Appeared in: PDP 2011, http://dx.doi.org/10.1109/PDP.2011.24, IEEE

Job Scheduling with License Reservation: A Semantic Approach

Jorge Ejarque*i, Andras Micsik§, Raiil Sirvent®, Peter Pallinger§, Laszlo Kovacs® and Rosa M. Badia*f
*Grid Computing and Clusters Group - Barcelona Supercomputing Center (BSC), Barcelona, Spain
f Artificial Intelligence Research Institute - Spanish National Research Council (IIIA-CSIC), Barcelona, Spain
1 Computer Architecture Department - Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
$Distributed Systems Department - Computer and Automation Research Institute
Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary
{jorge.ejarque, raul.sirvent, rosa.m.badia} @bsc.es, {micsik, pallinger, laszlo.kovacs} @ sztaki.hu

Abstract—The license management is one of the main
concerns when Independent Software Vendors (ISV) try to
distribute their software in computing platforms such as
Clouds. They want to be sure that customers use their software
according to their license terms. The work presented in this
paper tries to solve part of this problem extending a semantic
resource allocation approach for supporting the scheduling of
job taking into account software licenses. This approach defines
the licenses as another type of computational resource which is
available in the system and must be allocated to the different
jobs requested by the users. License terms are modeled as
resource properties, which describe the license constraints. A
resource ontology has been extended in order to model the
relations between customers, providers, jobs, resources and
licenses in detail and make them machine processable. The
license scheduling has been introduced in a semantic resource
allocation process by providing a set of rules, which evaluate
the semantic license terms during the job scheduling.

Keywords-multi-agent, semantics, scheduling, resource allo-
cation, software licenses, grid computing, cloud computing,
distributed systems.

I. INTRODUCTION

The Cloud Computing [1] paradigm aims to offering
computational resources (infrastructure, platform and soft-
ware) as services across the Internet. In cloud computing,
different applications belonging to different Independent
Software Vendors (ISV) are executed by several users and
Service Providers (SP) on resources owned by different
Infrastructure Providers. In such a scenario, the management
of software licenses is a crucial issue.

ISVs distribute their software under licenses with a wide
variety of limitations and restrictions, which must be re-
spected when the software is executed in the cloud. On
the other side, Service and Infrastructure Providers have
to be licensed to execute the required software requested
by the users, so they also have to understand the license
term and they have to check if their users are allowed to
execute the requested software. However, a software license
is typically a legal text with a wide variety of terms, which
can not be automatically processed by machines. Therefore,
the current systems for allocating licenses are bound to
a set of license types which support few license terms.
Moreover, the extension of these systems for supporting

new license types and terms requires a lot of effort, because
system developers have to implement the functionality for
understanding and managing each type of license and term.

Based on these assumptions, we propose a semantic ap-
proach for scheduling the jobs in Service and Infrastructure
Providers taking into account the different software licenses.
In this paper, we suggest a way to sematically describe
software licenses as resources and license terms as resource
properties. In this way, computers can understand license
terms and consequently, licenses can be automatically al-
located to the different requested jobs as another kind of
resource according to their properties (license terms).

The paper is distributed as the following: Section II
describes some related work, which is interesting for our
approach; Section III presents our semantic model for the
different types of software licenses as resources; afterwards,
Section IV shows the software licenses in the semantic
resource allocation mechanism; and Section V presents
a usage scenario used to validate the license scheduling
including some measurements and implementation details.
Finally, Section VI concludes the paper and gives some
guidelines for future work.

II. RELATED WORK

There is quite few work done in the area of semantic
modeling of software licenses and even fewer attempts to
use such models in the management of service-oriented
infrastructure.

In [2] the authors provide an ontological framework
for the description of software license agreements. Their
ongoing work is in the direction to facilitate autonomic
license management with the help of knowledge manage-
ment tools. It is not known in the literature whether this
effort successfully reached its goals. The paper [3] tackles a
similar problem in the area of Digital Rights Management
(DRM). There are several languages for rights expression,
which are non-interoperable with each other. The authors
suggest a generic model for DRM from which several
specific rights expression formats can be generated. The Cre-
ative Commons Rights Expression Language (ccREL) [4]

micsik
Typewriter
Appeared in: PDP 2011, http://dx.doi.org/10.1109/PDP.2011.24, IEEE

provides ways to express license properties in RDF [5].
License properties are categorized with keywords such as
permits, prohibits, requires, etc. The possible values for
permits includes reproduction, distribution and derivative
works, which shows that the ontology is focused on media
and documents, and therefore cannot be used as it is for
software licenses.

Regarding overall issues about software licenses we
would like to highlight the SmartLM project [6]. It is a
research project for introducing the license management
in distributed platforms such as grids and clouds. The
approach of this project is to offer the licenses as services
and negotiate the usage by means of Service Level
Agreements (SLA). Despite of the differences on modeling
between our approach (licenses as services instead of
resources), we feel that some of the results of our work can
be interesting for this project.

III. SOFTWARE LICENSE ONTOLOGY

Software licenses are key components of distributed
processing, especially the planning of the execution of
long-running, computation-intensive workflows often used
in Grid [7] and Cloud environments. The lack of enough
licenses can block the execution of a workflow similarly
to the lack of appropriate computing resources. Despite
that, the topic of intelligent license allocation is rather
undeveloped today. One cause may be that licenses are a type
of legal texts, and the machine understanding or machine
understandable representation of such texts is problematic.
Furthermore, there exists a huge variety of licenses, and
the complete conceptualization of software licenses seems
almost impossible. Hence, we try to take a practical ap-
proach; firstly, we only work with a subset of license content
minimally required for job scheduling, secondly, we provide
a pragmatic but extensible core for the semantic description
of software licenses, and thirdly we limit the semantic
descriptions to the viewpoint of resource management.

In the sense of the above criteria, software licenses are
described with the following key properties:

o The licenser (the provider of the license)

o The licensed software

o The license terms containing the conditions for using
the software

The great variety of license terms can be grouped into
some main categories. The first category is about time: the
software may be run in given daily periods, the license may
have an expiration, or the license may be consumptive (a
fixed number of runs is allowed), etc. Our second category
is about the location: in which countries, in which places,
on which IP addresses the software can be used. Often, the
license is restricted to a single Grid or Cloud or to a single

Provider —> Actor ¥ isPermittedToUse

isProvidedBy _ - v AN
. \ LicenseTermUser

-
-

Resource hasProperty ResourceProperty

™\ f

License hasTerm

LicenseTermCPU

hasMaximum: int
LicenseTermTemporal
hasDesription: string hasStartDate: date
% isAllowTerm: boolean hasEndDate: date
/, \\ I’
‘. ~fisPartof
.
,// isFor LicenseTermHost

Software

LicenseTerm

isLicenseRequired: boolean

Figure 1.
ontology

Excerpt of classes and relations in the resource description

host. Another subtype of this class is the export restrictions
to certain countries. The third category is about the cus-
tomer; who can execute the software? This is somewhat re-
lated to the second category, as the country, the employer, or
the legal status of the customer may be involved. Typically,
software is provided to legal entities (such as companies,
institutes, etc.) or individuals. Furthermore, re-selling of the
software in terms of Grid-like computations for third parties
may be regulated as well. The fourth category defines the
level of allowed parallel executions; how many instances of
the software may be run simultaneously? Often, the license
is broken up into base licensing and additional, per-CPU
licensing.

Our contribution in this paper is the extension of a cur-
rent scheduling and monitoring environment for job execu-
tions [8] with license management. The existing environment
was based on an ontology describing the most important
concepts for our task. The ontology is derived from the
Grid Resource Ontology (GRO) [9], which conceptualized
the Grid domain as the result of several EU projects, and
contains more than 100 concepts and relationships. GRO
includes the concepts for processes, infrastructure, users,
security, tasks and jobs. GRO is capable for the semantic
description of customer jobs and resources but it misses
concepts for describing resource allocation and historical
data. The GRO has been extended in the scope of the BREIN
project [10] in order to cover these aspects, and was further
enriched towards the description of software licenses as
depicted in Figure 1.

Within our ontology, resource requirements have been
introduced as a set of required abstract GRO Resources in
the GRO Task definition, which models an abstract job. This
definition has been also extended with time constraints such
as expected duration, deadline, earliest possible start, etc.
The scheduling result (assigned resources and time slot)
has been introduced on the GRO Process, which incarnates
the GRO Task. GRO Process and Task descriptions are also

2010-07-14 12:00
/sta/rts7-\t
uses
\ Resource
collection 1

lprovided by
License
Provider

Figure 2. Example for a scheduled job and its allocated resources including
a license

useful for recording past events and the schedules for future
events.

Required resources are linked to the task definition as
resource sets. A resource set is typically a host, a container
of more detailed resource descriptions (disk, CPU, etc.)
with resource properties (e.g. size of disk). Furthermore,
tasks are also linked to their representing agents and to
related business information (such as customer data, service
provider, agreed SLA). Furthermore, the job description for
the task contains the concrete plans of the service provider to
fulfill the task requirements, and thus it contains all selected
scheduling parameters and resources (Figure 2).

Our aim was to further extend task requirements and
job descriptions to cover the requirements about software
licenses. A software license is a consumable resource for
which the capacities and consumption has to be planned and
managed likewise usual Cloud or Grid resources. Therefore,
it was a logical step to attach license instances as required
and/or allocated resources to tasks. Thus, a scheduled job
contains a set of resources to be used and this resource set
contains the used licenses as well. A further advantage of
this approach is that the SoftwareLicense subclass of the
Resource class, by its parent properties, is linked to the
business point of view of the executing environment, so
for example the issuer of the license can be semantically
described as a special type of provider. Furthermore, the
use of the licenses can be recorded as resource usage entities
similarly to the scheduled usage of hosts, etc.

The actual content of the software license is reflected in
the license terms (Figure 3). Each LicenseTerm describes
one type of restriction or permission contained in the
license. For example, a license term may restrict the use of
the licensed software to a single IP address or to a single
CPU. License terms may be permissive or restrictive, and
furthermore they can be categorized based on the target of
the term. Based on our use cases we defined some basic
categories for license term as a starting point based on their
targets:

is allow term

Software X

Maximum 2 parallel

Software License has maximum
License has term Term CPU w’
execution threads
are allowed.

is provided

by

y -true

License is usable by =
Term User

License
Provider

BSC members are
allowed to use the
software.

Figure 3. Example for a software license description

« CPU: is about simultaneous use of the software on
multiple processors.

« Host: is about the set of hosts where the software may
be run.

« Temporal: is about intervals and frequencies the soft-
ware may be run.

o User: is about the possible users of the software.

The complete formalization of license terms would have
gone far beyond the scope of our effort, therefore we pro-
vided a hybrid representation of license terms in OWL [11];
the license term individual contains the original text from the
license, and additional properties manually extracted from
the text. Term properties can be modelled and extended on
demand based on the current application scenario. In our
case the maximum number of CPUs, the expiry date of the
license, the list of allowed hosts and users were explicitly
defined in the ontological description of licenses.

A complete model of licenses in fact may contain arbi-
trary boolean combinations of license terms, i.e. expressions
created using atomic terms, AND, OR, and parentheses.
The presented solution is a simplification, which makes
implementation feasible and fits most of our use cases
and applied software licenses. Our license terms for one
license are in AND relationship, which means that all terms
of the license must be satisfied. The OR relationship can
be modeled by providing several ontology instances for a
single license, of which only one has to be satisfied. These
alternative instances of the same license are grouped together
(using the isPartOf property) so that they cannot be used
simultaneously for different jobs.

The more complex cases for checking license applicability
can be handled with rules. Rules can be used to place flags
of incompatibility into the description of a scheduled job,
thus preventing the selection of certain resource-license-
user combinations. The set of such rules can be extended
on-demand, as it is required by the software options
offered by the service provider. In practice, we checked
two alternatives to implement such rules: SWRL [12] and
Jena built-in rules [13], and selected Jena built-in rules as
they provide more flexibility and comfort in the specific

Semantic Metadata
Repository

1. Get Possible, 0. Register
Resources Resource

Job Agent Container /

Scheduler /

2. Agent
Negotiation

Resource Agent Container

\ Scheduler

Rule Engine
2.2. Evaluate
Proposals
Proposal
Selection Beliefs
Rules

Ontology

N2 Rule Engine
2.1. Generate
Proposals

Make
Ontology

Beliefs Proposal
Rules

Figure 4. Sematic Scheduling framework overview

implementation. For example, such rules can check if the
customer is affected by any export restrictions, whether the
scheduled execution is after the expiry of the license, etc.
Specific examples for these rules are given in next section.

IV. SEMANTIC SCHEDULING OF LICENSES FOR JOBS

In our previous work, a framework has been developed
for allocating resources to the jobs and service executions
requested by different users [8]. This framework combines
different promising technologies such as multi-agents for
improving adaptability and distributed problem solving and
semantics for improving the extensibility and interoperabil-
ity with heterogeneous resources from different providers.
Due to the semantic capabilities of the framework, we opted
for the introduction of semantic scheduling of licenses as
another kind of resource which must be allocated according
to the job requirements.

Figure 4 shows an overview of this framework which
is composed by four different components. There are two
differentiated parts in the architecture: the part which is
related to the management of jobs and the part which is
in charge of resource provisioning. The job management
part allows customers to make all actions related to their
jobs (submit, cancel,etc.), while the resource provisioning
part allows the system administrator to add and remove
resources.

Both parts are built on top of a JADE agent platform [14].
The platform can be distributed across multiple locations
deploying containers on each of them. Moreover, it imple-
ments a messaging system, which allows the communica-
tion between agents located on different containers. The
distributed configuration of the agent platform can improve
the scalability of the system because the different parts can
be processed in parallel on multiple hosts.

Customers’ jobs and resources are represented in the
system by software agents. Job Agents (JA) are in charge of
managing the customers’ jobs and Resource Agents (RA) are
in charge of managing the providers’ resources. Moreover,
the scheduling of jobs in the different resources is made

by an agreement reached from a negotiation between a Job
Agent and different Resource Agents. Apart from the job
management and resource provisioning parts, the system ar-
chitecture contains a Semantic Metadata Repository (SMR).
During the initial setup (Figure 4 interaction 0), the
RAs register the description of their managed resources
into the SMR to enable the resource for job executions.
The resource description includes the resource properties,
the available software and their licenses. When a job is
submitted to the system the job request is semantically
annotated identifying the customer who has requested the
job and specifying the resource requirements (including
the software and type of license) and time constraints.
Afterwards, the framework builds a semantic query based
on the job description in order to find the capable resources
for executing the job (Figure 4 interaction 1). Following
lines show an example of this type of semantic query.

SELECT DISTINCT ?id ?host ?license

WHERE {
?host tech:isProvidedBy ?rm .
?rm biz:actor_name ?id .
?host tech:containsResource ?proc .
?proc rdf:type gro:Processing .
?proc gro:hasResourceProperty ?memory .
?memory rdf:type tech:MemoryCapacity .
?memory tech:Mbytes ?mem_cap .
FILTER (?mem_cap >= 1024""xsd:int)

. more filters

?host tech:containsResource ?image .

?image rdf:type tech:Image

?image tech:containsResource gro:Software_XX .
?license rdf:type gro:License .

?license license:isForSoftware gro:Software_ XX }

The first part of the query looks for computing resources
whose properties match with the properties described in the
resource requirements. The final part of the query checks
if the software is installed in the available images for the
computing resource and gets the available licenses for this
software. All the capable resource combinations selected
by the query are linked to the job request description using
the hasCandidateResources property as shown in the next
example. HostA and lic_softX are one of the candidate
resource combinations selected by the SPARQL [15] query
for fullfilling required host and license software.

<rdf:Description rdf:about="gro:jobl">
<rdf:type rdf:resource="gro:Execute_Task"/>
<gro:hasActionState rdf:resource="tech:requested"/>
<gro:hasResourceSet rdf:resource=gro:Requirement_jobl"/>

<tech:hasCandidateResources rdf:resource= "gro:jobl_SetA"/>
<tech:hasCandidateResources rdf:resource= "gro:jobl_SetB"/>
<tech:hasCandidateResources rdf:resource= "gro:jobl_SetC"/>

<tech:hasDeadline>2010-08-01T00:40:00</tech:hasDeadline>
<tech:hasEarliestStartDate>2010-08-01T00:00:00
</tech:hasEarliestStartDate>
<tech:hasLatestStartDate>2010-08-01T00:20:00
</tech:hasLatestStartDate>
<tech:expectedDuration>20</tech:expectedDuration>

</rdf:Description>

Job Agent

Resource Agent

1. Select applicable resources
(hw + sw + license)
|
1 2. Send job requests
to selected
resources

3. Filter licenses m

1

1

r

1

1

1

1 '
1 4. Select possible schedules
1

1

1

1

1

r

1

(based on host and license
availability)

5. Send back suggested
schedules

6. Select best schedule
Rules T

N 7. Accept selected
1
1

schedule

Semantic scheduling negotiation sequence

Figure 5.

<!--requirements-->

<rdf:Description rdf:about="gro:Requirement_jobl">
<rdf:type rdf:resource="gro:Resource_Set"/>
<gro:isPartOfExecuteTask rdf:resource="gro:jobl"/>
<gro:containsResources rdf:resource="gro:Req_jobl_host"/>
<gro:containsResources rdf:resource="gro:Req_ jobl_licX"/>

</rdf:Description>

<!--selected resources—->

<rdf:Description rdf:about="gro:jobl_SetA">
<rdf:type rdf:resource="gro:Resource_Set"/>
<gro:containsResources tech:host_A"/>
<gro:containsResources license:lic_softX"/>

</rdf:Description>

After the selection of candidate resources and their Re-
source Agents, the Job Agent initiates a negotiation with the
selected Resource Agents in order to find the best allocation
for the job (Figure 4 interaction 2). A job allocation in our
system is a job incarnation which uses candidate resources
during a time slot.

Figure 5 shows sequence for deciding the job allocation
according to semantic descriptions. Once the Job Agent has
identified the Resource Agent, which contains the candidate
resources (Step 1), it sends a call for scheduling proposals
to the selected RAs including the job description with
the selected candidate resources (Step 2). Each Resource
Agent will evaluate the proposal according to the resource
provider scheduling rules taking into account the requested
job description, the resource description and the current
resource load (jobs assigned to its resources).

The provider scheduling rules can be separated in two
types the scheduling part, filtering rules (Figure 5 Step 3),
which examines if the selected fulfills the license terms,
and the scheduling rules, which discovers time slots for
allocating the jobs (Figure 5 Step 4). The filtering rules
examine each applicable license in turn, and if they find
any license term which forbids the use of the software, the
currently examined resource collection is discarded from

term
selected

license
selected

Selectalicense [, |

license is OK

Evaluate license
term

Select a license
term

-
term is OK

term is
forbidding

all licenses
evaluated

Remove license
from list

Figure 6. Filtering evaluation sequence

the candidate list. The rules in charge for checking specific
types of license terms are pluggable, and therefore they can
be dynamically adapted to the currently available collection
of licenses (Figure 6). Next lines show examples of rules
for filtering licenses.

[evaluate_license_terms_host:
(?job rdf:type gro:Execute_Task),
(?job gro:hasActionState tech:requested),
(?job gro:incarnatedToProcess ?incarnation),
(?incarnation gro:usesResource ?candidate),
(?candidate gro:containsResources ?resource),
(?resource rdf:type tech:Host),
(?candidate gro:containsResources ?license),
(?license rdf:type license:Softwarelicense),
(?license gro:hasResourceProperty ?license_term),
(?license_term rdf:type license:LicenseTermHost),
(?license_term license:isAllowTerm ?allow),
equal (?allow, ’'true’),
noValue (?license_term license:hasTargetHost ?resource)
->
print (‘Deleting incarnation because of host terms’),
drop(2)]

The scheduling part (Figure 5 Step 4) is in charge of dis-
covering the available time slots in the candidate resources
where the load is not too high for executing the job and
fulfills the license terms, time constraints and other provider
rules. This task requires some procedural programming
(e.g. Java) for the calculation of non-overlapping time slots
for jobs, which is enhanced with logical rules to express
preferences between pre-calculated schedules.

After the evaluation of the scheduling, Resource Agents
send the scheduling proposals to the Job Agent (Figure 5
Step 5). At this moment, the Job Agent has all possible
resource allocations (selected resources and time slots)
which fulfill the time constraints as well as hardware and
software requirements including the license terms. In the
final step of the negotiation (Figure 5 Step 6), the Job
Agent selects the best option according to the customer
selection rules. Following lines give an example of a simple
selection rule for selecting the allocation with the earliest
planned start date. This rule eliminates an incarnation if
there is another incarnation for this job which starts earlier.

[Earliest_startDate:
(?job rdf:type gro:Execute_Task),
(?job gro:hasActionState tech:requested),
(?job gro:incarnatedToProcess ?incarnationd),
(?incarnationA rdf:type gro:ProcessInstance),
(?incarnationA gro:hasPlannedStart ?stDated),

(?job gro:incarnatedToProcess ?incarnationB),
(?incarnationB rdf:type gro:ProcessInstance),
(?incarnationB gro:hasPlannedStart ?stDateB),
lessEqual (?stDateA, ?stDateB),

->

remove (5),

print (' Incarnation eliminated because there
is another earlier’)]

V. IMPLEMENTATION AND VALIDATION

The semantic resource allocation framework components
have been implemented in Java. The different agents have
been developed with a BDI model [16] implemented by the
Jadex engine [17] on top of a JADE agent platform [14].
The agent negotiation for allocating resources has been
implemented using the Contract Net Protocol (CNP) [18]
and the OWL descriptions for resources and licenses as well
as queries and rules are handled by the Jena Semantic Web
toolkit [13].

In order to validate the concept of semantic scheduling
of licenses for jobs, we have set up a test environment. It
consists of a submission of a set of jobs with different license
requirements into a Service Provider which is licensed
to execute different software under different terms. The
selected terms for doing the validation are the Host, User,
CPU and temporal terms. These terms for the sample set of
software are summarized in Table 1.

License Licensed Software | Terms

. Allowed Hosts: HostA, HostC
Lic_SwX Software X Expiration: 2010/08/01 00:21
Lic_SwY Software Y Allowed Users: Userl, User2
Lic_SwZ Software Z Maximum CPU: 2

Table T
AVAILABLE SOFTWARE LICENSES

The SP contains 3 hosts (A,B,C) from 3 different resource
providers with the same characteristics; Intel dual core
processor 3GHz with 1GB RAM with an installed image
which contains all the licensed software.

The Resource Agent contains the scheduling rules for
evaluating the terms deadline, load on hardware resources
and licenses with user, host, temporal and CPU terms. On
the other hand, the Job Agent contains the selection rules
which establishes a priority policy between the different
resource providers and an earliest start date policy between
incarnations proposed by the same provider. The rule below
eliminates all but the earliest incarnation from each service
provider:

[Earlier_startDate_same_provider:
(?job rdf:type gro:Execute_Task),
(?job gro:hasActionState tech:requested),
(?job gro:incarnatedToProcess ?incarnationd),
(?incarnationA gro:hasPlannedStart ?stDated),
(?incarnationA gro:usesResource ?candidated),
(?candidateA gro:containsResources ?resourced),
(?resourceA tech:isProvidedBy ?provider),
(?job gro:incarnatedToProcess ?incarnationB),
(?incarnationB gro:hasPlannedStart ?stDateB),
(?incarnationB gro:usesResource ?candidateB),
(?candidateB gro:containsResources ?resourceB),
(?resourceB tech:isProvidedBy ?provider),
lessThan (?stDateA, ?stDateB)
->
remove (7),
print (' Incarnation which starts’, ?stDateB ,
’eliminated because there is another earlier’
?stDated)]

A priority can also be established between resource
providers. For example, if we prefer provider A to provider
B, we can formulate it as the following rule:

[Priority_AtoB:
(?job rdf:type gro:Execute_Task),
(?job gro:hasActionState tech:requested),
(?job gro:incarnatedToProcess ?incarnationd),
(?incarnationA gro:usesResource ?candidated),
(?candidateA gro:containsResources ?resourced),
(?resourceA tech:isProvidedBy biz:ResourceProviderA),
(?job gro:incarnatedToProcess ?incarnationB),
(?incarnationB gro:usesResource ?candidateB),
(?candidateB gro:containsResources ?resourceB),
(?resourceB tech:isProvidedBy biz:ResourceProviderB)
>
remove (6),
print (' Incarnation from providerB eliminated
because there is another from providerA’)]

We have submitted a set of jobs for validating the behavior
of the system focusing on the allocation of licenses to jobs
according to the different license terms. Table II shows the
requirements for each job and the scheduling results. In
terms of hardware resources and time constraints all jobs
consume the whole machine during the same duration (20
min) and have the same deadline (2010/08/01 00:40:01).

The first two jobs are allocated in HostA because its
provider has more priority than the others. Job 3 and the
next ones cannot be allocated later on HostA because this
allocation exceeds the job deadlines, so Job 3 is allocated
on HostB consuming 2 CPU during the allocated interval.
According to the user term of the license for Software Y,
there is no possible allocation for Job 4 because the customer
who requested the job (User3) in the allowed list. Job 5
fullfils the user term because it is requested by User2,
however it has been allocated in HostC because HostB is
not an allowed host for executing Software X. Job 6 could
not be allocated because of the possible allocation in HostC
exceeds the temporal term of license for Software X. Finally,
Job 7 was allocated to HostB as it satisfies all license terms.

We have measured the reasoning time of Resource Agents
and Job Agents. This time depends on the complexity of
the rules specially when they use built-ins and the quantity

D Cust Required Planned Planned Assigned
. Software Start Date End Date Resources
2010/08/01 | 2010/08/01 HostA
L] Userl | SwX 00:00:00 | 00:20:00 | Lic_SwX
2010/08/01 | 2010/08/01 HostA
2 | User2 | SwY 00:20:00 | 00:40:00 | Lic_SwY
2010/08/01 | 2010/08/01 HostB
3 | Userd | SwZ 00:00:00 | 00:20:00 | Lic_SwZ
4 User3 SwY - - None-User3
not allowed
HostC
SwX | 2010/08/01 | 2010/08/01 \
S| Userz | gy y 00:00:00 | 00:20:00 | He-SWX
Lic_SwY
) Sw X None-Lic.
6 | User3 Sw Z)) expiration
HostB
SwY | 20100801 | 2010/08/01 \
7o Userl | gy 7 00:20:00 | 00:40:00 | He-SwY
Lic_SwZ
Table 11

JOB SCHEDULING ACCORDING LICENSE TERMS

of descriptions to evaluate. For this simple validation test
the Resource Agent takes about 0.5 seconds to generate
the allocation proposals. On the other hand, the Job Agent
takes less than 0.2 seconds for selecting them. These times
can be considered reasonable compared to the execution
times of the jobs executed in platforms such as Clouds.

VI. CONCLUSION

The paper has presented a semantic approach for schedul-
ing jobs taking into account the issues with software license
allocation. This approach defines the licenses as resources
which can be allocated for jobs according to their terms. A
resource ontology has been extended in order to model the
relationships among resources, licenses and license terms.
The license scheduling has been introduced in a semantic
resource allocation process exploiting RDF querying and
custom rules based inferencing.

This framework is the first working implementation
known to us that supports the scheduling of license usage
based on semantic descriptions. Furthermore, it is a flexible
and extensible solution, where issues raised by new types
of licenses can be covered by new rules plugged into the

running environment. This lightweight approach tries to
keep reasoning tasks at a low level to ensure the speed of
inferencing, yet our validation tests approve that it is suffi-
cient for helping to manage the license allocations appearing
in usual high performance computing scenarios. The legal
terms within the licenses cannot be modeled fully in our
case, but we think that we managed to keep the balance
between the expressivity of the semantic license descriptions
and the feasibility and efficiency of the implementation.

Our future work is focused on the development of new
rules for modeling more complex license types as well as
more complex policies for scheduling licenses.

ACKNOWLEDGMENT

This work is supported by the Ministry of Science and
Technology of Spain and the European Union under contract
TIN2007-60625 (FEDER funds), Generalitat de Catalunya
under contract 2009-SGR-980 and the European Commis-
sion with FP6-IST project 34556 and FP7-ICT project
215483 (S-CUBE).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica et al.,
“Above the clouds: A berkeley view of cloud computing,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, 2009.

[2] Q. Zhao and M. Perry, “An ontology for autonomic license
management,” in 4th Int. Conference on Autonomic and
Autonomous Systems,(ICAS 2008), 2008.

[3] Nadah, N., de Rosnay, M. D., and Bachimont, B., “Licensing
digital content with a generic ontology: escaping from the
jungle of rights expression languages,” in 11th international
Conference on Artificial intelligence and Law, 2007.

[4] H. Abelson, B. Adida, M. Linksvayer, and N. Yergler,
“ccREL: The Creative Commons Rights Expression Lan-
guage version 1.0,” 2008.

[5] “Resource Description Framework,” http://www.w3.org/RDF.
[6] “EU SmartLM project,” http://www.smartlm.eu.

[7] 1. Foster and C. Kesselman, The grid: blueprint for a new
computing infrastructure. Morgan Kaufmann, 2004.

[8] J. Ejarque, R. Sirvent, and R. M. Badia, “A multi-agent
approach for semantic resource allocation,” in The 2nd In-
ternational Conference on Cloud Computing Technology and
Science, 2010.

[9] “Grid Resource Ontology,” http://www.unigrids.org/.

[10] BREIN Consortium, “Final Report on the BREIN Core On-
tologies,” BREIN Project, Public Deliverable D3.2.5, 2008.

[11] “Ontology Web Language (OWL),”
http://www.w3.org/TR/owl-features.

[12]

(13]
(14]

[15]

[16]

(17]

(18]

“Semantic Web Rule Language,”
http://www.w3.org/Submission/SWRL.

“Jena Semantic Web Framework,” http://jena.sourceforge.net/.
“Java Agent DEvelopment Framework,” http://jade.tilab.com/.

“SPARQL Query Language for RDF,”
http://www.w3.org/TR/rdf-spargl-query.

A. Rao and M. Georgeff, “BDI agents: From theory to
practice,” in The Ist Int. Conf. on Multi-agent Systems, 1995.

“Jadex system,” http://jadex.informatik.uni-hamburg.de/.
R. Smith, “The contract net protocol: High-level communica-

tion and control in a distributed problem solver,” IEEE Trans.
on Computers, vol. 100, no. 29, pp. 1104-1113, 1980.

