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Abstract—Execution of applications on upcoming high-

performance computing (HPC) systems introduces a variety of 

new challenges and amplifies many existing ones. These 

systems will be composed of a large number of “fat” nodes, 

where each node consists of multiple processors on a chip with 

symmetric multithreading capabilities, interconnected via 

high-performance networks. Traditional system software for 

parallel computing considers these chip multiprocessors 

(CMPs) as arrays of symmetric multiprocessing cores, when in 

fact there are fundamental differences among them. 

Opportunities for optimization on CMPs are lost using this 

approach. We show that support for fine-grained parallelism 

coupled with an integrated approach for scheduling of 

compute and communication tasks is required for efficient 

execution on this architecture. We propose Phoenix, a runtime 

system designed specifically for execution on CMP 

architectures to address the challenges of performance and 

programmability for upcoming HPC systems. An 

implementation of message passing interface (MPI) atop 

Phoenix is presented. Micro-benchmarks and a production 

MPI application are used to highlight the benefits of our 

implementation vis-à-vis traditional MPI implementations on 

CMP architectures. 
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I. INTRODUCTION 

Chip multiprocessors (CMPs) consisting of multiple 
processing cores on a single chip have become commodity. 
Memory bandwidth and power consumption limitations, 
coupled with the continued march of Moore’s law, are 
resulting in an ever increasing number of cores per chip [13].  
As supercomputing enters the petascale era, we anticipate 
that upcoming systems will consist of a large number of fat 
nodes, consisting of multi-core processors with symmetric 
multithreading (SMT) capabilities, interconnected via high-
performance networking fabrics [11,12]. 

Current state-of-the-art system software treats CMPs as 
arrays of symmetric multi-processing (SMP) cores, however 
there are significant fundamental operational differences 
between CMP and SMP architectures that need to be 
considered to achieve their true potential [10]. For instance, 
CMP processing elements tend to have smaller dedicated 
caches per core compared to SMP. The aggregate cache size 
of a CMP system can be up to an order of magnitude smaller 
than a similar sized SMP system. Applications on CMP will 

need to be threaded at a finer granularity level to reduce their 
working set size for efficient execution. The inter-core 
communication bandwidth and latency on a CMP can be an 
order of magnitude more efficient than communicating 
across cores on a SMP. It is expected that memory latency 
and bandwidth bottlenecks will be further exacerbated in 
CMPs, leading to poor application scaling. Furthermore, we 
expect there will be a decline in available network bandwidth 
per core due to core counts increasing at a faster rate than 
network bandwidth. 

Execution of parallel applications on these architectures 
brings to light a number of new challenges while magnifying 
many old problems. For applications, there are challenges to 
be tackled in terms of programmability as well as an optimal 
runtime environment. Message passing paradigm, as used by 
message passing interface (MPI) [14], and partitioned global 
address space (PGAS) [15,18] paradigm, as used by UPC, 
CAF, etc., give the programmer  flexibility in architecting 
the parallel application in that the programmer has extensive 
control over details of parallelization and the capacity to 
extract maximum performance from the underlying hardware 
resources. This flexibility, however, can be cumbersome to 
manage on CMPs due to their inherent complexity and scale. 
A sophisticated parallel runtime system can help deal with 
this complexity by efficient management of hardware 
resources while providing interfaces and semantics for better 
programmability. 

Parallel programming paradigms that rely on current 
runtime systems are also not adequately tailored for 
execution on CMPs. MPI implementations, for example, 
treat CMP as a collection of SMP cores, thus losing the 
opportunity to exploit features that enable fine-grained 
parallelism. MPI tasks, implemented as heavyweight 
processes, incur high context switch overhead during 
scheduling. Additionally, communication between tasks on a 
node incurs unnecessary overhead due to additional memory 
copies across process address space boundaries. The 
operating system scheduler is responsible for scheduling of 
MPI tasks on physical processors. Configurable application 
specific scheduling policies are challenging to implement in 
this environment as they will require kernel-level 
modifications. 

Software stacks for CMPs will be required to be 
cognizant of these issues. An integrated approach for 
scheduling of constrained resources to minimize contention 
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and oversubscription is imperative. We propose Phoenix, a 
modular and extensible runtime for parallel application 
developers, compiler writers and system researchers to use as 
a vehicle for researching parallel scientific computing on 
CMP platforms and as a fully optimized runtime framework 
on such systems. Phoenix runtime consists of a collection of 
interfaces for thread management, scheduling, locking, 
memory allocation, etc., explicitly designed to support the 
fine-grained parallelism present on CMP architectures. The 
layering of existing popular parallel programming 
paradigms, such as MPI, atop Phoenix will enable efficient 
execution of legacy applications on CMP architectures.  

Our prototype implementation of MPI represents MPI 
tasks as lightweight Phoenix threads. A significantly larger 
number of MPI tasks than processors on a node can be 
spawned. This enables support for fine-grained parallelism 
by ensuring that the working set of a task can fit within the 
limited cache on CMPs. Context switch overhead is further 
reduced over conventional MPI implementations due to our 
use of lightweight thread abstractions to represent tasks. 
Since MPI tasks exist within the same address space, this 
approach leads to efficient communication between tasks 
within a node. The Phoenix runtime system is used to 
provide integrated scheduling of both MPI tasks and network 
progress threads. We show with micro-benchmarks and a 
production parallel MPI application that significant 
performance gains can be obtained over conventional MPI 
implementations with careful design of a system tuned for 
CMP architectures. 

The rest of this paper is organized as follows. Section II 
gives a description of Phoenix, our intelligent-adaptive 
runtime system and its constituent components. Section III 
covers the MPI paradigm and its implementation on the 
Phoenix virtualization runtime. Section IV provides some 
preliminary results using micro-benchmarks and a 
production MPI code called MILC [1,2]. Section V covers 
related work and section VI concludes this paper. 

II. PHOENIX RUNTIME ARCHITECTURE 

The Phoenix core runtime (PCR) system provides a rich 
feature set for efficient layering of parallel programming 
models. The core functionality for scheduling, thread 
management, memory allocation, debugging, etc., is 
contained within the runtime system. The PCR provides a 
compact and expressive interface that is suitable as a target 
for a compiler backend and experimenting with new 
languages for parallel computing designed to scale from the 
desktop to large-scale systems. Each component of Phoenix 
provides a well-defined interface, enabling system designers 
to experiment with different policies and implementations of 
a given component by plugging them in at a defined 
application programming interface (API) layer. This 
flexibility is vital to explore a large design space for 
optimizations on CMP architectures [16].  

Phoenix is designed to enable applications to scale from a 
single core to potentially all cores available on a node. In 
order to support layering of parallel programming models 
that span nodes, Phoenix provides a high-performance 
modular network layer with support for active message and 

remote direct memory access (RDMA) communication 
semantics. Fig. 1 provides the schematic view of the Phoenix 
ecosystem. This section provides an in-depth view of the 
Phoenix ecosystem. 

A. Execution Contexts 

Execution contexts (ECs) are the basic unit of execution 
in Phoenix. ECs are analogous to threads, and the Phoenix 
EC component API is representative of such. The API 
consists of routines related to EC management (create, exit, 
id) and synchronization (suspend and wait). The EC interface 
is implemented using POSIX threads. In order to support 
fine-grained parallelism present on CMP architectures, a 
large number of ECs need to be instantiated. Lightweight 
thread abstractions that can lead to a substantial reduction in 
memory footprint and context switch overhead are being 
investigated. 

An important feature of Phoenix ECs is attribute tagging. 
Applications tend to execute in distinct phases. In each phase 
the resource requirements of an application can vary 
significantly. HPC applications, for example, during a given 
iteration, may compute for a sizeable amount of time 
followed by exchanging data with neighboring processors 
over the network. This pattern is repeated during the course 
of a run. Phoenix, therefore, features the notion of EC 
attributes for identifying the dominant characteristic of EC 
execution. The current supported attributes are: compute, 
network and I/O. An EC can change its attribute dynamically 
during execution of each phase. Attribute tagging will allow 
the exploration of various resource-aware scheduling 
strategies that will minimize contention of resources. 

B. Processor Virtualization 

Each schedulable processing element is represented by a 
virtual processor (VP) within the Phoenix runtime system. 
The VP API exposes primitives related to binding and 

 

 
 

Figure 1. Phoenix ecosystem. 



scheduling of ECs onto the physical processing element as 
well as functions to query the underlying physical 
characteristics of the hardware. In order to support 
identification of performance bottlenecks, the processor 
virtualization component keeps track of vital profiling 
information during the course of execution. Each VP 
maintains processor utilization, total context switches, idle 
and compute times for itself. This information can be queried 
during a run by end user tools or even Phoenix components 
such as the scheduler to make informed decisions 

C. Scheduler 

The Phoenix scheduler dispatches ECs for execution on 
VPs. Phoenix implements cooperative scheduling semantics. 
Higher level programming models utilize this to present the 
illusion of independent progress for all ECs. Pre-emptive 
scheduling of ECs on CMP architectures is not desirable as 
parallel applications, which exhibit distinct communication 
and compute phases, would benefit if entire cores were 
dedicated to their ECs during the compute phase. The 
scheduler provides a pluggable framework for Phoenix VPs, 
allowing implementation of processor agnostic scheduling 
strategies. Scheduling across processors is accomplished 
utilizing scheduling domains. A scheduling domain 
represents a group of VPs that exhibit common physical and 
performance characteristics. VPs dispatch ECs scheduled on 
a domain for the underlying processor.  

In order to have effective control of scheduling policies, 
it is necessary to bypass the OS scheduler. The current 
implementation on Linux utilizes the native POSIX thread 
library (NPTL). NPTL is a 1:1 thread library in that threads 
created by the user are in one-to-one correspondence with 
schedulable entities in the kernel. The Linux OS scheduler is 
negated by ensuring that at most one EC—i.e., pthread—is 
in a runnable state per physical processor. This is 
accomplished by utilizing condition variables and 
semaphores respectively. Each EC waits on a semaphore, 
which results in the EC being suspended within the kernel. 
Phoenix schedules an EC by signaling the semaphore 
corresponding to the EC, resulting in the pthread associated 
with the EC transitioning to a run state within the kernel. 
This approach, coupled with the ability to bind ECs to 
processors, provides full control over placement and 
scheduling of ECs within Phoenix. 

D. Memory Management, Instrumentation and Profiling 

The PCR contains a memory management subsystem 
where custom allocation strategies can be implemented. Both 
AMD’s Hypertransport and Intel’s Quickpath interconnect 
are tending toward a non-uniform memory access (NUMA) 
model. The memory allocation and the runtime both need to 
be NUMA aware for efficient execution on these 
architectures such that memory regions are allocated local to 
the node the EC is executing on. Thread migration is another 
feature that can benefit from custom allocation strategies. As 
applications become dynamic in nature, load-imbalances 
across processors will become more pervasive. A common 
solution is thread/work migration to achieve load balance 
[9,17] where an isomalloc memory allocation strategy can be 

employed that allocates memory to each work unit/thread 
from mutually exclusive virtual memory regions. These 
examples point to the need for a modular memory 
management component to experiment with various memory 
allocation strategies.  

The ability to capture performance metric data and 
profiling various blocks of code is critical for identification 
and resolution of performance bottlenecks. Fine-grained 
profiling available through the profiling layer allows for 
capturing relevant data regarding memory allocation/ 
deallocation for any given set of ECs to aid in postmortem 
analysis and debugging. 

E. High-Performance Networking 

The network component is highly threaded and 
completely integrated into the runtime. Independent 
communication progress with maximal overlap of 
computation and communication is achieved by having 
network ECs dedicated for communication. The scheduler is 
configured to either cooperatively schedule all EC types 
(compute, network and I/O) across available VPs or to have 
one or more VPs dedicated for communication progress. 
This provides the flexibility to allocate the required mix of 
resources for network- or compute-bound applications.  

Phoenix provides a modular networking component to 
enable implementation of parallel programming models, 
such as MPI, that span nodes. The network component 
exposes an active messages (AM) API as well as native 
support for RDMA transfers. These communication 
semantics enable layering of the send/receive model of 
communication prevalent in MPI as well as global shared 
memory models utilized by PGAS languages such as UPC 
[18] and CAF [15]. The current prototype supports 
Infiniband and TCP with work underway to support iWarp 
[19] for RDMA-based Ethernet network. 

III. MESSAGE PASSING INTERFACE ON PHOENIX 

MPI is the de facto programming model for parallel 
computing on distributed shared memory machines. We have 
developed an MPICH-based implementation of MPI over 
Phoenix, called MPICH-Phoenix. This is a proof-of-concept 
implementation to show various advantages that Phoenix can 
bring to production-class parallel applications on CMP 
platforms.  

By virtue of its design optimized for CMP, MPICH-
Phoenix more effectively exploits CMP resources compared 
to mainstream MPI implementations [6,7], resulting in 
improved performance. The improvement in performance 
results primarily from high-performance shared memory 
communication, cache blocking and communication/ 
computation overlap.  

Before we explain these factors at length, we will briefly 
describe a few important architectural and implementation 
details of MPICH-Phoenix. As mentioned earlier, each MPI 
task is mapped to a single EC in our implementation. 
Multiple MPI tasks may be active within a single process 
address space. This necessitates privatization of global 
variables to resolve collision of symbols among tasks 
executing within a single Phoenix process. Currently, we use 



Elsa [3], a source-to-source translation tool for transforming 
C/C++ applications. The standard MPI compiler scripts 
encapsulate the privatization process, making it completely 
transparent to the user.  

The existence of multiple MPI tasks within a single 
address space allows for true zero copy communication, 
whereby an MPI sender can directly deposit a message to the 
receiver’s buffer without the intermediary copies customary 
in mainstream MPIs. Moreover, the integrated scheduling 
and mapping of ECs available through Phoenix allows for 
collocation of tasks on the same or nearby physical 
sockets/cores. Section IV shows the bandwidth curve of 
MPICH-Phoenix compared to other MPI implementations to 
show this advantage.  

Fine-grained parallelism and threading is another 
important feature of Phoenix. This allows us to spawn many 
more MPI tasks than the number of available processors with 
minimal overhead. This is commonly referred to as 
virtualization. The ratio of MPI tasks to processors is called 
the virtualization factor. Virtualized execution environments 
have been shown to provide several benefits [8]. A 
virtualized MPI implementation enables us to implement a 
data-driven model of execution. In this model, an MPI task 
has dedicated use of a processor until a communication 
operation invoked by it cannot be satisfied immediately. The 
runtime, using the specified scheduling strategy, selects an 
MPI task in a runnable state for execution on the blocking 
processor. This allows for automatic overlap of computation 
and communication, resulting in efficient utilization of CPU 
resources. Once the offending communication operation has 
completed, the original task is made runnable and available 
for scheduling.  

Virtualization also allows cache blocking in applications. 
Cache blocking is an often used strategy that exploits the 
memory hierarchy for higher performance. Cache-blocked 
algorithms attempt to increase cache hit ratios by improving 
data locality. MPICH-Phoenix provides free weak scaling to 
an MPI application as the virtualization factor is increased. 
Once a virtualization factor reaches a certain threshold, the 
working set would be small enough to fit inside the cache. If 
the task iterates a large number of times over the working 
set, the compute efficiency of the processor would climb due 
to better cache utilization. Results presented in Section IV 
highlight this in greater detail for the MILC QCD 
application. The free cache blocking, however, depends on 
memory access patterns of the application. We have seen no 
improvement in applications using algorithms already 
optimized for cache blocking, as in the LINPACK 
benchmark. Moreover, we believe algorithm such as FFT 
that are inherently unfriendly to hierarchical memory might 
not benefit from cache blocking.  

Subsets of collectives commonly used in various 
scientific codes and typically found to be major obstacles for 
scaling of applications have been implemented. A 
streamlined implementation of these collectives is especially 
important for a virtualized environment due to the large 
number of virtualized MPI tasks. Optimized implementations 
for allreduce, barrier and broadcast, which exploit the two-
level logical topology of MPICH-Phoenix jobs, are available. 

Optimized scheduling strategies for collectives that take into 
account the message transfer dependencies are being 
investigated. 

IV. RESULTS 

Our experimental testbed consists of the Abe [12] and QP 
[24] clusters at NCSA. Nodes on Abe consist of dual quad-
core (8 processing elements) EM64T processors with a 4 MB 
L2 cache shared between each pair of cores. The QP cluster 
consists of dual dual-core (4 processing elements) Opteron 
processors with a 1 MB L2 cache per processor. A single 
data rate (SDR) Infiniband network is employed between 
nodes. Intel C and C++ compilers were used for all tests. 

A. MPICH-Phoenix Performance Analysis versus Selected 

MPI Implementations 

In this subsection, we show the impact of context switch 
overhead, optimized intra-node communication and 
integrated scheduling using micro-benchmarks and the 
MILC QCD application. The performance of MPICH-
Phoenix is compared against OpenMPI-1.2.1 [7], 
MVAPICH2-1.0.2p1 and adaptive MPI (AMPI) [9]. The 
former two are well known open-source MPI 
implementations typically used on production systems. 
AMPI, built on the Charm++ [8] framework, makes for an 
interesting candidate for performance comparison since, like 
MPICH-Phoenix, it is also designed to execute MPI 
applications using processor oversubscription. 

Fig. 2 shows the intra-node bandwidth for MPI tasks 
across all implementations on Abe. MPICH-Phoenix 
significantly outperforms the other implementations for large 
message sizes. OpenMPI and MVAPICH2 both utilize 
shared memory segments for communication within a node. 
This requires two memory copies between the source and 
destination process. Since MPICH-Phoenix tasks execute 
within the same address space, data is copied directly from 
the source to the destination buffer. Additionally, the 
Phoenix scheduler is able to co-schedule tasks on the same 
die to utilize the increased core-core bandwidth present on 
the chip. The peak bandwidth of 10 GB/sec is due to these 
tasks being co-scheduled on the same die sharing the same 
L2 cache. 
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Figure 2. Shared memory bandwidth comparisong. 



A common concern in the processor oversubscription 
model is the overhead of context switches. Standard MPIs 
typically create one MPI process per processor. However, 
OpenMPI supports a degraded mode of execution where 
processing resources are oversubscribed. In this mode, the 
MPI library yields the processor to allow its peers to make 
progress. This mode is similar to MPICH-Phoenix 
oversubscription with the exception of requiring the 
operating system scheduler for scheduling of tasks. The 
remaining comparisons with OpenMPI were done using this 
degraded mode. 

To gauge the context overhead, a micro-benchmark was 
devised with each MPI task sending a small message to task 
0 and executing a barrier. The benchmark is executed using a 
single core on a node with increasing virtualization factors 
for the core. Each MPI task, therefore, after sending a 
message, is context switched to allow the next task to run, 
allowing us to determine the context switch overhead. Fig. 3 
shows the virtualization factor, i.e., number of tasks per core, 
and the ratio of context switching overhead using OpenMPI 
to MPICH-Phoenix. MPICH-Phoenix, where tasks are 
implemented as threads, coupled with lightweight user level 
thread scheduling, significantly outperforms OpenMPI. 

Fig. 4 shows the runtime for MPICH-Phoenix and 
OpenMPI running the MILC QCD code across eight nodes 
of Abe with increasing virtualization. Increasing the 
virtualization factor results in improvement of performance 
for MILC over MPICH-Phoenix while performance degrades 
with OpenMPI. As discussed in section III, virtualization 
endows certain benefits, such as computation and 
communication overlap and cache blocking effects. 
OpenMPI is unable to exploit these benefits due to high 
context switch overhead and lack of a lightweight integrated 
scheduler required for efficient network progress. 

Fig. 5 compares the MILC runtime on Abe for MPICH-
Phoenix and AMPI. AMPI tracks the MPICH-Phoenix 
curve, reflecting improved performance with greater 
virtualization. Table I summarizes the total time spent in 
each of the major phases of MILC over both these MPIs as 
well as the total runtime (NERSC). The table shows that 
MPICH-Phoenix consistently outperforms AMPI for all 
phases. We believe this is due to the lack of an integrated 
approach for scheduling of compute and communication 
tasks within a node. Charm++ runtime instance determines 
the task schedule locally, i.e., per core rather than per node, 
leading to suboptimal performance. In contrast, the 
integrated scheduling of compute and communication 
threads using Phoenix across all cores results in improved 
performance. 

B. Communication Scheduling and Overlap 

Asynchronous communication progress is a requirement 
for effective overlap of communication and computation. 
The COMB benchmark [20] is used to quantify the 
capability of achieving true overlap by computing the 
availability of a processor to do useful work between 
dispatch and completion of communication. Parallel 
programming paradigms, such as MPI, provide explicit 
asynchronous communication calls (MPI_Isend and 
MPI_Irecv) to enable overlap. However, a large number of 
MPI implementations do not provide true asynchronous 
communication semantics, requiring an application to 
periodically poll the network to make progress. 
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Figure 3. Context switch overhead of OpenMPI vs MPICH-Phoenix. 
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Figure 4. MILC runtime curves for OpenMPI and MPICH-Phoenix. 
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Figure 5. MILC runtime curves for AMPI and MPICH-Phoenix. 



TABLE I.  VARIOUS MILC PHASES AND TOTAL RUNTIME (NERSC) FOR AMPI AND MPICH-PHOENIX (ALL TIMES IN SECONDS) 

Virtualization 

Factor 
1 2 4 8 16 

MPI Flavor AMPI 
MPICH-

Phoenix 
AMPI 

MPICH-

Phoenix 
AMPI 

MPICH-

Phoenix 
AMPI 

MPICH-

Phoenix 
AMPI 

MPICH-

Phoenix 

LLTIME (Fat) 165.524 154.043 155.716 149.816 141.872 136.584 129.347 126.611 124.01 111.602 

LLTIME (long) 10.2836 9.18277 9.3191 8.75081 8.3146 8.75402 7.15287 7.2549 6.0309 5.89462 

GFTIME 173.333 164.734 156.596 154.263 136.917 136.503 121.656 123.854 115.177 106.593 

FFTIME 251.915 232.175 233.742 232.545 216.281 206.245 203.412 184.334 194.72 178.628 

CONGRAD5 101.565 86.6906 101.632 83.7191 99.2227 84.5697 103.156 91.0873 110.032 102.132 

NERSC 717.204 661.471 669.125 640.982 613.656 583.891 574.73 543.05 560.115 514.507 

 
Phoenix provides a rich infrastructure for experimenting 

with various communication scheduling strategies. A broad 
spectrum of communication scheduling strategies, from 
dedicating one or more cores for network communication to 
utilizing all available cores for compute and communication 
tasks, can be deployed. Fig. 6 depicts the availability of a 
processor performing asynchronous sends for various MPI 
implementations. Large message transfers typically employ a 
handshake protocol between sender and receiver. The 
Phoenix runtime schedules a network thread for execution on 
receipt of the handshake message, leading to high 
availability. Conversely, MVAPICH requires an application 
to poll the network to make progress, leading to minimal 
overlap. 

Fig. 7 depicts the effects of various communication 
scheduling strategies for MILC execution on the Abe and QP 
clusters. The MILC NSF medium benchmark with 768 MPI 
tasks spanning eight nodes was used. Abe with eight 
processors per node had a virtualization factor of 12, while 
QP with four processors per node had a virtualization factor 
of 24. The WQ strategy utilizes all available cores for 
scheduling of computation and communication threads. The 
Net Dedicated strategy dedicates an entire core for 
communication handling. Finally, the Net+WQ strategy is a 

combination of both. In our current implementation of the 
WQ strategy, a communication thread is scheduled only in 
the absence of any compute threads being runnable. For each 
strategy, the total time a processor is idle (due to lack of any 
runnable tasks) as well as computing is captured. 
Additionally, we present the context switch overhead 
incurred due to virtualization of MPI tasks. 

We observe that Phoenix can support fine-grained 
parallelism efficiently as the context switch overhead is 
negligible (< 0.1% of runtime) across all strategies. Both Net 
Dedicated and Net+WQ strategies result in reduced idle time 
compared to WQ. The WQ strategy is reactive, scheduling a 
communication thread only when a processor transitions to 
idle. We are evaluating the use of communication profile 
heuristics to implement anticipatory scheduling strategies. 

The optimal strategy for execution differs between Abe 
and QP. On Abe the Net Dedicated strategy results in the 
fastest execution time while the WQ strategy offers superior 
performance on QP. Conventional MPI implementations are 
unable to support efficient execution in Net Dedicated mode 
without OS support, highlighting the benefits of our 
approach. Execution on QP is compute-bound and dedicating 
an entire core for communication dilates the compute time 
by 25% with a negligible reduction in idle time. On Abe, we 
can deduce that execution is network-bound. Abe nodes 

 

0

20

40

60

80

100

120

Message size (Bytes)

A
v
a
il
a
b
il
it
y

MPICH-Phoenix

MVAPICH2

MPICH-VMI
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Figure 7. Integrated compute and communication scheduling for MILC. 



consisting of eight processing cores are connected via a 
single data rate Infiniband network. With a dedicated core 
for communication, we observe a significant reduction in 
idle time due to network stalls, with a negligible increase in 
compute time as the virtualization factor increases from 12 to 
14 per core. 

C. Effects of Cache Blocking 

The effect of cache blocking on MILC due to 
virtualization is considered. MILC is a popular  open source 
quantum chromodynamics (QCD) application. The MILC 
NSF medium benchmark executing on 64 processors was 
used. Fig. 8 details MILC runtime in various routines. The 
eo_fermion_force_3f routine constitutes a significant portion 
of the total runtime and is the most compute-intensive 
memory bandwidth-bound MILC routine. With increasing 
virtualization factors, the MILC lattice can fit in the cache, 
reducing cache misses and improving time-to-solution. Fig. 9 
shows the reduction in total runtime with increasing 
virtualization with a corresponding reduction in cache misses 

and improved flop rate for eo_fermion_force_3f. We see 
close to 20% improvement in runtime of this routine and 
15% improvement in runtime of the application. 

V. RELATED WORK 

Our work on Phoenix leverages several efforts in the 
fields of operating systems, runtime libraries and high-
performance computing in general. The Phoenix threading 
and synchronization subsystems are heavily influenced by 
user-level thread packages, such as pthreads, NPTL [21] and 
Marcel threads [22]. The Phoenix scheduler is similar in 
design to Intel McRT [10] and BubbleSched [23] but is 
significantly more configurable. McRT is designed to enable 
layering of parallel programming models for efficient 
execution on CMP. However, the McRT system does not 
itself consider the impact of incorporating communication 
scheduling semantics within the runtime. As we have shown, 
the selection of an appropriate network scheduling strategy is 
required for efficient execution of parallel codes on CMP 
architectures. 

Various MPI implementations [4,5,9] exist that 
implement MPI tasks as lightweight threads. TMPI [5] is 
optimized for execution on shared memory machines. MPI 
tasks implemented as lightweight threads execute within a 
common address space, allowing for efficient 
communication. TMPI does not implement a virtualized 
runtime since the number of MPI threads is limited to the 
number of processors on the system. Thus virtualization 
benefits such as communication overlap and cache blocking 
cannot be exploited. 

AMPI [9] and MPI_Lite [4] provide a virtualized MPI 
implementation. AMPI is implemented using the parallel 
Charm++ [8] library. Charm++ runtime, which provides the 
virtualization capabilities for AMPI, treats CMP 
architectures as a collection of SMP cores and there is no 
integrated scheduling capability across all cores of a CMP 
node, as we mentioned in the results section. Similarly, MPI-
Lite requires the operating system to schedule the virtualized 
tasks. As we have shown, this results in increased overhead 
compared to user-level thread scheduling as well as limited 
flexibility in implementing application-specific scheduling 
strategies. 

VI. CONCLUSIONS 

Upcoming high-performance computing hardware will 
consist of nodes featuring chip multiprocessor cores. Current 
runtime systems view multicore hardware architecture as an 
array of SMPs. This view is fundamentally flawed. Crucial 
differences between CMP and SMP hardware, such as cache 
size and memory bandwidth, must be addressed in designing 
runtime systems for CMP-based hardware. We have 
proposed Phoenix, a runtime system designed specifically 
for CMP-based HPC nodes. We have shown that this system 
brings various performance and programmability benefits 
through fine-grained parallelism, virtualization, integrated 
scheduling, high-performance intranode communication and 
abstractions for layering parallel programming paradigms. 
Performance gains using micro-benchmarks and a 
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Figure 8.  Distribution of MILC runtime while executing with 1024 tasks 

on 64 processors, 8 processors/node. 
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Figure 9. Various performance metrics for MILC fermion force calculation 

routine while executing on 64 processors, 8 processors per node. 



production application highlighted the benefits of our MPI 
implementation. 
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