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Abstract the state space into subsets of states. Each such a subset is

then “owned” by a single machine.

This paper presents the implementation and the per- While it has been showed that a partition function can
formance comparisons of two Bulk-Synchronous Parallel effectively balance the workload and achieve reasonable ex
(BSP) algorithms to compute the discrete state space ofecution time as well [7], this method suffers from some
models. These algorithms are simple to express and the firsbbvious drawbacks and each author thus propbsesis-
one is the most general one whereas the second is dedicatetics [3, 10]. But these studies were done in general case
for structured models of security protocols. Benchmarks of and security protocols are very structured: without loss of
security protocol scenarios has been done showing the bengenerality each agent only performs a sequence of send/re-
efits of the implementation of the dedicated algorithm. ceived routines. The complexity only come from the possi-
ble actions of the intruder and it is thus unknown if a general
approach works fine.

In [8], we have design a BSP [13] algorithm that exploit
the well-structured nature of security protocols for cotapu
ing efficiently the state space of finite protocol sessioree T

Security protocols are small distributed programs which structure of the protocols is exploited to increasing com-
aim at guaranteeing security properties such as confidenputation locality and at the same time, the BSP paradigm
tiality of data, authentication of participanede Ithaslong  allows to simplify the detection of the algorithm termina-
been a challenge to determine whether a given protocol istion and to load balance the computations. In this work, we
secure or not. History has shown that even if cryptogra- show that using a BSP library for Python [9] allows us to
phy is supposed to be perfect, the correct design of securite easily both algorithms and compare the performances
rity protocols is notoriously error-prone: an attack can be of the two implementations on a set of scenarios. We also
conducted by exploiting weaknesses in the protocol itselve present how model protocols using our methodology.
Formally verifying security protocols is thus needed. It is
a well established domain that is still actively developed.
Different approaches exist as [2, 1, 6, 4]. One of them is
model-checkinga method based on reachability analysis
(state spacexploration) and allows an automatic detection  In this paper, we consider models of security protocols,
of early design errors ifinite-state systems. But the state involving a set ofagentswhere a Dolev-Yao attacker re-
space construction may be very consuming both in terms ofsides on the network. As a concrete formalism to model
memory and execution time. protocols, we have used abgebra of coloured Petri nets

Parallels the state space construction on several ma<called ABCD [11] allowing for easy and structured mod-
chines is thus done in order to benefit from all the local elling. However, our approach is largely independent of
memories, cpu resources and disks of each machine. Thighe chosen formalism and it is enough to assume that some
allows to reduce both the amount of memory needed onproperties define in [8] hold.
each machine and the overall execution time. One of the ABCD (Asynchronous Box Calculus with Data [11]) is
main technical issues in the distributed memory state spacea specification language that allows its users to express the
construction is to partition the state space among thegparti behavior concurrent systems at a high level. A specifi-
pating computers: each single state is assigned to a machineation is translated into colored Petri nets. In partigular
and this assignment is made using a function that partitionsthe ABCD meta syntax allows its users to define a com-

1. Introduction

2 Modeling the protocols



plex processes in an algebra that allows: sequential comknowledge from what it observes on the network. Intu-
position (P;Q); non-deterministic choice (P+Q); iteratio itively, the attacker performs the following operationd) (
(P*Q=Q+(P;Q)+(P;P;Q)+ -); parallel composition (RQ). It intercepts each message that appears on buffer nw which
Processes are built on top of atoms comprising either namedepresent the network and adds it to its knowledge (2) It
sub-processes, or (atomic) actions, conditional accesses passes each message along with its current knowledge to
to typed buffers. Actions may produce to a buffer, consume the learning engine (it tries to learn from it by recursively
from a buffer, or test for the presence of a value in a buffer, decomposing the message or decrypting it when the key to
and are only executed if the given condition is met. The do so is known) and adds any new knowledge learned to
semantics of an action is a transition in a Petri net. it's current knowledge (3) It then may either do nothing, or
As a basic example, consider the "Woo and Lam” proto- take any message that is a valid message in the protocol that
col which ensures one-way authentication of the initiator A is contained in its knowledge and put it back on buffer nw
to a responder B using symmetric-key cryptography and a(made available on the network). In ABCD, these actions
trusted third-party server S with share long-term symretri are expressed by the following term:
keys and a fresh and unpredictable nonce produced by B:

1 | [nw—(m), knowledge > >(k), knowledge < < (learn(m,k))];
2 | [True] + [knowledge?(x), nw+(x) if message(x)]

A, B, S : principal

Nb : nonce

Kas, Kbs @ skey Note that a branch is created in the state space for each
2. B -> A No message that can be intercepted in the first line, another for
8. A -> B . {Nb}Kas the choice in the second line, and another for each valid
4. B -> S : {A, {Nb}Kas}Kbs . .. .
5. s -> B { Nb} Kbs message in the knowledge. This is why the attacker is

the most computationally intensive component of our mod-
elling. As Python'’s expressions are used in this algebga, th
learning engine (the Dolev-Yao inductive rules) is a Python
function and could thus be extended for taking account spe-
cific properties of hashing or of crypto primitives.

which could be model using ABCD as:

net Alice (A, agents, S) :

2 buffer B_: int = ()

3 buffer Nb_ : Nonce = ()

4 [agents?(B), B_+(B), snd+(A)] #1. —>

5 i [rev?(Nb), Nb_+(Nb)] #2. <—

6 ; [Nb_?(Nb), snd+(("crypt", ("secret", A, S), Nb))] #3. —>
7 | netBob (B, S):
8 buffer A_: int = ()

buffer myster_ : object = ()
[rev?(A), A+(A)] #1. <—
; [snd+(Nonce(B))] #2. —>
; [rev?(myster), myster_+(myster)] # 3. <—
; [A?(A), myster_?(myster),

snd+(("crypt", ("secret", B, S), A, myster))] #4. —>
; [rev?(("crypt”, ("secret", S, B), Nb))

if Nb == Nonce(B)] #5. <—
net Server (S) :

buffer B_: int = ()
buffer Nb_ : Nonce = ()
[rev?(("crypt”, ("secret", B, S), A,

("crypt", ("secret", A, S), Nb))), B_-+(B), Nb_+(Nb)] # 4. <—

; [B-?(B), Nb_?(Nb), snd+(("crypt", ("secret", S, B), Nb))] #5. —>

3 BSP Computing of the state space

Naively, to compute the state space in parallel, once can
use a partition functior that returns for each state a pro-
cessor idj.e., the processor numberéds) is the owner of
s. Usually, this function is simply a hash of the considered
state modulo the number of processors. The idea is that each
process computes the successors for only the states it owns.
However, each super-step is likely to compute few states be-
cause only few computed successors are locally owned. But
we known that the learning phase of the attacker is com-

The ’-’ operation on a buffer attempts to consume a value putationally expensive, in particular when a message can
from it and bind it to the given variable, scoped to the cur- be actually decomposed, which leads to recompose a lot of
rent action. The language also supplies a read-only versiomew messages. Among the many forged messages, only a
'?", thus rcv?(Nb) will read a value from rcv into variable (usually) small proportion are accepted for a reception by
Nb without removing it from the buffer. Similarly, the '+ agents. Each such reception gives rise to a new state.
operation attempts to write a value to the buffer, and there  This whole process can be kept local to processors. To
are also flushX>) and fill (<<) operations which perform  do so, we design a new patrtition functibrsuch the data of
writes into and reads from lists respectively. Note that we the intruder are not taken into account which make all the
used two buffer called rcv and snd which model the sending attacker’s computations locals. For load balancing puepos
and receip in a network. Encoded message are tuple withh also works without modulo: this function defines classes
special values as "crypt” and "secret” that attacker agent of states for whiclh returns the same value.
could not read if he have the keys. In the rest of the text, the number of processorgiscs

The attacker has three components: a buffer namedand for each processor has figl. Then, to enter par-
knowledge which is essentially a list of the information allel code, in a SPMD (Single Program, Multiple Data)
that the attacker currently "knows”, a list of initial knowl  fashion, once can make “parallel” the main function using
edge, and a learning engine with which it uses to glean new@ParFunction. Finally, the only used BSP-Python’s com-



munication routine performs also the barrier of synchroni-
sation (end of the super-step) as the collective operatior “a
to-allv” of MPI. This method calleéxchange() sends each
data item (in the form of a list of pairs “id of destination,

1 and returns the set of states received from the other pro-
cessors, together with the total number of exchanged states
Itis mainly a call to the methoelxchange() by also adding

the exchange of “total” and dissociate this exchange to the

item to send”) to the corresponding processor and returns aexchange of states:

set object storing the received data items. The main func-
tion (for our algorithm and the naive one) is the following:

@ParFunction
def main (infile) :
initialize (infile )
todo = set()
total =1
known = set()
if h(s0) == pid :
todo.add(s0)
while total >0 :
tosend = states_successor(known, todo)
todo, total = states_exchange(known, tosend)

POOWONOUAWNE

e

We first read in “infile” (line 3) the Petri Net and the initial
state. Setgnown andtodo are still used but become local
to each processor and thus provide only a partial view on
the ongoing computation. So, in order to terminate the algo-
rithm, we use an additional variabletal in which we count
the total number of states waiting to be proceeded through
out all the processorsg., total is the sum of the sizes of
all the setstodo. Initially, only states0 is known and only

its owner puts it in itstodo set of processoh(s0). This

is performed in lines 4-8. The loop (lines 9—11) performs 3

computations of successors and BSP exchange of states i
this way. Functiorstate_successor is called to compute the
successors of the statestinio:

def states_successor (known, todo) :
tosend = collections.defaultdict(set)
while todo :
s = todo.pop()
known.add(state)
for s_ in succ_local(s) — known :
todo.add(s.)
for s_ in succ_tosend(s) :
tosend[h(s_)].add(s-)
return tosend

CQWO~NOOUAWNE

=

Each states from todo is processed in turn and added to a
setknown (lines 4-5) while local successors (lines 6) are
added totodo and successors to be send (line 9) are adde
to settosend. Notice that in the second loop, no state from
todo may be obtained through sending successors becaus
of the progression. So we have netnown in line 9. In the

d

def BSP_EXCHANGE (tosend) :
todo = set(tosend[pid])
total = sum(len(tosend[k]) for k in xrange(nprocs))
for (count, states) in ParMessages((i, (total, tosend[i])) for i in
xrange(nprocs) if i I= pid).exchange().value :
total += count
todo.update(states)
return total, todo

O~NOTRAWNPRE

Then the functiorstate_exchange returns the set of re-
ceived states that are not yet known locally together with
the new value ofotal. To do so, we exploit the following
observation: for all the protocols we have studied so far, th
number of computed states during a super-step is usually
closely related to the number of states received at the begin
ning of the super-step. Thus, before to exchange the states
themselves, we can first exchange information about how
many state each processor has to send and how they will be
spread onto the other processors. Using this information,
we can anticipate and compensate the balancing problem.

1
2

def states_exchange (known, tosend) :
known.clear()
return BSP_LEXCHANGE(balance(tosend))

n . . . . :
Notice that, using the progression property, it is not guesi

to reach states computed in any previous super-step. They
are thus dumped from the main memory (line 2). In the
balance function (line 3 and no presented here due to a
lack of space), we compute a histogram of these classes on
each processor, which summarises howould dispatch

the states. This information is then globally exchanged,
yielding a global histogram that is exploited to compute
on each processor a better dispatching of the states it has
to send. This is made by placing the classes according to
a simple heuristic for the NP-hard bin packing problem.
It may be remarked that the global histogram is not fully
accurate since several processors may have a same state
to be sent. Notice that, by postponing communication,
this algorithm allows buffered sending and forbids sending
geveral times the same state.

naive algorithm, this is not true and each state can be possi4 Benchmarks
bly sending or not, thus the two loops are merged and each

time a test is perform on the states which is less efficient. In
line 2, we define a collection of sets sine&an return any
natural number. The collection would be used to balancing
the workload.

Then, functionstate_exchange is responsible for per-
forming the actual communication between processors. It
sends each statefor a pair(i, s) in tosend to the processor

The benchmarks presented below have been performed
using a cluster with 16 PCs, 2GHz Intel Pentium dual core
CPU, with 2GB of physical memory, connected through a
Gigabyte Ethernet network. MPICH were used as low level
library for BSP-Python. Our cases study involved the fol-
lowing five protocols: (1) Needham-Schroeder (NS) pub-
lic key protocol for mutual authentication; (2) Yahalom (Y)



For the Needham-Schroeder protocol: smaller ones. “Naive” can also swap which never happens

Scenario | Naive Balance Nb_states for the “balance”.

NS.1-2 | 0m50.222s | Om42.095s | 7807 To see the differences in behaviour (and not only exe-

NS.1-3 115m46.867s| 61m49.369s| 530713 . : .

NS 22 112mi0.206s GOm30.9525 [ 256135 cution time), we show some graphs for several scenarios.
In the Figures 2-5, we have distinguished: the computa-

For the Yahalom protocol: tion time that essentially corresponds to the computatiéns
Scernaric T Nave Salance ND.STales successor states on each processor (in black); the commu-
Y131 | 12m44.915s | 7m30.977s | 399758 nication time that corresponds to states exchange and his-
Y_1-3-12 | 30m56.180s | 14m41.756s| 628670 ; ; . e H
VI35 T a8Imal BTis 2EmedTa2< | 591508 togram computations (in grey); the_waltlng times that occur
Y22-1 | 2m34.602s | 2m25.777s | 99276 when processors are forced to wait the others before to en-
zgg; gﬂ"x‘ls ‘2?;23%;‘;25 235235 ter the communication phase of each super-step (in white).

- : ' Graphs in the right are cumulative time (in percentage in or-

For the Otway-Rees protocol: dinate) depicted for each processor point of view (absgissa

: : whereas graphs in the right are global points of view: cu-
Scenario Naive Balance Nb_states . . . . .
OR112 38m32.556s | 24m46.386s | 12785 mulative times of each of the super-steps (time in ordinate)
gﬁ-i-g ﬁ?mi;-gigs ;éimgi-gggs gg% We also show the percentage (ordinate) of main memory
-1- mag. mo4. .
e used by th(_a program (average of thg processors) during the
. execution time of the program (abscissa).

For the Woo and Lam Pi protocol: We can see on these graphs that for “balance” the com-
Scenaro Nave Balance | Nb.sties munications are always greatly reduced but with some time
WLP.1-1-1 | 0m12.422s| 0m9.220s | 4063 a greater waiting times. This is due to the computation of
WLP-1-1-12 1m15.913s| 1m1.850s 84654 : P
WLP11-13 | COMM a7 3025 | 785446 the h|st0_grams gnd to the fact tha_t we pe_rform an heuristic
WLP_1-2-1 | 2m38.285s| 1m48.463s| 95287 (of the bin packing problem) for dispatching the classes of
WLP-1-2-12 | SWAP 55m1.360s | 946983 states on the processors: some classes induce a bigger num-

For the Kao-Chow protocol: ber of successors and the probz_;lblllty that.these states are

regrouped on the same classes is greater in “balance” than
Scenario Naive Balance Nb_states ; iotri i A h AT
e TR B in the co_mplete random 9IS’[_rIbl,:ltI(_)n of “naive”. Note thgt
KC.1-12 | 80m57.530s | 37m50.530s | 1545 the hashing (random) of “naive” gives the better balancing
igﬁ?_ ] ;;gmg.gggs gésrgsgégzss ﬁ;g on some scenarios. For a small OR scenario, the waiting
-1-1- mls. S mo. S A . B
KC 121 | 268m36.640s| 159m28.823s| 4825 time of “naive” is greater but more balanced. However, for

a bigger scenario, “balance” outperforms “naive”.

By measuring the memory consumption of our imple-
mentations, we could confirm the benefits of “balance”
(emptied memory regularly) when large state spaces are
computed. For instance, in the NS-2-2 scenario, we ob-
served an improvement of the peak memory usage from
50% to 20% — maximum among all the processors. Sim-
ilarly, for the WLP-1-2-12, the peak decreases so that the
. . computation does not swap. For Y-3-2-1, “balance” used a
For each protocol, usingscb, we have built a modular .

: - ! C : little less memory but that enough to not crash the whole
model allowing for defining various scenarios involving ; :
machine. Notice that the memory use never decrease even

different numbers of each kind of agents — with only ON€ tor “balance”. This is due to the GC strategy of Python for
attacker, which is always enough. We note these scenarios : .

o . ' : . sets which de-allocate pages of the main memory only when
NS—x — y = z Alices, y Bobs with one unique sequential

session: Y(resp. OR, KC and WLP) — 1 — z.n = z no enough memory is available: allocated pages are directly

. : . : used for other new items.
Serversy Alices, z Bobs,n sequential sequential sessions. : u -
We give h the total ti f tati Wi i As a last observation about our “balance” implementa-
SWATD gl\r/]e eﬁ Pj[ otal ime of compu aéon.t el noke ftion, we would like to emphasise that we observed a linear
A when atleast one processor swaps due 1o a lac Ospeedup with respect to the number of processors.
main memory for storing its part of the state space. We also
noteCOMM when the system is unable to received the too .
amount of data. We can see in the tables of Fig 1 that theD- Conclusion
overall performance of our dedicated implementation (call
balance) is always very good compared to the naive and To checked if a protocol does not contain a security trap,

general one. This holds for large state spaces as well as fowwe have model them (plus the intruder on the network) us-

Figure 1. Whole performances results

key distribution and mutual authentication using a trusted
third party; (3) Otway-Rees (OR) key sharing using a
trusted third party; (4) Kao-Chow (KC) key distribution and
authentication; (5) Woo and Lam Pi (WLP) authentification
protocol with public keys and trusted server.
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Figure 2. Performances for NS-2-2
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Figure 4. Performances for WLP-1-2-1_2
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Figure 5. Performances for Y-3-2-1

ing an Algebra of Coloured Petri Nets calBcD where

general method fails in two points.

First the number

of cross transitions is two high and lead to a too heavy
network use. Second, memorise all of them in the main
memory is impossible without crashing the machine and is
not clear when it is possible to put some states in disk using
general heuristics [5]. We have thus empirically verify our
assumption: our methods execute significantly faster and
achieve better network and memory use. It is encouraging
because we think we can check larger protocols [12] —
secure P2P exchange of files using truth servers.
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