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Abstract—The implementation via CUDA of a hybrid dense
dynamic programming method for knapsack problems on a
multi-GPU architecture is considered. Tests are carried out
on a Bull cluster with Tesla S1070 computing systems. A first
series of computational results shows substantial speedup close
to 30 with two GPUs.
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I. INTRODUCTION

Recently, tools like Compute Unified Device Architecture
(CUDA) or Open Computing Language (OpenCL) have been
developed in order to use Graphic Processing Unit (GPU) for
general purpose computing. This has led to GPU computing
and hybrid computing.

GPUs are high-performance many-core processors.
CUDA-based NVIDIA GPUs are Single Instruction Mul-
tiple Thread (SIMT) architectures which is akin to Single
Instruction Multiple Data (SIMD) architecture (see [1]).

In this paper, we concentrate on the exact solution via
parallel dynamic programming of an important class of in-
teger programming problems, i.e. Knapsack Problems (KP)
on multi GPU architectures.

Knapsack problems occur in many domains like logistics,
manufacturing, finance and telecommunications. Knapsack
problems occur often as subproblems of hard problems in
combinatorial optimization like multidimensional knapsack
problems.

The parallel implementation of dynamic programming
is an important topic since dynamic programming can be
combined with other methods like branch and bound in order
to produce efficient algorithms for solving problems of the
KP family.

Several parallel dynamic programming algorithms have
been proposed for KP (e.g. see [2], [3] and [4]). In particular,
implementations on a SIMD machine have been performed
on a 4K processor ICL DAP [5], a 16K Connection Machine
CM-2 (see [6] and [7]) and a 4K MasPar MP-1 machine (see
[7D).

In [8], we have presented an original implementation via
CUDA of the dense dynamic programming method for KP
on a CPU/GPU system with a single GPU. Experiments
carried out on a CPU with 3 GHz Xeon Quadro Intel

processor and GTX 260 GPU card have shown substantial
speedup.

In this paper, we propose an original solution based on
multithreading in order to implement via CUDA the dense
dynamic programming method on multi GPU architectures.
This solution is well suited to the case where CPUs are
connected to several GPUs; it is also particularly efficient.

The use of CPU/GPU systems for solving difficult com-
binatorial optimization problems is a great challenge so as
to reduce drastically the time needed to solve the problem
and the memory occupancy.

We refer to [8] for aspects related to memory occupancy
and data compression techniques. Reference is also made to
[9], for a study on local search methods and GPU computing
for combinatorial optimization problems.

The knapsack problem and the dense dynamic program-
ming method are presented in Section 2. Section 3 deals with
the implementation via CUDA of the dense dynamic pro-
gramming method on a multi GPU system. Computational
results are displayed and analyzed in Section 4. Section 5
deals with conclusions and future work.

II. KNAPSACK PROBLEM

The knapsack problem is among the most studied discrete
optimization problems; KP is also one of the simplest
prototypes of integer linear programming problems. The
knapsack problem arises as a sub-problem of many complex
problems (see for example [10] - [13]).

A. Problem Formulation

Given a set of n items ¢, with profit p; € N} and weight
w; € N%, and a knapsack with the capacity C' € N7}, KP can
be defined as the following integer programming problem:

n
max E Pi-Ti,
i=1
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z; € {0,1}, i € {1,...,n}.

To avoid any trivial solution, we assume that:
vie{l,..,n}, w; <C,
n
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B. Solution via Dynamic programming

Bellman’s dynamic programming method, e.g. see [14],
was the first exact method to be proposed in order to solve
KP. It consists in computing at each step k € {1,...,n}, the
values of fi(¢), ¢ € {0,...,C}, via the classical dynamic
programming recursion:

max { fr—1(6), fe—1(é—wk)+pr},é> wg,

fi(@) :{ fer (@), ¢ < wp—1,
2

with, fo(¢) =0, ¢ € {0,...,C}.

The algorithm, presented in this section, is based on Bell-
man’s recursion (2). A state corresponds to a feasible
solution associated with the value of f;(¢é). Toth [15] has
proposed an efficient recursive procedure in order to com-
pute the states; he has used the following rule in order to
eliminate states:

Proposition 1: (see [15]) If a state defined at the k — th
step with total weight ¢ satisfies:

c<C— Z Wy,
i=k+1
then the state will never lead to an optimal solution and thus
can be eliminated.

The dynamic programming procedure of Toth is described
in Algorithm 1. The time and space complexities of the
method are O(n.C').

Algorithm 1 (Dynamic programming):
for ¢ € {0,...,C}, f(¢):=0,

sumW = E w;,

for k& from z17t10 n do
sumW = sumW — wy,
¢ = max{C — sumW, wy},
for ¢ from C to ¢ do
if f(¢) < f(é — wy) + pi then
f(&) == f(é—wx) + px,
end if,
end for,
end for.
return f(C) (the optimal value of the KP)

III. HYBRID COMPUTING
A. CPU/GPU Systems and CUDA

NVIDIA GPU cards and computing systems are highly
parallel, multithreaded, many-core architectures. GPU cards
are well known for image processing applications. NVIDIA
has introduced in 2006 the Compute Unified Device Ar-
chitecture (CUDA). CUDA is a software development kit

that enables users to solve many complex computational
problems on GPU cards. The proposed parallel dynamic
programming method has been implemented via CUDA 2.3.

CUDA-based GPU cards and computing systems are
Single-Instruction, Multiple-Threads (SIMT) architectures,
i.e. the same instruction is executed simultanously on many
data elements by different threads. GPU cards are especially
well-suited to address problems that can be expressed as
data-parallel computations since GPU cards devote more
transistors to data processing than to data caching and flow
control. GPU cards can nevertheless be used for task parallel
applications with success.
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Figure 1. Thread and memory hierarchy in GPUs

As shown in Figure 1, a parallel code on GPU (the so-
called device) is interleaved with a serial code executed on
the CPU (the so-called host). At the top level, the threads are
grouped into blocks. These blocks contain up to 512 threads
and are organized in a grid which is launched via a single
CUDA program (the so-called kernel).

When a kernel is launched, the blocks whithin the grid are
assigned to idle groups of processors, the so-called multi-
processors. Threads in different blocks cannot communicate
with each other explicitly. They can nevertheless share their
results by means of a global memory.

The multiprocessor executes threads in groups of 32
parallel threads called warps. Threads composing a warp
start together at the same program address, they are never-
theless free to branch and execute independently. However,
a divergent branch may lead to a poor efficiency.



Threads have access to data from multiple memory spaces
(see Figure 1). Each thread has its own register and private
local memory. Each block has a shared memory with high
bandwidth only visible to all threads of the block and which
has the same lifetime as the block. Finally, all threads have
access to a global memory. Furthermore, there are two other
read-only memory spaces accessible by all threads which are
cache memories:

o the constant memory, for constant data used by the
process,

o the texture memory space, optimized for 2D spatial
locality.

In order to have a maximum bandwidth for the global
memory, memory accesses have to be coalesced. Indeed, the
global memory access by all threads whithin a half-warp (a
group of 16 threads) is done in one or two transactions if:

« the size of the words accessed by the threads is 4, 8,
or 16 bytes,
e all 16 words lie:

— in the same 64-byte segment, for words of 4 bytes,

— in the same 128-byte segment, for words of 8
bytes,

— in the same 128-byte segment for the first 8 words
and in the following 128-byte segment for the last
8 words, for words of 16 bytes;

o threads access the words in sequence (the kth thread
in the half-warp accesses the kth word).

Otherwise, a separate memory transaction is issued for
each thread. This degrades significantly the overall process-
ing time.

Reference is made to [1] for further details on the
NVIDIA GPU cards and computing systems architecture and
how to optimize the code.

In [8], we have studied the parallel implementation via
CUDA of the dense dynamic programming method on a
CPU/GPU system with a 3 GHz Xeon Quadro Intel proces-
sor and a GTX 260 GPU card.

In this paper, we study the parallel implementation of
the dense dynamic programming method on a multi GPU
architecture, i.e. the Bull Iblis cluster at CINES, Montpellier,
France.

The Bull Iblis cluster (see Figure 2) consists of 44 nodes
with 8 cores (see [16]). Some nodes are connected to a half
Tesla S1070 computing system, i.e. they are connected to
2 GPUs, since the Tesla S1070 computing system consists
of 4 GPUs with a total of 960 streaming processor cores,
i.e. 240 cores per GPU, see Figure 3. The frequency of
streaming processors core is around 1.44 GHz. The Tesla
S1070 computing system is a four Teraflop system. A total
of 12 Tesla S1070 computing systems are available on the
Bull Iblis cluster.

Figure 2. Bull Iblis cluster

Figure 3.

NVIDIA Tesla S1070 computing system

B. Parallel Algorithm

Principle

We denote by m the number of avalaible GPUs. In the
dynamic programming method, the activity that consumes
the major part of processing time is the loop that processes



the values of f(¢), ¢ € {0,...,C}. This step is parallelized
on m GPUs. The total work, i.e. the computation of the
different values of f, is decomposed so that each GPU
computes a subset of values of f. The computation of a
subset of values of f corresponds to the task of a particular
kernel.

The proposed hybrid computing approach is based on
the concurrent implementation of m kernels. Each kernel
is managed via a CPU thread. Kernels create GPU threads
for each value of f to be computed. The main benefit of
this approach is to maintain the context of each CPU thread
all along the application, i.e. CPU threads are not killed at
the end of each step of the parallel dynamic programming
method. As a consequence, communications are minimized.
Load balancing

A load balancing procedure is implemented in order to
maintain efficiency of the parallel algorithm.

At the kth step of the parallel dynamic programming
method, with k& € {1,...,n}, the ith GPU, i € {1,...,m},
works with the values of é € [c_min,y,...,c_max; ]
where ¢_min;j, and c_maz; j, respectively are computed
as follows, respectively.

c_min; i = ¢, + (1 — 1).dT%,

c_max; = min{c, + i.dTy, C + 1},

where
¢, = maz{C — Z Wy, Wi },
i=k+1
and
C+1-
dT, — [ww .
m

Since the values of c¢_min; j and c_max; ) may change
at each step of the parallel dynamic programming method,
GPUs must exchange data. The solution we propose consists
in performing data exchange via the CPU, i.e. GPU will
write and read data in the CPU memory.

At step k+1 the ith GPU computes all the values of f(¢)
with é € [c_min, 41, c_maz; j41[.

It is useless to communicate all the data at each step
since the ith GPU already get the values of f(¢) with
¢ € [ec_ming, c_max;[. Thus, only the missing values
of f(¢) need to be exchanged at each step of the parallel
dynamic programming method.

The assignation of data to GPUs resulting from the load
balancing procedure is displayed in Figure 4.

Thread processing

The procedures implemented on the CPU and the GPU,
respectively, are described in Algorithms 2 and 3, respec-
tively.
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Figure 4. Allocation of data to GPUs at each step of the parallel dynamic
programming algorithm with load balancing

Algorithm 2 (ith processing thread on CPU):
Variables stored in the device (GPU):
for ¢ € {0,...,C} do
f_input_d(¢) :== 0 and f_output_d(é) := 0,
end for

sumW = Z wj,
=1

for k& from ]1 to n do
sumW = sumW — wy,
¢, := max{C — sumW,wy},
Comp_c_min_and_c_max(cy,,1)
Synchronize()
GPU_to_CPU_com(),
Synchronize()
CPU_to_GPU_com(),
Synchronize()
Comp_f_on_device(f_input_d,f_output_d,c_min; g,

c_mazx; i),

Synchronize()
f_input_d := f_output_d,

end for.

return f_input_d(C),

Threads are launched in the GPU via the function:

Comp_f_on_device(f_input_d,f output_d,c_min,c_max)

where:

e f_input_d are the values of f processed at the previous
step,

o f_output_d are the output values of f,

e c_min denotes the minimum value of ¢,

e c_max denotes the maximum value of ¢.

The kernel Compute_f_on_device creates c_max —
c_min threads for the GPU and groups them into blocks of
512 threads (the maximum size of a block of one dimension),
ie. [(c_maxz — c_min)/512] blocks. All threads carry out
on the GPU the procedure described in Algorithm 3.

The function Synchronize() performs a global syn-
chronization of all CPU threads in order to insure data
consistency.

Data exchanges between GPUs during the load balancing



phase are made via the following two functions:

e GPU_to_CPU_com() where GPU writes in the CPU
the values of f(¢) needed by its neighbors,

e CPU_to_GPU_com() where GPU reads in the CPU
the missing values of f(¢) computed by its neighbors.

Algorithm 3 (threads processing on GPU):
blocks_id: the ID of the belonging block,
thread_id: the ID of the thread within the belonging block,
k: the step number of the dynamic programming
(ke{l,...,n})

¢:=blocks_id * 512 + thread_id,

if ¢ < c_min or ¢ > ¢_max then STOP end if,

if f_input_d(é) < f_input_d(é — wy) + pi then
f_output_d(¢) := f_input_d(¢ — wg) + pk.

else
f_output_d(¢) := f_input_d(¢),

end if

In Algorithm 3, threads have access to the values of
input_f (¢ — wg), this may result in un-coalesced memory
accesses as described in section III-A.

IV. COMPUTATIONAL RESULTS

We have used 64 bits Xeon 3 GHz Intel processors with
1 Gb memory together with Tesla S1070 computing system
of the Bull Iblis cluster at CINES, Montpellier France.

We have used CUDA 2.3 for the parallel code and gcc
for the serial one.

We have carried out computational tests on randomly
generated correlated problems. The problems considered
are available at [17]. They present the following features:

e w;, ¢ € {1,...,n}, is randomly drawn in [1, 1000],
e pi =w; +50,1€ {1, ...,’Il},

1 § :
« = 5- W;.
i=1

Table 1

SPEEDUP WITH ONE AND TWO GPUS
size of the problem 1 GPU 2 GPUs
10,000 12.86 9.39
20,000 13.75 20.54
30,000 13.96 23.56
40,000 14.42 25.66
50,000 14.56 26.41
60,000 14.40 27.39
70,000 14.82 28.05
80,000 14.64 27.89
90,000 14.78 27.99

For each problem, we display the average results obtained
for 10 instances.

Figure 5. Computing time (s) of sequential and parallel algorithms with
one and two GPUs in function of the size of the problem

We note that dense dynamic programming is well known
to be suited to correlated instances. Dense dynamic program-
ming is also not sensitive to the type of correlation.

Figure 5 presents the average processing time to solve KP
obtained with the sequential and parallel algorithms on one
and two GPUs in function of the size n of the problem.
Table I displays the resulting speedup.

In the sequential case, we note that the computing time
exceeds two hours for problems with n = 100,000 variables.

The proposed parallel dynamic programming algorithm
permits one to reduce drastically the processing time. The
more streaming processor cores of the Tesla S1070 com-
puting system are made available for a given computation,
the more threads are executed in parallel and the better is
the global performance. As a consequence, the use of several
GPU permits one to solve in reasonnable time problems that
would be time consuming otherwise.

In general, the speedup increases with the size of the
problem. The speedup meets a level around 14.7 with one
GPU and 27.95 with two GPUs. Globally, the use of two
GPUs leads to a very small lost of efficiency. This shows
the interest of the proposed approach.

We consider the solution of hard problems of the knapsack
family, like multidimensionnal knapsack problems or multi-
ple knapsack problems, to become possible in reasonnable
time with the help of multi GPU architectures.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an original parallel im-
plementation via CUDA of the dense dynamic programming
method for knapsack problems on a multi GPU system.

The proposed approach is well suited to the case where a
CPU is connected to several GPUs; it is also very efficient.
In particular, computational results have shown that large
size problems can be solved within small processing time.
This work shows the relevance of using multi GPU systems
for solving difficult combinatorial optimization problems.



The presented approach seems also to be robust since the
results remain good when the size of the problem increases:
the speedup which is approximatively equal to 14 with one
GPU and 28 with two GPUs remains stable for instances
with more than 40,000 variables.

We believe that further speedup can be obtained on multi
GPU clusters with extensive use of texture memory in GPUs
and by improving data compression techniques, just as in [8].
Experiments have also to be performed with more GPUs.

We are currently parallelyzing a series of methods for
integer programming problems like Branch and Bound and
Simplex methods. The combination of parallel methods will
permit us to propose efficient hybrid computing methods
for difficult integer programming problems like multidimen-
sionnal knapsack problems, multiple knapsack problems and
knapsack sharing problems.

We are also investigating a solution that combines GPU
computing with the environment P2PDC for high perfor-
mance peer to peer computing that we have developped
at LAAS-CNRS (see [18] and [19]). The environment
P2PDC is based on the self adaptive communication protocol
P2PSAP dedicated to high performance distributed comput-
ing. Unlike different approaches in the literature that are ded-
icated to applications where tasks are independent and direct
communication between machines is not needed, P2PDC
allows frequent direct communication between peers. The
environment P2PDC is devoted to scientific computing
applications like combinatorial optimization and numerical
simulation. This research is made in the framework of an
NVIDIA Academic Partnership (see [20]).
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