation powers 
an take values between 50 and 80. In the

opposite 
ase, where 
ommuni
ation power is supposed to be superior to the 
omputation power,

these rates are 
onversed.

4.2 Tra
e tests

To verify the right behavior of the algorithms, we made some tra
e tests. So the visualization of

the runs on a small test platform are shown in this se
tion.

We use a small platform with homogeneous 
ommuni
ation links, c = 2, so the bandwidth is

0.5. We use four heterogeneous workers with the following w-values: P1 and P2 
ompute faster,

so we set w1 = w2 = 3. Worker P3 and P4 are slower ones with w3 = w4 = 4. P1 owns 8 tasks

at the beginning, P2 and P3 respe
tively one task, whereas worker P4 has no initial work. The

optimal makespan is M = 13, as we 
omputed by permutation over all possible s
hedules.

In the following �gures, 
omputation are indi
ated in bla
k. White re
tangles denote inter-

nal blo
kings of SimGrid in the 
ommuni
ation pro
ess of a worker. These blo
kings appear

when 
ommuni
ation pro
esses remark that the a
tual message is not destined for them. Grey

re
tangles represent idle time in the 
omputation pro
ess. The light grey �elds �nally show the


ommuni
ation pro
esses between the pro
essors.

The s
hedule of BBA 
an be seen in Figure 19. Evidently the worker with the latest �nish time

is P1, worker P2 
an �nish the �rst sent task earlier than workers P3 and P4, so it is the re
eiver

for the �rst task. In this solution, worker P1 sends four tasks, whi
h are re
eived by P2, P4, P2

and on
e again P4. The makespan is 14, so the s
hedule is not optimal. This does not 
ontradi
t

our theoreti
al results, as we proved optimality of BBA only on homogeneous platforms.

Figure 19: Tra
e of the simulation of BBA.

MBBSA a
hieves as expe
ted the optimal makespan of 13 (see Figure 20). As you 
an see by


omparing Figures 19 and 20, the se
ond task s
heduled by MBBSA (to worker P2) is �nished pro-


essing later than in the s
hedule of BBA. So MBBSA, while globally optimal, does not minimize

the 
ompletion time of ea
h task.

R-BSA �nds also an optimal s
hedule (
f. Figure 21). Even in this small test the di�eren
e of

R-BSA and MBBSA is remarkable: R-BSA tries to s
hedule the most tasks as possible by �lling

idle times starting at the makespan. MBBSA 
ontrarily tries to s
hedule tasks as soon as possible

before their deadlines are expired.
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Figure 20: Tra
e of the simulation of MBBSA.

Figure 21: Tra
e of the simulation of R-BSA.

4.3 Distan
e from the best

We made a series of distan
e tests to get some information of the mean qualitiy of our algorithms.

For this purpose we ran all algorithms on 1000 di�erent random platforms of the ea
h type, i.e.,

homogeneous and heterogeneous, as well as homogeneous 
ommuni
ation links with heterogeneous

workers and the 
onverse. We normalized the measured s
hedule makespans over the best result

for a given instan
e. In the following �gures we plot the a

umulated number of platforms that

have a normalized distan
e less than the indi
ated distan
e. This means, we 
ount on how many

platforms a 
ertain algorithm a
hieves results that do not di�er more than X% from the best

s
hedule. For exemple in Figure 22(b): The third point of the R-BSA-line signi�
ates that about

93% of the s
hedules of R-BSA di�er less than 3% from the best s
hedule.

Our results on homogeneous platforms 
an be seen in Figures 22. As expe
ted from the

theoreti
al results, BBA and MBBSA a
hieve the same results and behave equally well on all

platforms. R-BSA in 
ontrast shows a sensibility on the platform 
hara
teristi
s. When the


ommuni
ation power is less than the 
omputation power, i.e. the ci-values are bigger, R-BSA

behaves as good as MBBSA and BBA. But in the 
ase of small ci-values or on homogeneous

platforms without 
onstraints on the power rates, R-BSA a
hieves worse results.

The simulation results on platforms with homogeneous 
ommuni
ation links and heterogeneous


omputation powers (
f. Figure 23) 
onsolidate the theoreti
al predi
tions: Independently of the

platform parameters, MBBSA always obtains optimal results, BBA di�ers slightly when high

pre
ision is demanded. The behavior of R-BSA strongly depends on the platform parameters:

when 
ommuni
ations are slower than 
omputations, it a
hieves good results.

On platforms with heterogeneous 
ommuni
ation links and homogeneous workers, BBA has

by far the poorest results, whereas R-BSA shows a good behavior (see Figure 24). In general it

outperforms MBBSA, but when the 
ommuni
ation links are fast, MBBSA is the best.

The results on heterogeneous platforms are equivalent to these on platforms with heterogeneous


ommuni
ation links and homogeneous workers, as 
an be seen in Figure 25. R-BSA seems to be

a good 
andidate, whereas BBA is to avoid as the gap is up to more than 40%.
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Figure 22: Frequen
y of the distan
e to the best on homogeneous platforms.

INRIA



S
heduling and data redistribution strategies on star platforms 31

 70

 75

 80

 85

 90

 95

 100

 105

 2  4  6  8  10  12  14  16  18  20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y 
[%

]

distance [%]

frequency of the distances to the best - homogeneous comms,heterogeneous calcs

BBA
MBBSA
R-BSA

(a) General platform.

 70

 75

 80

 85

 90

 95

 100

 105

 2  4  6  8  10  12  14  16  18  20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y 
[%

]

distance [%]

frequency of the distances to the best - hom het platform -comms smaller than comps

BBA
MBBSA
R-BSA

(b) Faster 
ommuni
ating.

 70

 75

 80

 85

 90

 95

 100

 105

 2  4  6  8  10  12  14  16  18  20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y 
[%

]

distance [%]

frequency of the distances to the best - hom het platform -comms bigger than comps

BBA
MBBSA
R-BSA

(
) Faster 
omputing.

Figure 23: Frequen
y of the distan
e to the best on platforms with homogeneous 
ommuni
ation

links and heterogeneous 
omputation power.

RR n° 0123456789



32 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien

 30

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14  16  18  20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y 
[%

]

distance [%]

frequency of the distances to the best - heterogeneous comms,homogeneous calcs

BBA
MBBSA
R-BSA

(a) General platform.

 30

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14  16  18  20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y 
[%

]

distance [%]

frequency of the distances to the best - het hom platform -comms smaller than comps

BBA
MBBSA
R-BSA

(b) Faster 
ommuni
ating.

 30

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14  16  18  20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y 
[%

]

distance [%]

frequency of the distances to the best - het hom platform -comms bigger than comps

BBA
MBBSA
R-BSA

(
) Faster 
omputing.

Figure 24: Frequen
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Figure 25: Frequen
y of the distan
e to the best on heterogeneous platforms.
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4.4 Mean distan
e and standard deviation

We also 
omputed for every algorithm the mean distan
e from the best on ea
h platform type.

These 
al
ulations are based on the simulation results on the 1000 random platforms of Se
tion 4.3.

As you 
an see in Table 1 in general MBBSA a
hieves the best results. On homogeneous platforms

BBA behaves just as well as MBBSA and on platforms with homogeneous 
ommuni
ation links

it also performs as well. When 
ommuni
ation links are heterogeneous and there is no knowledge

about platform parameters, R-BSA outperforms the other algorithms and BBA is by far the worse


hoi
e.

Platform type Mean distan
e Standard deviation

Comm. Comp. BBA MBBSA R-BSA BBA MBBSA R-BSA

Hom Hom 1 1 1.0014 0 0 0.0107

Hom Hom c ≤ w 1 1 1.0061 0 0 0.0234

Hom Hom c ≥ w 1 1 1 0 0 0

Hom Het 1.0000 1 1.0068 0.0006 0 0.0181

Hom Het c ≤ w 1.0003 1 1.0186 0.0010 0 0.0395

Hom Het c ≥ w 1 1 1.0017 0 0 0.0040

Het Hom 1.1894 1.0074 1.0058 0.4007 0.0208 0.0173

Het Hom c ≤ w 1.0318 1.0049 1.0145 0.0483 0.0131 0.0369

Het Hom c ≥ w 1.0291 1.0025 1.0024 0.0415 0.0097 0.0095

Het Het 1.2100 1.0127 1.0099 0.3516 0.0327 0.0284

Het Het c ≤ w 1.0296 1.0055 1.0189 0.0450 0.0127 0.0407

Het Het c ≥ w 1.0261 1.0045 1.0046 0.0384 0.0118 0.0121

Table 1: Mean distan
e from the best and standard deviation of the di�erent algorithms on ea
h

platform type.

The standard deviations of all algorithms over the 1000 platforms are shown in the right part

of Table 1. These values mirror exa
tly the same 
on
lusions as the listing of the mean distan
es

in the left part, so we do not 
omment on them parti
ularly. We only want to point out that

the standard deviation of MBBSA always keeps small values, whereas in 
ase of heterogeneous


ommuni
ation links BBA-heuristi
 is not re
ommendable.

5 Load balan
ing of divisible loads using the multiport swit
h-

model

5.1 Framework

In this se
tion we work with a heterogeneous star network. But in di�eren
e to Se
tion 3 we

repla
e the master by a swit
h. So we have m workers whi
h are inter
onne
ted by a swit
h and

m heterogenous links. Link i is the link that 
onne
ts worker Pi to the swit
h. Its bandwidth is

denoted by bi. In the same way si denotes the 
omputation speed of worker Pi. Every worker

Pi possesses an amount of initial load αi. Contrarily to the previous se
tion, this load is not


onsidered to 
onsist of identi
al and independent tasks but of divisible loads. This means that

an amount of load X 
an be divided into an arbitrary number of tasks of arbitrary size. As

already mentioned, this approa
h is 
alled Divisible Load Theory - DLT [4℄. The 
ommuni
ation

model used in this 
ase is an overlapped unbounded swit
hed-multiport model. This means all


ommuni
ations pass by a 
entralized swit
h that has no throughput limitations. So all workers


an 
ommuni
ate at the same time and a given worker 
an start exe
uting as soon as it re
eives

the �rst bit of data. As we use a model with overlap, 
ommuni
ation and 
omputation 
an take

pla
e at the same time.

As in the previous se
tion our obje
tive is to balan
e the load over the parti
ipating workers

to minimize the global makespan M .
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5.2 Redistribution strategy

Let σ be a solution of our problem that takes a time T . In this solution, there is a set of sending

workers S and a set of re
eiving workers R. Let sendi denote the amount of load sent by sender

Pi and recvj be the amount of load re
eived by re
eiver Pj , with sendi ≥ 0, recvj ≥ 0. As all load
that is sent has to be re
eived by another worker, we have the following equation:

∑

i∈S

sendi =
∑

j∈R

recvj = L. (1)

In the following we des
ribe the properties of the senders: As the solution σ takes a time T , the
amount of load a sender 
an send depends on its bandwidth: So it is bounded by the time-slot of

∀ senderi ∈ S,
sendi
bi
≤ T. (2)

Besides, it has to send at least the amount of load that it 
an not �nish pro
essing in time T .
This lowerbound 
an be expressed by

∀ senderi ∈ S, sendi ≥ αi − T × si. (3)

The properties for re
eiving workers are similar. The amount of load a worker 
an re
eive is

dependent of its bandwidth. So we have:

∀ re
eiverj ∈ R,
recvj
bj
≤ T. (4)

Additionally it is dependent of the amount of load it already possesses and of its 
omputation

speed. It must have the time to pro
ess all its load, the initial one plus the re
eived one. That is

why we have a se
ond upperbound:

∀ re
eiverj ∈ S,
αj + recvj

sj
≤ T. (5)

For the rest of our paper we introdu
e a new notation: Let δi denote the imbalan
e of a worker.
We will de�ne it as follows:

δi =

{
sendi if i ∈ S

−recvi if i ∈ R

.

With the help of this new notation we 
an re-
hara
terize the imbalan
e of all workers:

� This imbalan
e is bounded by

|δi| ≤ bi × T.

� If i ∈ S, worker Pi is a sender, and this statement is true be
ause of inequality 2.

� If i ∈ R, worker Pi is a re
eiver and the statement is true as well, be
ause of inequality 4.

� Furthermore, we lower-bound the imbalan
e of a worker by

δi ≥ αi − T × si. (6)

� If i ∈ S, we are in the 
ase where δi = sendi and hen
e this it true be
ause of equation 3.

� If i ∈ R, we have δi = −recvi ≤ 0. Hen
e we get that (6) is equal to −recvi ≥ αi−T×si
whi
h in turn is equivalent to (5).

� Finally we know as well that

∑
i δi = 0 be
ause of equation 1.
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If we 
ombine all these 
onstraints we get the following linear program (LP), with the addition

of our obje
tive to minimize the makespan T . This 
ombination of all properties into a LP is

possible be
ause we 
an use the same 
onstraints for senders and re
eivers. As you may have

noti
ed, a worker will have the fun
tionality of a sender if its imbalan
e δi is positive, re
eivers
being 
hara
terized by negative δi-values.

Minimize T,
under the 
onstraints



(7a) |δi| ≤ T × bi

(7b) δi ≥ αi − T × si

(7
)

∑

i

δi = 0

(7)

All the 
onstraints of the LP are satis�ed for the (δi, T )-values of any s
hedule solution of the

initial problem. We 
all T0 the solution of the LP for a given problem. As the LP minimizes the

time T , we have T0 ≤ T for all valid s
hedule and hen
e we have found a lower-bound for the

optimal makespan.

Now we prove that we 
an �nd a feasible s
hedule with makespan T0. We start from an

optimal solution of the LP, i.e., T0 and the δi-values 
omputed by some LP solvers, su
h as Maple

or MuPAD. With the help of these found values we are able to des
ribe the s
hedule:

1. Every sender i sends a fra
tion of load to ea
h re
eiver j. We de
ide that ea
h sender sends

to ea
h re
eiver a fra
tion of the senders load proportional to what we denote by

fi,j = δi ×
δj∑

k∈R δk
= δi ×

δj
−L

(8)

the fra
tion of load that a sender Pi sends to a re
eiver Pj . In other words we have fi,j =
δi ×

−recvi∑
k∈R(−recvk)

.

2. During the whole s
hedule we use 
onstant 
ommuni
ation rates, i.e., worker j will re
eive

its fra
tion of load fi,j from sender i with a �xed re
eiving rate, whi
h is denoted by λi,j :

λi,j =
fi,j
T0

. (9)

3. A s
hedule starts at time t = 0 and ends at time t = T0.

We have to verify that ea
h sender 
an send its amount of load in time T0 and that the re
eivers


an re
eive it as well and 
ompute it afterwards.

Let us take a look at a sender Pi: the total amount it will send is
∑

j∈R fi,j =
∑

j∈R
δi×δj∑
k∈R

δk
=

δi = sendi and as we started by a solution of our LP, δi respe
ts equations 7a and 7b, thus sendi
respe
ts the 
onstraints 2 and 3 as well, i.e., sendi ≤ T × bi and sendi ≥ αi − T × si.

Now we 
onsider a re
eiver Pj : the total amount it will re
eive is
∑

i∈S fi,j =
∑

i∈S
δi×δj∑
k∈R δk

=

−δj = recvj . Worker Pi 
an re
eive the whole amount of recvi load in time T0 as it starts the

re
eption at time t = 0 and recvi respe
ts 
onstraints 7a and 7b, who in turn respe
t the initial


onstraints 4 and 5, i.e., recvi ≤ T × bi and recvi ≤ T × si − αi. Now we examine if worker

Pi 
an �nish 
omputing all its work in time. As we use the divisible load model, worker Pi 
an

start 
omputing its additional amount of load as soon as it has re
eived its �rst bit and provided

the 
omputing rate is inferior to the re
eiving rate. Figure 26 illustrates the 
omputing pro
ess

of a re
eiver. There are two possible s
hedules: the worker 
an allo
ate a 
ertain per
entage of

its 
omputing power for ea
h stream of loads and pro
ess them in parallel. This is shown in

Figure 26(a). Pro
essor Pi starts immediately pro
essing all in
oming load. For doing so, every

stream is allo
ated a 
ertain 
omputing rate γi,j , where i is the sending worker and j the re
eiver.
We have to verify that the 
omputing rate is inferior or equal to the re
eiving rate.
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The initial load αj of re
eiver Pj owns at minimum a 
omputing rate su
h that it �nishes right

in time T0: γj,j =
αj

T0
. The 
omputing rate γi,j , for all pairs (i, j), i ∈ S, j ∈ R, has to verify the

following 
onstraints:

� The sum of all 
omputing rates does not ex
eed the 
omputing power sj of the worker Pj :

(
∑

i∈S

γi,j

)
+

αj

T0
≤ sj , (10)

� The 
omputing rate for the amount of load fi,j has to be su�
iently big to �nish in time T0:

γi,j ≥
fi,j
T0

, (11)

� The 
omputing rate has to be inferior or equal to the re
eiving rate of the amount fi,j :

γi,j ≤ λi,j , (12)

Now we prove that γi,j =
fi,j
T0

is a valid solution that respe
ts 
onstraints (10), (11), and (12):

Equation (10) We have

(∑
i∈S γi,j

)
+

αj

T0
=
(∑

i∈S
fi,j
T0

)
+

αj

T0
=
(

−δj
T0

)
+

αj

T0
=

αj−δj
T0

. Transform-

ing Equation (7b) in αj−δj ≤ T0×sj and using this upperbound we get
αj−δj
T0
≤ T0×sj

T0
= sj .

Hen
e this 
onstraint holds true.

Equation (11) By de�nition of γi,j this holds true.

Equation (12) By the de�nitions of γi,j and λi,j this holds true.

In the other possible s
hedule, all in
oming load streams are pro
essed in parallel after having

pro
essed the initial amount of load as shown in Figure 26(b). In fa
t, this modeling is equivalent

to the pre
edent one, be
ause we use the DLT paradigm. We used this model in equations 3 and 5.

T0
0

1

fk,j γk,j

γj,jαj

fi,j

fl,j

{

{

(a) Parallel pro
essing.

0
T0

1

γj,j=1 fk,jαj γk,j





fi,j

fl,j

{

(b) Sequential and parallel pro
essing.

Figure 26: Di�erent s
hedules to pro
ess the re
eived load.

The following theorem summarizes our 
ognitions:

Theorem 4. The 
ombination of the linear program 7 with equations 8 and 9 returns an optimal

solution for makespan minimization of a load balan
ing problem on a heterogeneous star platform

using the swit
h model and initial loads on the workers.
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6 Con
lusion

In this report we were interested in the problem of s
heduling and redistributing data on master-

slave platforms. We 
onsidered two types of data models.

Supposing independent and identi
al tasks, we were able to prove the NP 
ompleteness in the

strong sense for the general 
ase of 
ompletely heterogeneous platforms. Therefore we restri
ted

this 
ase to the presentation of three heuristi
s. We have also proved that our problem is polyno-

mial when 
omputations are negligible. Treating some spe
ial topologies, we were able to present

optimal algorithms for totally homogeneous star-networks and for platforms with homogeneous


ommuni
ation links and heterogeneous workers. Both algorithms required a rather 
ompli
ated

proof.

The simulative experiments 
onsolidate our theoreti
al results of optimality. On homogeneous

platforms, BBA is to privilege over MBBSA, as the 
omplexity is remarkably lower. The tests on

heterogeneous platforms show that BBA performs rather poorly in 
omparison to MBBSA and

R-BSA. MBBSA in general a
hieves the best results, it might be outperformed by R-BSA when

platform parameters have a 
ertain 
onstellation, i.e., when workers 
ompute faster than they are


ommuni
ating.

Dealing with divisible loads as data model, we were able to solve the fully heterogeneous

problem. We presented the 
ombination of a linear program with simple 
omputation formulas to


ompute the imbalan
e in a �rst step and the 
orresponding s
hedule in a se
ond step.

A natural extension of this work would be the following: for the model with independent tasks,

it would be ni
e to derive approximation algorithms, i.e., heuristi
s whose worst-
ase is guaranteed

within a 
ertain fa
tor to the optimal, for the fully heterogeneous 
ase. However, it is often the


ase in s
heduling problems for heterogeneous platforms that approximation ratios 
ontain the

quotient of the largest platform parameter by the smallest one, thereby leading to very pessimisti


results in pra
ti
al situations.

More generally, mu
h work remains to be done along the same lines of load-balan
ing and

redistributing while 
omputation goes on. We 
an envision dynami
 master-slave platforms whose


hara
teristi
s vary over time, or even where new resour
es are enrolled temporarily in the exe
u-

tion. We 
an also deal with more 
omplex inter
onne
tion networks, allowing slaves to 
ir
umvent

the master and ex
hange data dire
tly.
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