
Phoenix: A Runtime Environment for High Performance Computing on Chip

Multiprocessors

Avneesh Pant, Hassan Jafri, Volodymyr Kindratenko

National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign (UIUC)

Urbana, IL, USA

e-mail: {apant|hjafri|kindr}@ncsa.uiuc.edu

Abstract—Execution of applications on upcoming high-

performance computing (HPC) systems introduces a variety of

new challenges and amplifies many existing ones. These

systems will be composed of a large number of “fat” nodes,

where each node consists of multiple processors on a chip with

symmetric multithreading capabilities, interconnected via

high-performance networks. Traditional system software for

parallel computing considers these chip multiprocessors

(CMPs) as arrays of symmetric multiprocessing cores, when in

fact there are fundamental differences among them.

Opportunities for optimization on CMPs are lost using this

approach. We show that support for fine-grained parallelism

coupled with an integrated approach for scheduling of

compute and communication tasks is required for efficient

execution on this architecture. We propose Phoenix, a runtime

system designed specifically for execution on CMP

architectures to address the challenges of performance and

programmability for upcoming HPC systems. An

implementation of message passing interface (MPI) atop

Phoenix is presented. Micro-benchmarks and a production

MPI application are used to highlight the benefits of our

implementation vis-à-vis traditional MPI implementations on

CMP architectures.

Keywords-runtime; chip multiprocesors; MPI

I. INTRODUCTION

Chip multiprocessors (CMPs) consisting of multiple
processing cores on a single chip have become commodity.
Memory bandwidth and power consumption limitations,
coupled with the continued march of Moore’s law, are
resulting in an ever increasing number of cores per chip [13].
As supercomputing enters the petascale era, we anticipate
that upcoming systems will consist of a large number of fat
nodes, consisting of multi-core processors with symmetric
multithreading (SMT) capabilities, interconnected via high-
performance networking fabrics [11,12].

Current state-of-the-art system software treats CMPs as
arrays of symmetric multi-processing (SMP) cores, however
there are significant fundamental operational differences
between CMP and SMP architectures that need to be
considered to achieve their true potential [10]. For instance,
CMP processing elements tend to have smaller dedicated
caches per core compared to SMP. The aggregate cache size
of a CMP system can be up to an order of magnitude smaller
than a similar sized SMP system. Applications on CMP will

need to be threaded at a finer granularity level to reduce their
working set size for efficient execution. The inter-core
communication bandwidth and latency on a CMP can be an
order of magnitude more efficient than communicating
across cores on a SMP. It is expected that memory latency
and bandwidth bottlenecks will be further exacerbated in
CMPs, leading to poor application scaling. Furthermore, we
expect there will be a decline in available network bandwidth
per core due to core counts increasing at a faster rate than
network bandwidth.

Execution of parallel applications on these architectures
brings to light a number of new challenges while magnifying
many old problems. For applications, there are challenges to
be tackled in terms of programmability as well as an optimal
runtime environment. Message passing paradigm, as used by
message passing interface (MPI) [14], and partitioned global
address space (PGAS) [15,18] paradigm, as used by UPC,
CAF, etc., give the programmer flexibility in architecting
the parallel application in that the programmer has extensive
control over details of parallelization and the capacity to
extract maximum performance from the underlying hardware
resources. This flexibility, however, can be cumbersome to
manage on CMPs due to their inherent complexity and scale.
A sophisticated parallel runtime system can help deal with
this complexity by efficient management of hardware
resources while providing interfaces and semantics for better
programmability.

Parallel programming paradigms that rely on current
runtime systems are also not adequately tailored for
execution on CMPs. MPI implementations, for example,
treat CMP as a collection of SMP cores, thus losing the
opportunity to exploit features that enable fine-grained
parallelism. MPI tasks, implemented as heavyweight
processes, incur high context switch overhead during
scheduling. Additionally, communication between tasks on a
node incurs unnecessary overhead due to additional memory
copies across process address space boundaries. The
operating system scheduler is responsible for scheduling of
MPI tasks on physical processors. Configurable application
specific scheduling policies are challenging to implement in
this environment as they will require kernel-level
modifications.

Software stacks for CMPs will be required to be
cognizant of these issues. An integrated approach for
scheduling of constrained resources to minimize contention

Proc. 17th Euromicro International Conference on Parallel, Distributed and

Network-Based Processing – PDP'09, 2009, pp. 119-126.

and oversubscription is imperative. We propose Phoenix, a
modular and extensible runtime for parallel application
developers, compiler writers and system researchers to use as
a vehicle for researching parallel scientific computing on
CMP platforms and as a fully optimized runtime framework
on such systems. Phoenix runtime consists of a collection of
interfaces for thread management, scheduling, locking,
memory allocation, etc., explicitly designed to support the
fine-grained parallelism present on CMP architectures. The
layering of existing popular parallel programming
paradigms, such as MPI, atop Phoenix will enable efficient
execution of legacy applications on CMP architectures.

Our prototype implementation of MPI represents MPI
tasks as lightweight Phoenix threads. A significantly larger
number of MPI tasks than processors on a node can be
spawned. This enables support for fine-grained parallelism
by ensuring that the working set of a task can fit within the
limited cache on CMPs. Context switch overhead is further
reduced over conventional MPI implementations due to our
use of lightweight thread abstractions to represent tasks.
Since MPI tasks exist within the same address space, this
approach leads to efficient communication between tasks
within a node. The Phoenix runtime system is used to
provide integrated scheduling of both MPI tasks and network
progress threads. We show with micro-benchmarks and a
production parallel MPI application that significant
performance gains can be obtained over conventional MPI
implementations with careful design of a system tuned for
CMP architectures.

The rest of this paper is organized as follows. Section II
gives a description of Phoenix, our intelligent-adaptive
runtime system and its constituent components. Section III
covers the MPI paradigm and its implementation on the
Phoenix virtualization runtime. Section IV provides some
preliminary results using micro-benchmarks and a
production MPI code called MILC [1,2]. Section V covers
related work and section VI concludes this paper.

II. PHOENIX RUNTIME ARCHITECTURE

The Phoenix core runtime (PCR) system provides a rich
feature set for efficient layering of parallel programming
models. The core functionality for scheduling, thread
management, memory allocation, debugging, etc., is
contained within the runtime system. The PCR provides a
compact and expressive interface that is suitable as a target
for a compiler backend and experimenting with new
languages for parallel computing designed to scale from the
desktop to large-scale systems. Each component of Phoenix
provides a well-defined interface, enabling system designers
to experiment with different policies and implementations of
a given component by plugging them in at a defined
application programming interface (API) layer. This
flexibility is vital to explore a large design space for
optimizations on CMP architectures [16].

Phoenix is designed to enable applications to scale from a
single core to potentially all cores available on a node. In
order to support layering of parallel programming models
that span nodes, Phoenix provides a high-performance
modular network layer with support for active message and

remote direct memory access (RDMA) communication
semantics. Fig. 1 provides the schematic view of the Phoenix
ecosystem. This section provides an in-depth view of the
Phoenix ecosystem.

A. Execution Contexts

Execution contexts (ECs) are the basic unit of execution
in Phoenix. ECs are analogous to threads, and the Phoenix
EC component API is representative of such. The API
consists of routines related to EC management (create, exit,
id) and synchronization (suspend and wait). The EC interface
is implemented using POSIX threads. In order to support
fine-grained parallelism present on CMP architectures, a
large number of ECs need to be instantiated. Lightweight
thread abstractions that can lead to a substantial reduction in
memory footprint and context switch overhead are being
investigated.

An important feature of Phoenix ECs is attribute tagging.
Applications tend to execute in distinct phases. In each phase
the resource requirements of an application can vary
significantly. HPC applications, for example, during a given
iteration, may compute for a sizeable amount of time
followed by exchanging data with neighboring processors
over the network. This pattern is repeated during the course
of a run. Phoenix, therefore, features the notion of EC
attributes for identifying the dominant characteristic of EC
execution. The current supported attributes are: compute,
network and I/O. An EC can change its attribute dynamically
during execution of each phase. Attribute tagging will allow
the exploration of various resource-aware scheduling
strategies that will minimize contention of resources.

B. Processor Virtualization

Each schedulable processing element is represented by a
virtual processor (VP) within the Phoenix runtime system.
The VP API exposes primitives related to binding and

Figure 1. Phoenix ecosystem.

scheduling of ECs onto the physical processing element as
well as functions to query the underlying physical
characteristics of the hardware. In order to support
identification of performance bottlenecks, the processor
virtualization component keeps track of vital profiling
information during the course of execution. Each VP
maintains processor utilization, total context switches, idle
and compute times for itself. This information can be queried
during a run by end user tools or even Phoenix components
such as the scheduler to make informed decisions

C. Scheduler

The Phoenix scheduler dispatches ECs for execution on
VPs. Phoenix implements cooperative scheduling semantics.
Higher level programming models utilize this to present the
illusion of independent progress for all ECs. Pre-emptive
scheduling of ECs on CMP architectures is not desirable as
parallel applications, which exhibit distinct communication
and compute phases, would benefit if entire cores were
dedicated to their ECs during the compute phase. The
scheduler provides a pluggable framework for Phoenix VPs,
allowing implementation of processor agnostic scheduling
strategies. Scheduling across processors is accomplished
utilizing scheduling domains. A scheduling domain
represents a group of VPs that exhibit common physical and
performance characteristics. VPs dispatch ECs scheduled on
a domain for the underlying processor.

In order to have effective control of scheduling policies,
it is necessary to bypass the OS scheduler. The current
implementation on Linux utilizes the native POSIX thread
library (NPTL). NPTL is a 1:1 thread library in that threads
created by the user are in one-to-one correspondence with
schedulable entities in the kernel. The Linux OS scheduler is
negated by ensuring that at most one EC—i.e., pthread—is
in a runnable state per physical processor. This is
accomplished by utilizing condition variables and
semaphores respectively. Each EC waits on a semaphore,
which results in the EC being suspended within the kernel.
Phoenix schedules an EC by signaling the semaphore
corresponding to the EC, resulting in the pthread associated
with the EC transitioning to a run state within the kernel.
This approach, coupled with the ability to bind ECs to
processors, provides full control over placement and
scheduling of ECs within Phoenix.

D. Memory Management, Instrumentation and Profiling

The PCR contains a memory management subsystem
where custom allocation strategies can be implemented. Both
AMD’s Hypertransport and Intel’s Quickpath interconnect
are tending toward a non-uniform memory access (NUMA)
model. The memory allocation and the runtime both need to
be NUMA aware for efficient execution on these
architectures such that memory regions are allocated local to
the node the EC is executing on. Thread migration is another
feature that can benefit from custom allocation strategies. As
applications become dynamic in nature, load-imbalances
across processors will become more pervasive. A common
solution is thread/work migration to achieve load balance
[9,17] where an isomalloc memory allocation strategy can be

employed that allocates memory to each work unit/thread
from mutually exclusive virtual memory regions. These
examples point to the need for a modular memory
management component to experiment with various memory
allocation strategies.

The ability to capture performance metric data and
profiling various blocks of code is critical for identification
and resolution of performance bottlenecks. Fine-grained
profiling available through the profiling layer allows for
capturing relevant data regarding memory allocation/
deallocation for any given set of ECs to aid in postmortem
analysis and debugging.

E. High-Performance Networking

The network component is highly threaded and
completely integrated into the runtime. Independent
communication progress with maximal overlap of
computation and communication is achieved by having
network ECs dedicated for communication. The scheduler is
configured to either cooperatively schedule all EC types
(compute, network and I/O) across available VPs or to have
one or more VPs dedicated for communication progress.
This provides the flexibility to allocate the required mix of
resources for network- or compute-bound applications.

Phoenix provides a modular networking component to
enable implementation of parallel programming models,
such as MPI, that span nodes. The network component
exposes an active messages (AM) API as well as native
support for RDMA transfers. These communication
semantics enable layering of the send/receive model of
communication prevalent in MPI as well as global shared
memory models utilized by PGAS languages such as UPC
[18] and CAF [15]. The current prototype supports
Infiniband and TCP with work underway to support iWarp
[19] for RDMA-based Ethernet network.

III. MESSAGE PASSING INTERFACE ON PHOENIX

MPI is the de facto programming model for parallel
computing on distributed shared memory machines. We have
developed an MPICH-based implementation of MPI over
Phoenix, called MPICH-Phoenix. This is a proof-of-concept
implementation to show various advantages that Phoenix can
bring to production-class parallel applications on CMP
platforms.

By virtue of its design optimized for CMP, MPICH-
Phoenix more effectively exploits CMP resources compared
to mainstream MPI implementations [6,7], resulting in
improved performance. The improvement in performance
results primarily from high-performance shared memory
communication, cache blocking and communication/
computation overlap.

Before we explain these factors at length, we will briefly
describe a few important architectural and implementation
details of MPICH-Phoenix. As mentioned earlier, each MPI
task is mapped to a single EC in our implementation.
Multiple MPI tasks may be active within a single process
address space. This necessitates privatization of global
variables to resolve collision of symbols among tasks
executing within a single Phoenix process. Currently, we use

Elsa [3], a source-to-source translation tool for transforming
C/C++ applications. The standard MPI compiler scripts
encapsulate the privatization process, making it completely
transparent to the user.

The existence of multiple MPI tasks within a single
address space allows for true zero copy communication,
whereby an MPI sender can directly deposit a message to the
receiver’s buffer without the intermediary copies customary
in mainstream MPIs. Moreover, the integrated scheduling
and mapping of ECs available through Phoenix allows for
collocation of tasks on the same or nearby physical
sockets/cores. Section IV shows the bandwidth curve of
MPICH-Phoenix compared to other MPI implementations to
show this advantage.

Fine-grained parallelism and threading is another
important feature of Phoenix. This allows us to spawn many
more MPI tasks than the number of available processors with
minimal overhead. This is commonly referred to as
virtualization. The ratio of MPI tasks to processors is called
the virtualization factor. Virtualized execution environments
have been shown to provide several benefits [8]. A
virtualized MPI implementation enables us to implement a
data-driven model of execution. In this model, an MPI task
has dedicated use of a processor until a communication
operation invoked by it cannot be satisfied immediately. The
runtime, using the specified scheduling strategy, selects an
MPI task in a runnable state for execution on the blocking
processor. This allows for automatic overlap of computation
and communication, resulting in efficient utilization of CPU
resources. Once the offending communication operation has
completed, the original task is made runnable and available
for scheduling.

Virtualization also allows cache blocking in applications.
Cache blocking is an often used strategy that exploits the
memory hierarchy for higher performance. Cache-blocked
algorithms attempt to increase cache hit ratios by improving
data locality. MPICH-Phoenix provides free weak scaling to
an MPI application as the virtualization factor is increased.
Once a virtualization factor reaches a certain threshold, the
working set would be small enough to fit inside the cache. If
the task iterates a large number of times over the working
set, the compute efficiency of the processor would climb due
to better cache utilization. Results presented in Section IV
highlight this in greater detail for the MILC QCD
application. The free cache blocking, however, depends on
memory access patterns of the application. We have seen no
improvement in applications using algorithms already
optimized for cache blocking, as in the LINPACK
benchmark. Moreover, we believe algorithm such as FFT
that are inherently unfriendly to hierarchical memory might
not benefit from cache blocking.

Subsets of collectives commonly used in various
scientific codes and typically found to be major obstacles for
scaling of applications have been implemented. A
streamlined implementation of these collectives is especially
important for a virtualized environment due to the large
number of virtualized MPI tasks. Optimized implementations
for allreduce, barrier and broadcast, which exploit the two-
level logical topology of MPICH-Phoenix jobs, are available.

Optimized scheduling strategies for collectives that take into
account the message transfer dependencies are being
investigated.

IV. RESULTS

Our experimental testbed consists of the Abe [12] and QP
[24] clusters at NCSA. Nodes on Abe consist of dual quad-
core (8 processing elements) EM64T processors with a 4 MB
L2 cache shared between each pair of cores. The QP cluster
consists of dual dual-core (4 processing elements) Opteron
processors with a 1 MB L2 cache per processor. A single
data rate (SDR) Infiniband network is employed between
nodes. Intel C and C++ compilers were used for all tests.

A. MPICH-Phoenix Performance Analysis versus Selected

MPI Implementations

In this subsection, we show the impact of context switch
overhead, optimized intra-node communication and
integrated scheduling using micro-benchmarks and the
MILC QCD application. The performance of MPICH-
Phoenix is compared against OpenMPI-1.2.1 [7],
MVAPICH2-1.0.2p1 and adaptive MPI (AMPI) [9]. The
former two are well known open-source MPI
implementations typically used on production systems.
AMPI, built on the Charm++ [8] framework, makes for an
interesting candidate for performance comparison since, like
MPICH-Phoenix, it is also designed to execute MPI
applications using processor oversubscription.

Fig. 2 shows the intra-node bandwidth for MPI tasks
across all implementations on Abe. MPICH-Phoenix
significantly outperforms the other implementations for large
message sizes. OpenMPI and MVAPICH2 both utilize
shared memory segments for communication within a node.
This requires two memory copies between the source and
destination process. Since MPICH-Phoenix tasks execute
within the same address space, data is copied directly from
the source to the destination buffer. Additionally, the
Phoenix scheduler is able to co-schedule tasks on the same
die to utilize the increased core-core bandwidth present on
the chip. The peak bandwidth of 10 GB/sec is due to these
tasks being co-scheduled on the same die sharing the same
L2 cache.

0.1

1

10

100

1000

10000

100000

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

Message Size (bytes)

OpenMPI

MPICH-Phoenix

MVAPICH

AMPI

Figure 2. Shared memory bandwidth comparisong.

A common concern in the processor oversubscription
model is the overhead of context switches. Standard MPIs
typically create one MPI process per processor. However,
OpenMPI supports a degraded mode of execution where
processing resources are oversubscribed. In this mode, the
MPI library yields the processor to allow its peers to make
progress. This mode is similar to MPICH-Phoenix
oversubscription with the exception of requiring the
operating system scheduler for scheduling of tasks. The
remaining comparisons with OpenMPI were done using this
degraded mode.

To gauge the context overhead, a micro-benchmark was
devised with each MPI task sending a small message to task
0 and executing a barrier. The benchmark is executed using a
single core on a node with increasing virtualization factors
for the core. Each MPI task, therefore, after sending a
message, is context switched to allow the next task to run,
allowing us to determine the context switch overhead. Fig. 3
shows the virtualization factor, i.e., number of tasks per core,
and the ratio of context switching overhead using OpenMPI
to MPICH-Phoenix. MPICH-Phoenix, where tasks are
implemented as threads, coupled with lightweight user level
thread scheduling, significantly outperforms OpenMPI.

Fig. 4 shows the runtime for MPICH-Phoenix and
OpenMPI running the MILC QCD code across eight nodes
of Abe with increasing virtualization. Increasing the
virtualization factor results in improvement of performance
for MILC over MPICH-Phoenix while performance degrades
with OpenMPI. As discussed in section III, virtualization
endows certain benefits, such as computation and
communication overlap and cache blocking effects.
OpenMPI is unable to exploit these benefits due to high
context switch overhead and lack of a lightweight integrated
scheduler required for efficient network progress.

Fig. 5 compares the MILC runtime on Abe for MPICH-
Phoenix and AMPI. AMPI tracks the MPICH-Phoenix
curve, reflecting improved performance with greater
virtualization. Table I summarizes the total time spent in
each of the major phases of MILC over both these MPIs as
well as the total runtime (NERSC). The table shows that
MPICH-Phoenix consistently outperforms AMPI for all
phases. We believe this is due to the lack of an integrated
approach for scheduling of compute and communication
tasks within a node. Charm++ runtime instance determines
the task schedule locally, i.e., per core rather than per node,
leading to suboptimal performance. In contrast, the
integrated scheduling of compute and communication
threads using Phoenix across all cores results in improved
performance.

B. Communication Scheduling and Overlap

Asynchronous communication progress is a requirement
for effective overlap of communication and computation.
The COMB benchmark [20] is used to quantify the
capability of achieving true overlap by computing the
availability of a processor to do useful work between
dispatch and completion of communication. Parallel
programming paradigms, such as MPI, provide explicit
asynchronous communication calls (MPI_Isend and
MPI_Irecv) to enable overlap. However, a large number of
MPI implementations do not provide true asynchronous
communication semantics, requiring an application to
periodically poll the network to make progress.

0

1

2

3

4

5

6

2 4 8 16 32 64

O
p

e
n

M
P

I/
M

P
IC

H
-P

h
o

e
n

ix

C
o

n
te

x
t
S

w
it
c
h

 R
a

ti
o

Number of Processes (OpenMPI) or Threads (MPICH-Phoenix)

Context Switch per Thread Ratio
OS context switch: 3 microseconds

Figure 3. Context switch overhead of OpenMPI vs MPICH-Phoenix.

400

450

500

550

600

650

700

750

800

1 2 4 8 12

T
im

e
 (

s
e
c
)

Oversubscription/virtualization factor

OpenMPI

MPICH-Phoenix

Figure 4. MILC runtime curves for OpenMPI and MPICH-Phoenix.

400

450

500

550

600

650

700

750

800

1 2 4 8 16

T
im

e
 (

s
e
c
)

Oversubscription/virtualization factor

AMPI

MPICH-Phoenix

Figure 5. MILC runtime curves for AMPI and MPICH-Phoenix.

TABLE I. VARIOUS MILC PHASES AND TOTAL RUNTIME (NERSC) FOR AMPI AND MPICH-PHOENIX (ALL TIMES IN SECONDS)

Virtualization

Factor
1 2 4 8 16

MPI Flavor AMPI
MPICH-

Phoenix
AMPI

MPICH-

Phoenix
AMPI

MPICH-

Phoenix
AMPI

MPICH-

Phoenix
AMPI

MPICH-

Phoenix

LLTIME (Fat) 165.524 154.043 155.716 149.816 141.872 136.584 129.347 126.611 124.01 111.602

LLTIME (long) 10.2836 9.18277 9.3191 8.75081 8.3146 8.75402 7.15287 7.2549 6.0309 5.89462

GFTIME 173.333 164.734 156.596 154.263 136.917 136.503 121.656 123.854 115.177 106.593

FFTIME 251.915 232.175 233.742 232.545 216.281 206.245 203.412 184.334 194.72 178.628

CONGRAD5 101.565 86.6906 101.632 83.7191 99.2227 84.5697 103.156 91.0873 110.032 102.132

NERSC 717.204 661.471 669.125 640.982 613.656 583.891 574.73 543.05 560.115 514.507

Phoenix provides a rich infrastructure for experimenting

with various communication scheduling strategies. A broad
spectrum of communication scheduling strategies, from
dedicating one or more cores for network communication to
utilizing all available cores for compute and communication
tasks, can be deployed. Fig. 6 depicts the availability of a
processor performing asynchronous sends for various MPI
implementations. Large message transfers typically employ a
handshake protocol between sender and receiver. The
Phoenix runtime schedules a network thread for execution on
receipt of the handshake message, leading to high
availability. Conversely, MVAPICH requires an application
to poll the network to make progress, leading to minimal
overlap.

Fig. 7 depicts the effects of various communication
scheduling strategies for MILC execution on the Abe and QP
clusters. The MILC NSF medium benchmark with 768 MPI
tasks spanning eight nodes was used. Abe with eight
processors per node had a virtualization factor of 12, while
QP with four processors per node had a virtualization factor
of 24. The WQ strategy utilizes all available cores for
scheduling of computation and communication threads. The
Net Dedicated strategy dedicates an entire core for
communication handling. Finally, the Net+WQ strategy is a

combination of both. In our current implementation of the
WQ strategy, a communication thread is scheduled only in
the absence of any compute threads being runnable. For each
strategy, the total time a processor is idle (due to lack of any
runnable tasks) as well as computing is captured.
Additionally, we present the context switch overhead
incurred due to virtualization of MPI tasks.

We observe that Phoenix can support fine-grained
parallelism efficiently as the context switch overhead is
negligible (< 0.1% of runtime) across all strategies. Both Net
Dedicated and Net+WQ strategies result in reduced idle time
compared to WQ. The WQ strategy is reactive, scheduling a
communication thread only when a processor transitions to
idle. We are evaluating the use of communication profile
heuristics to implement anticipatory scheduling strategies.

The optimal strategy for execution differs between Abe
and QP. On Abe the Net Dedicated strategy results in the
fastest execution time while the WQ strategy offers superior
performance on QP. Conventional MPI implementations are
unable to support efficient execution in Net Dedicated mode
without OS support, highlighting the benefits of our
approach. Execution on QP is compute-bound and dedicating
an entire core for communication dilates the compute time
by 25% with a negligible reduction in idle time. On Abe, we
can deduce that execution is network-bound. Abe nodes

0

20

40

60

80

100

120

Message size (Bytes)

A
v
a
il
a
b
il
it
y

MPICH-Phoenix

MVAPICH2

MPICH-VMI

Figure 6. Availability metric for various MPIs using COMB benchmark.

0

100

200

300

400

500

600

700

800

900

MILC Abe (WQ) MILC Abe (Net

Dedicated)

MILC Abe (Net +

WQ)

MILC QP (WQ) MILC QP (Net

Dedicated)

MILC QP (Net +

WQ)

T
im

e
 (
s
e
c
)

ComputeIdle Context Switch

Figure 7. Integrated compute and communication scheduling for MILC.

consisting of eight processing cores are connected via a
single data rate Infiniband network. With a dedicated core
for communication, we observe a significant reduction in
idle time due to network stalls, with a negligible increase in
compute time as the virtualization factor increases from 12 to
14 per core.

C. Effects of Cache Blocking

The effect of cache blocking on MILC due to
virtualization is considered. MILC is a popular open source
quantum chromodynamics (QCD) application. The MILC
NSF medium benchmark executing on 64 processors was
used. Fig. 8 details MILC runtime in various routines. The
eo_fermion_force_3f routine constitutes a significant portion
of the total runtime and is the most compute-intensive
memory bandwidth-bound MILC routine. With increasing
virtualization factors, the MILC lattice can fit in the cache,
reducing cache misses and improving time-to-solution. Fig. 9
shows the reduction in total runtime with increasing
virtualization with a corresponding reduction in cache misses

and improved flop rate for eo_fermion_force_3f. We see
close to 20% improvement in runtime of this routine and
15% improvement in runtime of the application.

V. RELATED WORK

Our work on Phoenix leverages several efforts in the
fields of operating systems, runtime libraries and high-
performance computing in general. The Phoenix threading
and synchronization subsystems are heavily influenced by
user-level thread packages, such as pthreads, NPTL [21] and
Marcel threads [22]. The Phoenix scheduler is similar in
design to Intel McRT [10] and BubbleSched [23] but is
significantly more configurable. McRT is designed to enable
layering of parallel programming models for efficient
execution on CMP. However, the McRT system does not
itself consider the impact of incorporating communication
scheduling semantics within the runtime. As we have shown,
the selection of an appropriate network scheduling strategy is
required for efficient execution of parallel codes on CMP
architectures.

Various MPI implementations [4,5,9] exist that
implement MPI tasks as lightweight threads. TMPI [5] is
optimized for execution on shared memory machines. MPI
tasks implemented as lightweight threads execute within a
common address space, allowing for efficient
communication. TMPI does not implement a virtualized
runtime since the number of MPI threads is limited to the
number of processors on the system. Thus virtualization
benefits such as communication overlap and cache blocking
cannot be exploited.

AMPI [9] and MPI_Lite [4] provide a virtualized MPI
implementation. AMPI is implemented using the parallel
Charm++ [8] library. Charm++ runtime, which provides the
virtualization capabilities for AMPI, treats CMP
architectures as a collection of SMP cores and there is no
integrated scheduling capability across all cores of a CMP
node, as we mentioned in the results section. Similarly, MPI-
Lite requires the operating system to schedule the virtualized
tasks. As we have shown, this results in increased overhead
compared to user-level thread scheduling as well as limited
flexibility in implementing application-specific scheduling
strategies.

VI. CONCLUSIONS

Upcoming high-performance computing hardware will
consist of nodes featuring chip multiprocessor cores. Current
runtime systems view multicore hardware architecture as an
array of SMPs. This view is fundamentally flawed. Crucial
differences between CMP and SMP hardware, such as cache
size and memory bandwidth, must be addressed in designing
runtime systems for CMP-based hardware. We have
proposed Phoenix, a runtime system designed specifically
for CMP-based HPC nodes. We have shown that this system
brings various performance and programmability benefits
through fine-grained parallelism, virtualization, integrated
scheduling, high-performance intranode communication and
abstractions for layering parallel programming paradigms.
Performance gains using micro-benchmarks and a

eo_fermion_force_3f

imp_gauge_force

ks_congrad

f_meas_imp

other

Figure 8. Distribution of MILC runtime while executing with 1024 tasks

on 64 processors, 8 processors/node.

0

0.2

0.4

0.6

0.8

1

1.2

64 128 256 512 1024

Number of threads

P
e
rc

e
n
ta

g
e
 C

h
a
n
g

e

in

 M
e
tr

ic
s

Total runtime

Cache misses

Flop rate

Application runtime

Figure 9. Various performance metrics for MILC fermion force calculation

routine while executing on 64 processors, 8 processors per node.

production application highlighted the benefits of our MPI
implementation.

REFERENCES

[1] S. Gottlieb, W. Liu, R. Renken, R. Sugar, and D. Toussaint, ―QCD
thermodynamics with eight time slices,‖ Phys. Rev. D, vol. 41-2, Jan.
1990, pp. 622-625.

[2] MIMD Lattice Computation Collaboration (MILC),
http://www.physics.indiana.edu/~sg/milc.html

[3] Elsa: An Elkhound based C++ parser,
http://www.cs.berkeley.edu/~smcpeak/elkhound/

[4] MPI-Lite, Parallel Computing Lab, University of California.
http://may.cs.ucla.edu/projects/sesame/mpi lite/mpi_lite.html.

[5] H. Tang, K. Shen, and T. Yang, ―Program Transformation and
Runtime Support for Threaded MPI Execution on Shared Memory
Machines,‖ ACM Transactions on Programming Languages and
Systems, vol. 22, Nov 2000, pp. 673-700.

[6] E. Lusk and W. Gropp, ―The Second-Generation ADI for the MPICH
Implementation of MPI‖, MCS Division, Argonne National
Laboratory, 1996.

[7] E. Garbriel, et al., ―Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation,‖ Proc. 11th European PVM/MPI
Users’ Group Meeting, 2004.

[8] L. Kale and S. Krishnan, ―CHARM++: A portable concurrent object
oriented system based on C++,‖ Proc. Conference on Object Oriented
Programming Systems, Languages and Applications, Sept-Oct 1993

[9] C. Huang, O. Lawlor, L. Kale, ―Adaptive MPI,‖ Proc. 16th
International Workshop on Languages and Compilers for Parallel
Computing (LCPC 2003), pp. 306-322, LNCS 2958.

[10] B. Saha, A. Adl-Tabatabai, R. Hudson, V. Menon, T. Shpeisman, M.
Rajagopalan, A. Ghuloum, E. Sprangle, A. Rohillah, and D. Carmean,
―Runtime Environment for Tera-scale Platforms,‖ Intel Technology
Journal, vol. 11, no. 3, 2007, pp. 207-251.

[11] TACC, Ranger supercomputer,
http://www.rangersupercomputer.com/

[12] NCSA, Abe supercomputer, http://www.ncsa.uiuc.edu/

[13] Teraflops Research Chip, http://techresearch.intel.com/articles/Tera-
Scale/1449.htm

[14] ―MPI: A Message Passing Interface,‖ Proc. Supercomputing '93, Nov.
1993, pp. 878-883.

[15] R. W. Numrich and J, ―Reid: Co-Array Fortran for Parallel
Programming,‖ ACM SIGPLAN FORTRAN Forum, vol. 17, 1998,
pp. 1-31.

[16] 7 Computational Dwarfs, http://view.eecs.berkeley.edu/wiki/Dwarfs

[17] G. Antoniu, L. Bouge, R. Namyst, ―An efficient and transparent
thread migration scheme in the PM2 runtime system,‖ Lecture Notes
in Computer Science, Parallel and Distributed Processing, Springer,
Berlin/Heidelberg, vol. 1586/1999.

[18] UPC Language Specification,
http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf.

[19] iWARP Consortium, http://www.iol.unh.edu/services/testing/iwarp.

[20] W. Lawry, C. Wilson, A. Maccabe, R. Brightwell, ―COMB: A
Portable Benchmark Suite for Assessing MPI Overlap,‖ Proc. IEEE
International Conference on Cluster Computing (CLUSTER’02),
2002, p. 472.

[21] U.Drepper, I. Molnar, ―The native POSIX thread library for Linux,‖
http://people.redhat.com/drepper/nptl-design.pdf.

[22] Marcel Thread Package,
http://runtime.futurs.inria.fr/marcel/index.php

[23] S. Thibault, R. Namyst, and P. Wacrenier, ―Building Portable Thread
Schedulers for Hierarchical Multiprocessors: the BubbleSched
Framework,‖ Proc. EuroPar, Rennes,France, 2007.

[24] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R.
Pennington, W. Hwu, ―QP: A Heterogeneous Multi-Accelerator
Cluster‖, unpublished.

