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Abstract—Data center management is driven by high-level
performance goals, and it is the responsibility of a management
middleware to ensure that those goals are met using dynamic
resource allocation. The performance delivered by the heteroge-
neous set of applications running in a virtualized enterprise data
center must be predicted to make resource allocation decisions.
For some of these applications, it is required to produce accurate
profiles based on previous executions: that is the case of batch
jobs. In this paper we propose a methodology to produce resource
consumption profiles for batch applications running inside of vir-
tual machines and a technique to enforce and adapt the profiles to
actual execution conditions and application performance. For this
purpose we have developed a testing prototype. The enforcement
technique observes the fact that management middleware usually
run in control cycles in which the system can be reconfigured,
what imposes a tradeoff between the accuracy of the profiles and
their applicability in real deployments. The novel contribution
of this work is the study of the tradeoff between accuracy and
applicability of workload profiles, what is a necessary step to
enable existing management middleware with the performance
prediction mechanisms required to perform effective dynamic
resource allocation.

I. INTRODUCTION

Server consolidation and virtualization strategy has lead to

the appearance of increasingly larger virtualized data centers

in which companies and organizations rely to run their ap-

plications and deliver services to customers. Such a complex

scenario, involving a large number of virtual machines (VMs)

running a heterogeneous set of applications, requires advanced

management techniques to deliver maximum performance

through dynamic resource allocation. These techniques are

usually provided by an advanced management middleware.

The overall performance of a data center is defined by the

particular performance delivered by each one of the applica-

tions deployed on it. The management middleware continually

adjusts the performance of the data center by deciding the

amount of resources allocated to each virtual machine in the

system. This decision must be made based on the expected

performance that each application will offer when a particular

resource allocation is decided. Thus, the performance delivered

by the applications that run in an enterprise data center must

be predicted at the time that resource allocation decisions are

made. For some applications, the performance prediction is

based on the observed workload patterns; that is the case

of OLTP workloads. For other applications, it is required to

produce accurate profiles based on previous executions; that

is the case of batch jobs.

Although workload profiling is an already studied topic in

the literature, running workloads inside of VMs introduces

a number of new issues to be addressed, specially because

the flexibility found in resource provisioning for virtualized

environments is taken one step forward. Now, resources can

be allocated in an unprecedented fine grain level, and not only

limited to CPU and memory consumption, but also covering

network and disk bandwidth. That forces management mid-

dleware to make decisions regarding not only the amount

of resources to allocate to one VM based on the desired

performance level, but also in how different resources are

consumed by the applications. For example, allocating a large

amount of memory for a CPU-bound application can result

in resource underutilization if both memory and CPU are not

allocated in the correct proportion for the application to make

significant progress.

Our current work focuses on single-threaded batch jobs

that periodically run with similar behavior between executions

in a large and virtualized enterprise data center. Examples

of applications that present such a behavior are document

indexing applications, that periodically run over similar inputs

that grow slowly in comparison to the total volume of data; and

numerical applications that perform some kind of statistical

calculation for a limited period of time. It is out of the scope of

our current work the analysis of black-box VMs (VMs running

unknown workloads). Anyway, the techniques presented in this

paper as well as some of the conclusions, are also useful for

such an environment that is part of our future work.

In this paper we propose a methodology to produce resource

consumption profiles and a technique to enforce and adapt the

profiles to both actual execution conditions and application

performance. We validate our proposal through execution

in a real system enabled with state-of-the-art virtualization

technology (VMWare ESX 3.5 [9]). For this purpose we have

developed a testing prototype that allows real-time monitoring

of the application performance and resource consumption and

enforcement of previously generated profiles. An extended

version of this paper can be found in [2].

The novel contribution of this work is the study of the trade-

off between accuracy and applicability of workload profiles,

what is a necessary step to enable existing management mid-

dleware with the performance prediction mechanisms required

to perform effective dynamic resource allocation.
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II. PROFILING AND RESOURCE MANAGEMENT

INFRASTRUCTURE

A. System architecture

In this section we introduce the architecture of the prototype

system developed to produce application profiles as well as to

enforce these profiles in applications’ following executions.
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Fig. 1. Architecture of the system

This prototype consists of four main components (see

figure 1), following described:

• Monitor: this process feeds the profiling architecture with

a complete description of the resource consumption of

an application. Our monitor communicates both with the

VMWare ESX, to obtain performance counters [10], and

with the guest operating system, to collect information

regarding memory consumption that is only visible from

inside the guest OS. In our system we assume that

one single application is running inside each VM. The

accuracy of this data is limited by the minimum sample

length of VMWare ESX (20 seconds), which computes

the average resource consumption over each sample.

• Stage calculator: this process calculates execution stages

for the application, based on the resource usage reported

by the monitor. Each stage is assigned a relative starting

time (defined by the work progress to be done by the

application before starting the stage) and characterized

by the average level of consumption for each resource.

• Profile enforcer and Execution progress monitor: the

stage calculator provides the profile enforcer process with

the application profile. This process communicates with

VMWare ESX to change the VM configuration according

to the current stage definition. We have to consider that

running an application with a resource allocation different

than at profile-generation time, can change the resource

usage of the application and thus, can change the actual

length of each stage. In order to adjust stage starting

time, we monitor the execution progress of the application

(based on CPU consumed cycles).

Our prototype can also operate using off-line data stored

in files. This way, we can re-enforce previously generated

profiles.

B. Stage-detection algorithm
In this section we describe the methodology used to create

workload profiles as well as the formal definition of profile.

In the scope of our work, a workload profile is defined

as a sequence of stages WP = (S0, . . . , Si), each one

characterized by the amount of resources consumed by the

workload in a particular period of time.
Let the resource consumption of the application on a given

time t be Rt = (Ct, Mt, Dt, Nt), where each component

represents the amount of CPU (Ct), memory (Mt), disk

bandwidth (Dt) and network bandwidth (Nt) consumed by

the application. Then, a stage Si is represented by the average

resource consumption in a given period of time (t0 − tn):

Si = RSi = {avg(Rt0 , . . . , Rtn)} (1)

= {avg(Ct0 , . . . , Ctn), avg(Mt0 , . . . , Mtn),
avg(Dt0 , . . . , Dtn), avg(Nt0 , . . . , Ntn)}

And we define the standard deviation of the stage as:

σSi
= (σ(Ct0 , . . . , Ctn

), σ(Mt0 , . . . , Mtn
), (2)

σ(Dt0 , . . . , Dtn
), σ(Nt0 , . . . , Ntn

))

Let current time be tn+1 and let the tuple representing the

current resource consumption of an application be Rtn+1 . At

this point, the stage calculator has to decide if Rtn+1 is part

of last stage in the workload profiling (Si) or if it is necessary

to add a new stage (Si+1) to it. The condition that has to

accomplish Rtn+1 to be part of Si is:

distance(RSi , Rtn+1) < th ∗ σSi (3)

Where th is a threshold determined experimentally.
Thus, the function to update the workload profiling is:

update(WP ) =

⎧⎪⎪⎨
⎪⎪⎩

Si ← Si ∪ {Rtn+1} if (3) is true

Si+1 = {Rtn+1}
WP = (S0, . . . , Si, Si+1) otherwise

Thus the stage length is considered to be variable and

depends on the particular resource usage made by each ap-

plication at each moment.
We have to consider that the profiles produced are supposed

to be enforced by some management middleware [3] that

usually operates in fixed-length control cycles. Thus, each

stage should represent at least the behavior of a time pe-

riod equivalent to one control cycle of the middleware. For

this reason, we define a minimum stage length value (MSL

henceforth) that represents the minimum time that any stage

must last. Thus each resource consumption tuple contains the

information about the resource consumption of a MSL period

time: Rt = (Rt0 , . . . , RtMSL
).

The minimum value for the MSL is limited by the min-

imum interval sample of the monitor (which is limited by

the VMWare ESX sample period of 20 seconds). In order

to decide which MSL is the most suitable for each profile

generation we have to evaluate the trade-off between accuracy

and performance. The largest the MSL value is the least

accurate the profile is (see section III-B).
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C. Profile-enforcement technique

Once the profile is generated we use the information about

the execution stages to enforce the resource provisioning for

the application. For each generated stage, the profile enforcer

reconfigures the VM as specified in the stage information.

In most virtualization platforms, resources can be allocated

by defining either absolute values or share values. We support

both approaches in our system.

As far as an application profile is generated under certain

levels of resource provisioning that may not be repeated

in following executions of the same application, a profile

enforcement technique must be able to adapt the stage length

to the new execution conditions on real time. For instance, if an

application is running more slowly than during the execution

used to generate the profile, the system will have to stretch

the stages in order to perform the VM reconfiguration at the

time it may be required.

In our system, the CPU resource is taken as the driving

resource to produce such an effect of stage-length adaptation.

The system continuously monitors the CPU consumption

during the execution of the application, compares the progress

made by the application to the profile-generation execution,

and decides to stretch or shrink stages length accordingly.

III. EXPERIMENTS

In our experiments we use two different applications rep-

resentative of the scenario we aim in this work: Apache

Lucene [1] and the JavaGrande Montecarlo [5] simulation

(class B). Apache Lucene is an open-source text search engine

library written entirely in Java. In our experiments, we have

run the example indexing application provided with the Lucene

library to index a large set (800 MB) of files previously

deployed in the filesystem. The JavaGrande montecarlo simu-

lation is a financial simulation, using Monte Carlo techniques

to price products. Each application is run inside a virtual

container and is considered to be running alone in the VM.

Workload profiling is done over the entire VM in which the

application runs, as we consider that all the VM activity is

due to the application behavior.

We used VMWare ESX 3.5 [9] as the virtualization technol-

ogy. The machine we used as the host is a 8-way 2.6Ghz Intel

Xeon (enabled with Intel VT [4]) system with 16GB of RAM

and 4 Ultra320 SCSI disks. The guest VMs were running 64-

bit Debian GNU/Linunx 4.0 with kernel version 2.6.18-6 for

AMD64 architectures.

A. Profile creation: data aggregation methodology and risks

In this experiment we illustrate the behavior of our stage

calculation technique. Figure 2 shows the results obtained

from two different execution of the JavaGrande montecarlo

benchmark, that should exactly produce the same behavior.

For the first execution (shown in top row), the VM is set with

a memory cap of 768MB, which is enough memory to hold

the working set of the application that is around 600MB; for

the second run, the VM is slightly under-provisioned with a

memory cap of 512MB. In both executions the VM is set
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Fig. 2. Montecarlo: consumption and stage calculation

with a CPU cap of 2000Mhz. We show data for memory

consumption over time, indicated with a solid line (CPU data

can be found in [2]). In the same figure we include the level of

resources that must be provisioned according to our profiling

infrastructure and stage-detection mechanism. We consider

three different MSL values: 20s, 400s and 1600s. Looking

at the results it can be observed that the higher the MSL

value is, the less accurate the profiles result. Notice that for

an MSL of 20s, the value calculated for each stage is mostly

overlapped with the profile value. The reason for this is that,

since the mechanism is based on averaging techniques, when

the resource consumption is strongly varying the relative error

between the stage-calculated value and the actual resource

consumption level observed increases. From our experiments,

we observed that using stage lengths in the sub-minute range

is impracticable. At the same time, it is of common use to run

management middleware in periodic control-length cycles, and

these cycles tend to be in the order of the minutes [3].

The effect of under-provisioning a VM can be seen in the

same experiment. When the working set of the application

does not fit in the allocated memory (lower row in figure 2),

the execution time grows quickly, and due to the swapping

activity of the host, the CPU-consumption measured for the

guest drops from 1Ghz to a value around 200Mhz (see

[2] for details). Memory under-provisioning causes the most

important performance degradation, compared to the original

performance observed at time of profile collection. Under-

provisioning other resources result in not so dramatic effects,

as it will be discussed in more detail in section IV.

B. Profile enforcement: stage adaptation

The system must be able to adapt the stage length to the

current execution conditions. In this experiment we illustrate

how this process takes place.

Figure 3 shows an execution scenario for the lucene appli-

cation, that is CPU and disk intensive, in which the use of the

disk is severely constrained for a period of time as compared

to the original profile-generation execution. In the top chart it

can be observed the original generated stages, with dotted line,

as well as the actual CPU consumption observed at the time

the profile is enforced, with solid line. Notice that the level

of CPU usage is much lower than it was expected according

416416



 0

 500

 1000

 1500

 2000

 2500

 3000

M
hz

CPU (driving resource)

Original profile
Actual consumption

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0  200  400  600  800  1000B
an

dw
id

th
 c

on
su

m
ed

 (M
B

/s
)

Execution time (s)

Disk provisioning at enforcement time

Original profile data
Scaled stages

Fig. 3. Lucene: stage adaptation

to the application profile. This is caused by the constrained

access to the disk, because both CPU and disk are consumed

proportionally.

The bottom chart shows, for the same execution, the stages

that were initially calculated (dashed line) as well as the actual

stages applied at enforcement time (solid line). While the first

stage is applied exactly as it was defined in the profile (both

lines completely overlap), when the second stage is in progress

it is stretch to last much longer that is was defined in the

profile. As the CPU resource is clearly underutilized compared

to the profile prediction, the system adapts the stage to the new

applications’ progress speed and thus, the profile enforcement

is adapted accordingly.

In this experiment we only show stage adaptation for the

disk resource due to space limitations, but notice that each

stage characterizes the provisioning levels for all the resources

considered in the system, so exactly the same is happening

with network, CPU and memory provisioning in this case.

C. Provisioning with shares

We have evaluated the effect of provisioning resources

through resource shares instead of absolute allocation values.

Due to space limitations we can not include a detailed descrip-

tion of this experiment (see [2] for details). In brief, results for

this experiment showed that, although resource provisioning is

calculated correctly, resource shares are not perfectly guaran-

teed over the experiment, and the applications get different

effective resources than they require. In conclusion, working

with shares must be done using higher security margins to

avoid severe under-provisioning of resources.

IV. RESOURCE CONSUMPTION MODEL

In this section we show that beyond workload profiles,

performance models are required for performing accurate

dynamic resource allocation, allowing the management mid-

dleware to scale the resources of the VMs proportionally

without changing the bounding resource for the application,

what would result in a completely unpredictable performance.

In our study, as well as in other works discussed in

section V, we assume that there is a linear relation between

the consumption of different resources, resulting that resource

allocations will have to be done proportionally for each

resource. It is particularly remarkable that in our experiments
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we observed that while such a linear model works fine in

a wide range of scenarios (see [2] for details), there is a

particular scenario in which it does not work: the point at

which applications start causing memory swapping due to

large memory consumption.

In a first experiment we run lucene in a number of different

configurations of CPU and memory allocation. First we run

lucene in a number of memory allocation scenarios (from

128Mb to 2048MB), and 2048Mhz of CPU allocation. Later,

we run lucene in a number of CPU allocation scenarios (from

512Mhz to 2048Mhz) and 2048MB of memory set. Then we

measure the CPU and memory consumed in each experiment

and calculate the ratio CPU consumed
memory consumed , what indicates how

many Mhz must be allocated for each MB of memory. The

resulting ratios calculated for the two sets of tests (variable

CPU allocation and variable memory allocation) are shown in

figure 4. Notice that from these models it can be deduced that

the driving resource for the lucene application is the CPU:

changing the memory allocation does not change the ratio as

changing the allocated CPU capacity does. Notice also that

both models are linear, predictive and progressive.

In a second experiment, we run the montecarlo applica-

tion in a set of memory allocation conditions, ranging from

128Mb to 2048MB, and 2048Mhz of CPU allocation. We

measure the CPU and memory consumption as well as the

swapping activity, and also calculate the resource consumption

ratio described above. It is important to remark that the

working set of the montecarlo application is above 600MB

and thus, swapping is expected for memory allocation lower

than that value. Figure 5 contains the collected data, showing

memory consumption and swapping activity in the top chart,

and the model in the bottom chart. Notice here that when

the application starts swapping, the ratio breaks its linearity
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and performance prediction becomes impractical due to the

complex effects of memory swapping.

In conclusion, results indicate that performance prediction

based on resource usage profiles is feasible when scaling

resources other than memory, but challenging when changing

memory allocation.

V. RELATED WORK

Although there are a lot of previous work on application

profiling and resource provisioning for transactional appli-

cations in virtualized execution environments ([8], [7], [11],

[12]), the interest of the research community in the execution

of long running jobs in virtualized environments is recent.

However, we can find in the literature previous work that

propose a methodology to model the resources consumption

of long running applications to drive the resource provisioning

decisions. To the best of our knowledge, none of those

previous work neither consider all the machine resources in

the execution model nor consider the effects that the execution

on a environment with restricted availability of resources can

have on the execution model of an application. For example,

in [6] the authors propose a statistical model to predict CPU

consumption based on previous consumption on both CPU

and memory. However, they base the evaluation of their

model on measuring the hit prediction rate on traces generated

by a previous execution. Thus, they do not consider the

effects that different execution conditions could have on the

resource consumption. Zhang et al. propose in [13] and [14]

a methodology to guide resource provisioning, detecting and

classifying the execution phases of the applications based on

resource consumption. The methodology proposed to detect

the execution phases has two main drawbacks. First, they

consider a linear relation between resources consumption,

which, as we have seen in section IV, is not a realistic

approach. Moreover, the authors assume that the model of

resources consumption is the same for a given application

during all its execution. Second, the authors validate their

proposal using quite stable simulation environments and, thus

they do not consider the influence on the execution model that

can have an execution on a resources-restricted environment.

In addition, due to the evaluation based on simulation, their

work lack an evaluation of other concerns that can affect the

performance on a real execution environment as, for example,

the effects of data sampling granularity.

VI. CONCLUSIONS

In this paper we have summarized our experiences in the

process not only of generating workload profiles for resource

provisioning but also in the process of enforcing resource

profiles in real systems. The focus of our work is put in the

provisioning of resources for clusters of VMs running in large

scale enterprise data centers.

We have motivated the need for application profiles in

such an environment, usually orchestrated by a management

middleware that needs some kind of performance prediction

mechanism even for long running batch jobs. We have also

presented the testing environment prototype we have used, as

well as the results for some experiments that outline some of

the difficulties and hot-spots involved in the generation and

enforcement of workload profiles. Finally we have explored

the construction of simple resource consumption models that

will allow the management middleware to scale VMs to fit the

available resources in the system and still be able to predict

the performance of the applications running on them.
Our study proves that the existence of workload profiles

describing resource consumption over time is not enough to

drive the management middleware in their resource alloca-

tion decisions. Our work highlights the need of an adaptive

profile enforcement technique for this purpose. Our proposed

technique is driven on-the-fly by the observed application

progress.
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