
Trusted Interaction Patterns in Large-scale Enterprise Service Networks

Florian Skopik, Daniel Schall, Schahram Dustdar

Distributed Systems Group

Vienna University of Technology

Argentinierstraße 8/184-1, A-1040 Vienna, Austria

{skopik|schall|dustdar}@infosys.tuwien.ac.at

Abstract—The evolution towards cross-organizational col-
laboration and interaction patterns has led to the emergence
of scalable, Web services-based composition infrastructures.
The success of service-oriented architecture (SOA) was
mainly influenced by the standardization of composition
languages such as BPEL. However, compositions require
humans to be in the loop and ways to interface with people
in a service-oriented manner. In this paper, we discuss
Human-Provided Services (HPS) enabling the seamless in-
tegration of human capabilities in SOA. In complex and
large-scale environments, processes might span interactions
among partially unknown participants residing in different
organizational units. To address the problem of trusted
selection of participants, we introduce a mining approach for
the automatic inference of trust relations. Unlike a security-
based view on trust, our approach relates to the emergence of
trust across humans and services from a social perspective.

Keywords-interaction patterns; trust; mixed systems; hu-
man involvement in SOA; online help and support

I. INTRODUCTION

Collaborations on the Web and in large-scale enter-

prises evolve in a rapid pace by allowing people to form

communities and expertise clusters depending on their

skills and interests. The management of interactions in

these networks becomes increasingly complex as current

tools only support messaging and addressing mechanisms

developed for the early Web.

However, it is difficult - if not impossible - to con-

trol interactions ranging from ad-hoc to process-centric

collaborations. In Web-scale networks, partially unknown

participants might be part of processes that span multiple

geographically distributed units of an organization. We

argue that trusted selection of participants leads to more

efficient cooperation and compositions of human- and

software services. Trust can be discussed from a security

perspective. In this work we follow another view that is

related to how much humans or other systems can rely on

software systems to accomplish their tasks [1]. We believe

that trust and reputation mechanisms are key to the success

of open dynamic service-oriented environments. However,

trust between human and software services is emerging

based on interactions. Interactions, for example, may be

categorized in terms of success (e.g., failed or finished).

Therefore, an important aspect of our approach is the

monitoring and analysis of interactions to automatically

determine trust in service-based systems. Our concepts,

including trust inference and reputation management, are

described in the context of an enterprise use case. Trust

is built upon previous interactions and evolves over time;

thus providing a reliable way to automatically compute

trust. We discuss the implementation of our framework

and its application in enterprise environments.

Our key contributions include: (i) We introduce trust

in the context of a mixed system comprising services

provided by human actors – Human-Provided Services

(HPS, see [2]) – and ‘traditional’ software services. We

extend our previously introduced trust model [3] and

utilize it for trusted expert selection. On the one hand

we demonstrate how trust influences interactions in mixed

service networks; on the other hand we show the impact

of interactions on trust. (ii) Coordination and compositions

are strongly influenced by interaction patterns. We propose

models for the propagation of trust based on delegations

resulting in different types of patterns. We consider (a)

Trust referral in triad interaction patterns, and (b) Trust

attenuation in proxy patterns.

The main focus of this work is to present above

mentioned interactions patterns, an approach for trust

propagation within such patterns, and the discussion of the

TrueExpert framework and its implementation. A detailed

mathematical model on the calculation of trust propagation

techniques is not within the scope of this paper.

The remainder of the paper is organized as follows.

We motivate our work and introduce fundamental re-

quirements on a system managing trust in an enterprise

environment in Section II. Section III deals with the build-

ing blocks of our approach. The fundamental interaction

model, as well as interaction patterns are described in

Section IV. We depict an overview of the the whole

framework and some implementation details in Section V.

Section VI lists related work. We conclude our work with

future perspectives in Section VII.

II. COORDINATION AND COMPOSITION

A motivating use case for our work is depicted in Fig-

ure 1. A process composed of single tasks assigned to hu-

mans or covered by software services, describes the steps

to produce a Computer Aided Design (CAD) drawing, and

handle its final delivery to a customer. A conceptual draft,

e.g., of a mechanical part, is designed by an engineer from

the development department. In parallel a CAD assistant,

belonging to another organizational unit, defines common

symbols for the final drawing which conform to customer’s

requirements and international standards. After these tasks

completed, a skilled drawer produces the drawing. In the

conceptual draft
printout and

delivery

symbol library

CAD drawing

Expert Web

engineer
(contributor)

CAD assistant
(contributor)

drawer
(leader)

Discussion CAD

experts

Process: CAD Drawing

virtual room

RFS response

request for
support (RFS)

trusted

selection

trusted

delegations

conversion
and archive

WS

DL

WS

DL

WS

DL

Symbols:

human

software service

expert service
(general)

expert service
prov. by human

expert service
implemented in
software

WS

DL

WS

DL

Figure 1. Involving experts from the expert web.

last step an assistant cares for printout and delivery to the

customer, and a software service converts the drawing and

stores it in an archive.

We assume, that the single task owners in this pro-

cess exchange only electronic files, and interact using

communication technologies. While various languages and

techniques for modeling such processes already exist, in-

cluding the Business Process Execution Language (BPEL

[4]), we focus on another aspect in this scenario: trusted

online help and support. Usually, in BPEL input and

output data are rigidly specified, however, even for care-

fully planned processes with human participation, ad-

hoc adaptation and intervention is required due to the

complexity of human tasks, people’s individual under-

standing, and unpredictable events. For instance, according

to Figure 1 the drawer receives a drawing draft and a

symbol library. If people have not yet worked jointly on

similar tasks, it is likely, that they need to set up a meeting

for discussing produced artifacts. Especially, if people

belong to different, possibly geographically distributed

organizational units, a personal meeting can be time- and

cost intensive. Therefore, various Web 2.0 technologies,

including forums, wiki pages and text chats, provide well-

proven support for tele-work in collaborative environments

(represented by the virtual room in Figure 1).

However, several challenges remain unsolved. If people,

participating in the whole process, are not able to solve

problems by discussion, who should be asked for support?

How can third parties be contacted and informed about

the current situation? How can they easily be involved in

ongoing collaborations? Moreover, what are influencing

factors for favoring one party over others? How is infor-

mation exchanged, and how can this situation be supported

by service-oriented systems?

The traditional way of discovering support is simply

to ask third persons in someone’s working environment,

the discussion participants are convinced they are able to

help, namely trusted experts. In an environment with a

limited number of people, persons usually tend to know

who can be trusted and what data has to be shared

in order to proceed with solving problems of particular

nature. Furthermore, they easily find ways to contact

trusted experts, e.g., phone numbers or e-mail addresses.

In case requesters do not know skilled persons, they may

ask friends or colleagues, who faced similar problems

before, to recommend experts. The drawbacks of this

traditional way are that people need extensive knowledge

about the skills of colleagues and internal structures of

the organization (e.g., the expertises of people in other

departments). The traditional way of discovering support

is inefficient in large-scale enterprises with thousands of

employees and probably not satisfying if an inquiry for

an expert becomes a major undertaking. Even the use of

today’s computer-supported communication technologies

cannot fully address the mentioned challenges.

The expert web. We propose the expert web, consisting

of connected experts that provide help and support in a

service-oriented manner. The members of this expert web

are either humans, such as company employees offering

help as online support services, or software services,

encapsulating howtos1, knowledge bases, and oracles2

with intelligent reasoning capabilities. Such an enterprise

service network, spanning various organizational units, can

be consulted for efficient discovery of available support.

Users, such as the engineer or drawer in our use case,

send requests for support (RFSs). The users establish trust

in experts’ capabilities based on their response behavior

(e.g., availability, response time, quality of support). This

trust, reflecting personal positive or negative experiences,

fundamentally influences future selections of experts.

As in the traditional sense, experts may also delegate

RFSs to other experts in the network, for example when

they are overloaded or not able to provide satisfying

responses. Following this way, not only users of the

enterprise service network establish trust in experts, but

also trust relations between experts emerge.

III. SUPPORTING CONCEPTS

A. Human-Provided Services

Currently, there is very limited support to enable human

interactions and participation in service-oriented systems.

While specifications such as WS-HumanTask [5] and

BPEL4People [6] define the concepts needed to model

human interactions in BPEL processes, they do not address

how users can create services, register their capabilities

in SOA, and interact in a seamless manner using Web

services technologies. The very idea of HPS is to support

1http://www.ehow.com
2http://www.wolframalpha.com

humans in offering their skills and capabilities as services

(e.g., a ”reviewing service” provided by one or more hu-

man actors). For example, human activities – independent

of any particular process model – can be defined by the

end-user and are mapped onto Web services.

HPSs act as interaction interfaces toward humans, let-

ting users define various HPSs for different collaborative

activities indicating their ability (and willingness) to par-

ticipate in ad-hoc as well as process-centric collaborations.

The users can manage their interactions, which might span

various platforms and services.

In our previous work [2], we introduced a framework

with the following features:

• A Service registry that does not only hold information

regarding software services but also human-based in-

formation such as skill- and user profiles, preferences,

and shared user context (e.g., availability and location

information).

• Interaction support based on the notion of activi-

ties – to structure and manage interactions. Various

artifacts, users, and resources can be managed by

using an hierarchical activity model. Also, activities

determine in which context interactions take place.

• Tools for creating a user-defined activity model serv-

ing as input for the definition of HPS related artifacts

(e.g., WSDL and XML types).

• Dynamic expert profiles are created through mining

of logged interactions.

B. Trust Inference Model

Managing trust in the enterprise service network, means

determining relations between its human- and software

service participants. Therefore, we define a directed graph

GT = (V,E), where the vertices V represent expert

services as well as the users of the services, and multiple

edges E between them reflect their relations for different

situations (i.e., in distinct scopes s described by context

elements, such as the current project and problem domain).

Each edge e = (u, v, c, ρ, s), e ∈ E describes the level

of confidence c = [0, 1] u has in v’s support, and the

reliability ρ = [0, 1] of c ranging from totally uncertain

to fully confirmed (similar to [7]). The scope s describes

situations for applying c and ρ. Confidence and reliability

values are recovered from interactions by monitoring,

analyzing, and interpreting service interaction behavior

(e.g., with respect to pre-negotiated SLAs) (see [8]).

Personal Trust. In our model, confidence cs depends

on the success of analyzed interactions and rewarding

of services. If an expert service v responds reliably and

dependably to u’s RFSs, and u is satisfied with the answer,

the relationship from u to v gets rewarded, and cs(u, v)
increases in the given problem scope s. However, if RFSs

are not sufficiently answered, responses arrive late or not

at all, cs(u, v) decreases. An algorithm dealing with the

realization of this model, also considering the evolvement

over time, is presented in [3]. The reliability ρ of cs de-

pends fundamentally on the number of recent interactions,

i.e., requests and responses. Usually, a predefined number

of requests in a recent time window has to be analyzed

to identify a trend in support quality. Finally, we calculate

trust τs as shown in Equation 1.

τs(u, v) = cs(u, v) · ρ(cs(u, v)) (1)

Recommendation τsrec is built by the combined per-

sonal trust relations of neighbors in a third party service

in the trust network (see Figure 2). This concept is realized

by the means of trust propagation [9], where personal

trust relationships are inherited from one or several inter-

mediaries [10]. In the example in Figure 2, τs1rec(u, v) is

determined by the relations of u’s direct neighbors {w, y}
to v in scope s1. Therefore, recommendation τs1rec(u, v) is

calculated by averaging τs1 (w, v) and τs1 (y, v). Normally,

the impact of single trust relations is weighted considering

u’s relations to recommenders (τs1 (u,w), τs1 (u, y)).

s2

s3

s1
s2

s1

s1
s2

s1

s2

s1

s
3

s
2

s
1

s1

s1

s2

s
2

s
3

s1

u v

w

y

x

z

Figure 2. A network comprising trust relations in distinct scopes.

Reputation τsrep reflects the trust in an expert from

a global view. For instance, in the network in Figure 2,

τs1rep(v) is built by calculating a weighted average of the

trust values of v’s incoming edges in scope s1, therefore,

utilizing relations from neighbor vertices {w, x, y}.

IV. INTERACTION PATTERNS AND TRUST

According to the motivating example in Figure 1,

leaders of tasks in a process can invite participants of

preceding tasks to a discussion in a virtual room, using

Web 2.0 technologies such as discussion forums. If people

are not able to find solutions for occurring problems,

the discussion leader may consult expert services. These

services are selected by considering the discussion leader’s

trust requirements (e.g., a minimum personal trust or

reputation) in expert services.

A. Service Selection Procedure

We distinguish between two roles: requesters and ex-

pert services. Requesters, i.e., service users, are humans

requesting support; expert services are provided by either

humans (HPS) or are implemented in software. A human

can be both a service requester and provider at the same

time.

Algorithm 1 implements the procedure for selecting a

service from the expert web. At first, it is determined if

a scope s that sufficiently describes the current situation

already exists (i.e., context similarity is above a prede-

fined threshold ϑCtx). Otherwise, a new scope is created

Algorithm 1 Create RFS of user u to request support

from service v
Require: network GT , user u, problem descr., trust policy

/* determine s, create support activity */
Scope[]← getAvailableContextualScopes(GT)
EnvDescr ← collectContextElements(u);
s← maxSimilarity(Scope[], EnvDescr)
if (sim(EnvDescr, s) < ϑCtx) ∨ (s = ∅) then

s← createProblemScope(EnvDescr)
addScopeToTrustNetwork(GT , s)

end if
p← createProblemDefinition(u, problem);
a← createSupportActivity(p, s, policy)

/* discover list of potential services */
if penetration(GT , s) ≥ ϑp then

/* discovery based on trust requirements */
v[]← evalTrustRequirements(u, V, s)

else
/* competency coverage fallback */
v[]← evalCompetencyCoverage(V, a)

end if
v ← selectService(v[], u.rules)

RFS ← createRequest(u, v, a)
return RFS

using available data from the environment. This step is

performed by the support requester who specifies context

data that describes the scope, such as the type of the

current problem. Afterward, a support activity is created.

Then the algorithm determines if there is a sufficient

number of trust relations applying to s in GT , to reliably

calculate recommendations and reputation of services. If

this penetration of s in GT is greater than a threshold ϑp,

then the expert services v[] are discovered by evaluating

predefined trust requirements specified by the requester.

Otherwise, if penetration(s) < ϑp, a fallback strategy

is applied and the service providers’ skill profiles are

compared with the problem description and requirements

in s (traditional skill matching). From the pool of services

that fulfill the requester’s trust requirements, the system

picks one based on pre-defined selection rules. Finally, the

request for support (RFS) is compiled. The definitions of

trust requirements and service selection rules are presented

in Section V.

B. Fundamental Interactions

The fundamental interactions when requesting support

are depicted in Figure 3. First, the requester sends an

RFS, specifying the problem and policies for treating the

request. Second, the expert service sends an intermediate

answer, informing the requester that the RFS has been

accepted, rejected or delegated to other members in the

expert web. Third, after fully processing the RFS, the final

answer, including a solution for the requester’s problem,

is delivered. All performed interactions are monitored and

evaluated by the system. The supporting expert service

gets rewarded depending on the success and outcome of

interactions, and a trust relation from the requester to the

service is established.

request

response

Directly supporting

expert service

++
Symbols

interaction:

trust relation:

service user:

expert service:

scope of trust:

requester

acc/rej/del

Figure 3. From interactions to trust.

C. Rewarding and Punishment

We utilize occurring interactions to infer personal trust.

Therefore, we introduce the following methods for re-

warding an expert’s impact on ongoing discussions: (i)

automatic: Availability of services and response behavior

(e.g., rejecting RFSs) are determined through the means

of interaction mining. (ii) semi-automatic: In the RFS the

requester can specify the importance and a hard deadline

for a response. Depending on whether an answer arrives in

time, trust either increases or decreases. (iii) manual: The

discussion leader may grade a service provider’s support

manually (e.g., 4 of 5 stars).

New confidence values are calculated in fixed time

intervals i, e.g., on a weekly basis. Based on earned

rewards, the current confidence value at time i is calculated

by updating the recent value at i − 1. For all kinds of

rewarding we apply the concept of exponential moving

average (EMA) to smoothen the sequence of rewards

as shown in Equation 2. The variable rew represents

the reward, given automatically by the system, or man-

ually by the user, for support in the last time interval;

rewmax is the maximum possible amount (if all RFSs

are served reliably). EMA weights the importance of

recent rewards while not discarding older ones (smoothing

factor α ∈ [0, 1]). Because we maintain relative levels of

confidence and trust (∈ [0, 1]), services can be punished

for bad support by giving comparatively low rewards, i.e.,

rew << rewmax.

csi = α ·
rew

rewmax

+ (1− α) · csi−1
(2)

D. RFS Delegation Patterns

Expert services need not process all RFSs directly, but

may delegate them to other expert services due to various

reasons. For instance, an expert may be overloaded and

therefore, not be able to process an RFS in time. Moreover,

expert services may shield other services from RFSs,

e.g., only a team leader receives RFSs directly that s/he

delegates then to team members. We describe the influence

on trust emergence for two different types of delegation

patterns:

• Triad interaction pattern leading to trust referral.

• Proxy pattern leading to trust attenuation.

Triad Interaction Pattern. We introduce a triad pattern

(Figure 4) realizing delegations of RFSs within the same

contextual or organizational scope, e.g., between experts

in the same knowledge domain (of course, one expert may

be ‘located’ in several scopes). A triad proxy receives an

RFS and forwards it to one of its well-trusted services.

In case of complex problems, an RFS can be split into

sub-requests to reduce response time. Furthermore, the

complete RFS can be delegated to more than one expert

service to increase reliability, i.e., the chance to get a

suitable response. Final responses are not handled by the

triad proxy. As all participating entities in this pattern

belong to the same scope, e.g., knowledge domain, the

expert service(s) may respond directly to the requester. A

typical use case is load balancing in teams of people with

same roles.

request

request

request

+
+

+

++

++

Triad Proxy

response

response

expert

services

requester

Figure 4. Triad interaction pattern.

From the requester’s point of view, the triad proxy

receives reduced rewards (Symbol +) for delegating but

not processing the RFS. The actually supporting expert

services receive rewards from the triad proxy, because of

accepting the delegated RFS. This reward is also reduced,

because the originator of the RFS is not the triad proxy,

and the triad proxy has reduced interest in successfully

processing the request (compared to one of his own RFSs).

However, the requester honors the support provided by the

actually supporting expert service(s) equally compared to

directly supporting services (compare Fig 3, symbol ++).

Therefore, we understand highly weighted trust relations

from the requester to the initial expert service, acting as a

triad proxy, to be referred to the actual expert services.

Proxy- and Master-Slave Pattern. We adopt the well-

known proxy- and master-slave patterns from the domain

of software engineering [11], as applied in the domain

of business interactions by [12]. In contrast to the triad

pattern, the initial requester does not know the expert

services an RFS is delegated to. Furthermore, the proxy

may perform certain pre-processing of the RFS. The proxy

pattern (forward RFS to only one expert service) and

master-slave pattern (split RFS and forward to several

‘slaves’) are used for delegations across contextual or or-

ganizational scopes. For instance, the requester in Figure 5

sends an RFS to the proxy residing in the same scope. This

proxy can rephrase an RFS (‘translate’) to be understood

by an expert in another scope. The response of the expert

service is processed again, before forwarding it to the

initial requester. A typical example may be a head of

department who acts as contact person for external people,

while the actual members are not visible to the outside.

request

response

requestresponse

request

response

+
++

+
Proxy

expert

services

requester

Figure 5. Proxy and master-slave patterns.

In contrast to the triad pattern, no trust relations from the

requester to the actually supporting expert services across

scopes are established. Therefore, the requester highly

rewards the proxy, similar as directly supporting services.

However, because the originator of the RFS is not the

proxy (therefore, being less dependent on the response of

the expert services), rewards given from the proxy to the

expert services are reduced (equally to the behavior of

the triad proxy). This leads to a trust attenuation from the

expert service’s point of view. Furthermore, the number of

people or services building trust in the expert service(s) is

smaller in this pattern. This reduced visibility of services’

contributions has negative impact on their reputation.

V. TRUEEXPERT ARCHITECTURE

We depict the overview of the centralized TrueExpert

architecture in Figure 6. The block on the left side con-

tains common services from activity-centric collaboration

systems. On the right side, the TrueExpert services are

shown. The lower layer comprises of services supporting

fundamental concepts, including data access, message

routing and interaction logging; on higher level services

for trust management, RFS creation, and expert ranking

are located. These services are utilized via SOAP- and

REST Web service interfaces from a user portal, imple-

mented as Java Portlets3 on top of the Liferay4 enterprise

portal.

We outline exemplary some implementation details,

focusing the realization of the introduced trust concepts,

including the RFS model, trust requirements for service

discovery and selection, and rules for RFS flow control.

A. Trust Requirements Rules

The trust network is implemented as directed graph

using the JUNG5 framework. In this graph model, the

edges are annotated with trust metrics, i.e., personal trust,

recommendation, reputation and their reliability, and ref-

erences to collections of contextual information (scopes)

describe situations for applying them.

global TrustGraphDAO tgDAO;

rule "calculate score of services (without reliability)"

salience 100

no−loop true

when

service:Service() // all potential services

user:User() // myself

scope:Scope() // my current problem scope

then

URI scopeId = scope.getURI();

URI userId = user.getUserURI();

URI serviceId = service.getServiceURI();

int trust = tgDAO.getPersonalTrust(userId, serviceId, scopeId);

int rel = tgDAO.getTrustReliability(userId, serviceId, scopeId);

int rec = tgDAO.getRecommendation(userId, serviceId, scopeId);

int rep = tgDAO.getReputation(serviceId, scopeId);

int score = 0.5∗trust+0.3∗rec+0.2∗rep; // personal weighting

service.getPersonalization().setMetric("trust",trust);

service.getPersonalization().setMetric("rel",rel);

service.getPersonalization().setMetric("rep",rep);

service.getPersonalization().setMetric("myScore",score);

end

Listing 1. Personalized trust aggregation.

3http://jcp.org/aboutJava/communityprocess/final/jsr168/
4http://www.liferay.com
5http://jung.sourceforge.net

Trust Requ.

Management

User Administration

Service

Management

Activity

Management

REST/SOAP API

Social Network

Management

Interaction

Monitoring

Message

Routing

Data Access

Control

Computational

Trust Model
HPS Middleware

Rule

Management

TrueExpert Services

Expert Ranking
Expert

Reputation

Expert

Discovery

Rewarding

Service
RFS Creation

RFS Delegation

Management

Common Services

Context/Scope

Management

User Portal

Process

Visualization

Manual

Rewarding

Trust Requ.

Definition

Discussion

Forum

Expert

Involvement

Service Registry

And Profiles
Activity DB RFS Store

Rule Base

- Trust Requirements

- Service Selection

Trust Mining Data

- Interactions

- Trust and Reputation

Figure 6. System architecture enabling trusted help and support in the expert web.

We use the popular Drools6 engine, to let users define

their own trust requirements on potentially supporting

expert services. Listing 1 shows an example of aggregating

trust data about services, i.e., combine personal trust, rec-

ommendation and reputation values to myScore, which

can be used for subsequent service discovery operations.

Before the depicted rules are applied, a user looking

for support has to provide his/her own user profile

and his/her current problem domain (scope), e.g., in

form of activities [3]. Furthermore, copies of all available

service profiles are loaded in the working memory of

the rule engine. After evaluation, each service profile is

temporarily personalized for the user.

Listing 2 shows some example rules, evaluating a user’s

trust requirements based on the personalized service pro-

files. Each service fulfilling at least one rule becomes a

potentially supporting expert service. The selected-flag

indicates that a service is applicable in the given scope

(and for the given problem) from the user’s point of view.

rule "Select service by average score"

salience 50

when

service:Service(personalization.getMetric("myScore">= 0.85)

then

service.getPersonalization().setSelected(true);

end

rule "Select personally trusted services"

salience 50

when

service:Service(personalization.getMetric("trust") > 0.7 &&

personalization.getMetric("rel"> 0.5)

then

service.getPersonalization().setSelected(true);

end

Listing 2. Discover services upon requirements.

B. RFS Routing

Different system strategies for selecting one expert

service from the pool of discovered services that cover

a user’s trust requirements, can be realized with selection

rules (Listing 3). For instance, in case of urgent requests,

the system picks services with low workload (enabling

load balancing); however, for supporting risky tasks, a

service with high reputation is selected.

6http://www.jboss.org/drools/

rule "Urgent RFS"

salience 50

when

rfs:RFS(eval(policy.flag.urgent))

serviceList:List() // all services fulfilling trust requirements

then

Service service = getServiceLWL(serviceList, 3);

rfs.assignService(service);

end

rule "Risky RFS"

salience 50

when

rfs:RFS(eval(policy.flag.risky))

serviceList:List() // all services fulfilling trust requirements

then

Service service = getServiceHR(serviceList);

rfs.assignService(service);

end

// get services with low work load (below numRFS in queue)

function Service getServiceLWL(List serviceList, numRFS) {...}

// get service with highest reputation

function Service getServiceHR(List serviceList) {...}

Listing 3. Rules for service selection.

An excerpt of the RFS schema definitions is shown in

Listings 4, defining complex data structures, and Listing

5, defining the binding of the HPS WSDL to the (HPS)

infrastructure services (e.g., document review services).

• The GenericResource defines common attributes

and metadata associated with resources such as

documents or policies. A GenericResource can

encapsulate remote resources that are hosted by a

collaboration infrastructure (e.g., document manage-

ment).

• The RFS Policy plays an important role for con-

trolling interaction flows, e.g., time constraints, dele-

gation behavior including decisions whether to re-

spond to the requester directly or to a delegating

proxy, and so on.

• Request defines the structure of an RFS (here we

show a simplified example). From the user’s point

of view XML Forms (XForms7) are used to render

graphical user interfaces.

• A Reply is the corresponding RFS response (we

omitted the actual XML defintion).

7http://www.w3.org/MarkUp/Forms/

<xsd:schema tns="http://myhps.org/rfs">

<xsd:complexType name="GenericResource">

<xsd:sequence>

<xsd:element name="Location" type="xsd:anyURI"/>

<xsd:element name="Expires" type="xsd:dateTime"/>

<xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Request">

<xsd:sequence>

<xsd:element name="Policy" type="GenericResource"/>

<xsd:element name="ReviewDoc" type="GenericResource"/>

<xsd:element name="Comments" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="ReviewRequest" type="Request"/>

<xsd:element name="AckReviewRequest" type="xsd:string"/>

<xsd:element name="GetReviewReply" type="xsd:string"/>

<xsd:element name="ReviewReply" type="Reply"/>

</xsd:schema>

Listing 4. RFS schema definition.

<wsdl:portType name="HPSReviewPortType">

<wsdl:operation name="GetReview">

<wsdl:input xmlns="http://www.w3.org/2006/05/addressing/wsdl"

message="GetReview" wsaw:Action="urn:GetReview">

</wsdl:input>

<wsdl:output message="AckReviewRequest" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="HALSOAPBinding" type="HPSRFSPortType">

<soap:binding style="document"

transport="http://xmlsoap.org/soap/http"/>

</wsdl:binding>

Listing 5. WSDL RFS binding.

The protocol (at the technical middleware level) is

asynchronous allowing RFSs to be stored, retrieved, and

processed. For that purpose we implemented a middle-

ware service (HPS Access Layer - HAL) which dis-

patches and routes RFSs. In Listing 5, GetReview

depicts a WSDL message corresponding to the RFS

ReviewRequest. Upon receiving such a request, HAL

generates a session identifier contained in the output

message AckReviewRequest. A notification is sent to

the requester (assuming a callback destination or notifica-

tion endpoint has been provided) to deliver RFS status

updates for example; processed RFSs can be retrieved

via GetReviewReply. Note, the detailed notification

mechanism is not described in this paper that focuses on

the realization of trustworthy interaction patterns. More

about HPS in detail can be found in [2].

C. RFS Delegation

rule "Delegate RFS when overloaded"

when

rfs:RFS()

service:MyService(rfsQueue.length > 10)

then

rfs.setResponse(RFSResponse.DELEGATED,

new Message("I’m really busy, so I delegated your RFS."));

end

rule "Reject urgent RFS on Fridays"

when

rfs:RFS(eval(flag.urgent))

service:MyService(workingproperties.lastDayOfWeek==Calendar.FRIDAY)

then

if(GregorianCalendar.getInstance().get(Calendar.DAY OF WEEK) == Calendar.FRIDAY)

rfs.setResponse(RFSResponse.REJECTED,

new Message("It’s Friday, don’t stress me out!"));

end

Listing 6. RFS acceptance and delegation rules.

We realize delegations by the means of ECA8 rules.

While events for applying rules are hard-coded, e.g. on re-

ceiving RFSs, conditions to be met and consequences can

be flexibly configured by service providers (MyService).

Listing 6 shows two example rules for automatically

responding to RFSs. Requests are delegated (if possible)

when the work load is high, i.e., there are more than 10

requests waiting to be processed. Furthermore, no urgent

requests are accepted on Fridays. The definition of rules

can be restricted for users based on contractual terms.

D. Rewarding Mechanisms

Based on interaction success and reliability of services,

configured rules calculate rewards. These rules operate on

top of interaction logs and look similar to the presented

rules before. Our current implementation accounts for fun-

damental metrics as depicted in Table I. After evaluation of

rewarding rules, the system updates confidence values and

their reliability in the corresponding trust scopes. Besides

these interaction metrics, we incorporate a manual reward

provided by users. Both, automatic and manual rewards,

are equally weighted and merged (averaged), to extend the

dimensions of trust, and strengthen its information value

for the users of the expert web.

Table I
METRICS UTILIZED FOR TRUST DETERMINATION.

metric name range unit description

availability [0,100] % ratio of replied to unreplied RFSs

responsiveness [0,96] hrs average response time in hours

experience [0,∞[1 number of RFSs served

reciprocity [-1,1] 1 ratio of provided to consumed help

man. reward [0,5] 1 manually assigned scores

VI. RELATED WORK

The support of ad-hoc collaboration is a major challenge

in cooperative information systems. The system in [13] is

capable of supporting ad-hoc interactions in virtual teams.

Based on log analysis, human interaction patterns can be

extracted [12]. In [13], activity-centered computing and its

patterns were introduced.

Major software vendors have been working on stan-

dards addressing the lack of human interaction sup-

port in service-oriented systems. WS-HumanTask [5] and

Bpel4People [6] were released to address the emergent

need for human interactions in business processes. These

standards specify languages to model human interactions,

the lifecycle of human tasks, and generic role models.

Role-based access models (see [5] and [14]) are used

to model responsibilities and potential task assignees in

processes. In HPS, we also follow a Web services-based

approach to support human interactions in a service-

oriented manner. However, HPS and Bpel4People are

complementary, and not competing approaches. HPSs are

services that can be created by the end-user, whereas

Bpel4People defines concepts (e.g., role model and log-

ical people groups) to model interactions in BPEL-based

application scenarios.

8Event-Condition-Action

Marsh [15] introduced trust as a computational con-

cept, including a fundamental definition, a model and

several related concepts impacting trust. Based on his

work, various extended definitions and models have been

developed. Some surveys of trust related to computer

science have been performed [10], [16], [17], which out-

line common concepts of trust, clarify the terminology

and describe the most popular models. From the many

existing definitions of trust, those from [17], [18] describe

that trust relies on previous interactions and collaboration

encounters, which fits best to our environment. SOA-

based infrastructures are typically distributed comprising

a large number of available services and huge amounts

of interaction logs. Therefore, trust in SOA has to be

managed in an automatic manner. A trust management

framework for service-oriented environments has been

presented in [19], however, without considering particular

application scenarios with human actors in SOA. Context

dependent trust was investigated by [10], [15], [16], [17].

Context-aware computing focusing modeling and sensing

of context can be found in [20], [21], [22].

VII. CONCLUSION AND OUTLOOK

In this paper we introduced concepts, centered around

trust and Human-Provided Services in mixed service sys-

tems, and discussed their application in context of the

expert web enterprise use case. We introduced models

for rewarding interactions and establishing trust on top

of delegation patterns that typically occur in real-world

scenarios. Besides the detailed use case and application of

trust in enterprise networks, we outlined the realization of

our approach, focusing implementation details that apply

ECA rules.

Currently, we are going to apply our software solution

in the COIN9 project. This project deals with research in

supporting collaboration of people within virtual organi-

zations built of SMEs. Our TrueExpert framework will be

utilized by real end-users to allow more efficient adoption

of available knowledge, spanning humans and services

from various organizations and domains. Experiences and

results collected during this empirical evaluation will be

used to improve our underlying trust model.

ACKNOWLEDGMENT

This work is supported by the European Union through

the IP project COIN (FP7-216256).

REFERENCES

[1] M. Salehie and L. Tahvildari, “Self-Adaptive Software:
Landscape and Research Challenges,” ACM Trans. on Au-
tonomous and Adaptive Systems, vol. 4, no. 2, May 2009.

[2] D. Schall, “Human Interactions in Mixed Systems - Ar-
chitecture, Protocols, and Algorithms,” Ph.D. dissertation,
Vienna University of Technology, 2009.

[3] F. Skopik, D. Schall, and S. Dustdar, “The Cycle of Trust
in Mixed Service-oriented Systems,” in Euromicro SEAA,
2009, pp. 72–79.

9http://www.coin-ip.eu/

[4] OASIS, “Business Process Execution Language for Web
Services, Version 2.0.” 2007.

[5] M. Amend et al., “Web Services Human Task (WS-
HumanTask), Version 1.0.” 2007.

[6] A. Agrawal et al., “WS-BPEL Extension for People
(BPEL4People), Version 1.0.” 2007.

[7] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt, “An In-
tegrated Trust and Reputation Model for Open Multi-agent
Systems,” Autonomous Agents and Multi-Agent Systems,
vol. 13, no. 2, pp. 119–154, 2006.

[8] F. Skopik, D. Schall, and S. Dustdar, “Trustworthy Inter-
action Balancing in Mixed Service-oriented Systems,” in
ACM Symposium on Applied Computing, 2010.

[9] C.-N. Ziegler and G. Lausen, “Propagation Models for
Trust and Distrust in Social Networks,” Information Sys-
tems Frontiers, vol. 7, no. 4-5, pp. 337–358, 2005.

[10] D. Artz and Y. Gil, “A Survey of Trust in Computer Science
and the Semantic Web,” Journal of Web Semantics, vol. 5,
no. 2, pp. 58–71, 2007.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software.
Boston, MA, USA: Addison-Wesley, 1995.

[12] S. Dustdar and T. Hoffmann, “Interaction Pattern Detection
in Process-oriented Information Systems,” Data Knowl.
Eng., vol. 62, no. 1, pp. 138–155, July 2007.

[13] P. Moody et al., “Business Activity Patterns: A New Model
for Collaborative Business Applications,” IBM Systems
Journal, vol. 45, no. 4, pp. 683–694, 2006.

[14] J. Mendling, K. Ploesser, and M. Strembeck, “Specify-
ing Separation of Duty Constraints in BPEL4People Pro-
cesses,” in Business Inf. Systems, 2008, pp. 273–284.

[15] S. P. Marsh, “Formalising Trust as a Computational Con-
cept,” Ph.D. dissertation, University of Stirling, April 1994.

[16] A. Jøsang, R. Ismail, and C. Boyd, “A Survey of Trust
and Reputation Systems for Online Service Provision,”
Decision Support Systems, vol. 43, pp. 618–644, 2007.

[17] T. Grandison and M. Sloman, “A Survey of Trust in
Internet Applications,” IEEE Communications Surveys and
Tutorials, vol. 3, no. 4, 2000.

[18] L. Mui, “Computational Models of Trust and Reputation:
Agents, Evolutionary Games, and Social Networks,” Ph.D.
dissertation, MIT, December 2002.

[19] D. Kovac and D. Trcek, “Qualitative trust modeling in
SOA,” Journal of Systems Architecture, vol. 55, no. 4, pp.
255–263, 2009.

[20] G. D. Abowd, A. K. Dey et al., “Towards a Better Under-
standing of Context and Context-Awareness,” in Interna-
tional Symposium on Handheld and Ubiquitous Computing,
1999, pp. 304–307.

[21] N. A. Bradley and M. D. Dunlop, “Toward a Multi-
disciplinary Model of Context to Support Context-aware
Computing,” Human-Computer Interaction, vol. 20, pp.
403–446, 2005.

[22] S. W. Loke, “Context-aware Artifacts: Two Development
Approaches,” IEEE Pervasive Computing, vol. 5, no. 2, pp.
48–53, 2006.

