Parallel stochastic simulators in system biology: the evolution of the species

Marco Aldinucci, Maurizio Drocco, Fabio Tordini, Mario Coppo

Computer Science Department
University of Torino, Italy

Email: {aldinuc, tordini, coppo}@di.unito.it, maurizio.drocco@gmail.com

Abstract—The stochastic simulation of biological systems
is an increasingly popular technique in Bioinformatics. It is
often an enlightening technique, especially for multi-stable
systems which dynamics can be hardly captured with ordi-
nary differential equations. To be effective, stochastic simu-
lations should be supported by powerful statistical analysis
tools. The simulation-analysis workflow may however result
in being computationally expensive, thus compromising the
interactivity required in model tuning. In this work we
advocate the high-level design of simulators for stochastic
systems as a vehicle for building efficient and portable
parallel simulators. In particular, the Calculus of Wrapped
Components (CWC) simulator, which is designed according
to the FastFlow’s pattern-based approach, is presented and
discussed in this work. FastFlow has been extended to
support also clusters of multi-cores with minimal coding
effort, assessing the portability of the approach.

Keywords-Parallel patterns; multi-core; distributed com-
puting; stochastic simulation; systems biology.

I. INTRODUCTION

The stochastic simulation of biological systems is an
increasingly popular technique in bioinformatics, as either
an alternative or a complementary tool to traditional
differential equations (ODEs) solvers. This trend, starting
from Gillespie’s seminal work [1], has been supported
by a growing number of formalisms aiming to describe
biological systems as stochastic models [2].

The stochastic modelling approach is computationally
more expensive than ODEs. Nevertheless, it is still consid-
ered attractive for its superior ability to describe transient
and multi-stable behaviours of biological systems: rare
or divergent trends, spikes and families of hypothetical
conditions that are typically hidden in the averaged process
described by ODEs.

The high computational cost of stochastic simulations
is well known and has led, in the last two decades, to a
number of attempts to accelerate them up by using sev-
eral kinds of techniques, such as approximate simulation
algorithms and parallel computing. In this work, this latter
approach is taken into account.

Since stochastic simulations rely basically on Monte
Carlo methods, many independent instances should be
computed to achieve statistically meaningful results. These
independent instances have been traditionally exploited in
an embarrassingly parallel fashion, executing a partition
of the instances on different machines. This approach
naturally couples with the distributed execution of a
batch of tasks that requires large infrastructures (e.g.

Massimo Torquati
Computer Science Department
University of Pisa, Italy
Email: torquati@di.unipi.it

grids, clouds) and suffers from slow time-to-solution as
the single experiment require to enqueue the simulations
in shared environment, deploy initial data, simulate the
model, gather results from a distributed environment, post-
process them (often sequentially), then eventually access
results. This process is typically repeated several time to
fine-tune initial conditions and simulation parameters. In
the meanwhile, the entire hardware industry has moved
to multi-core, which nowadays equips the large majority
of computing platforms, included ones constituting large
computing grids and clouds. These platforms, which are
increasingly diffused in scientific laboratories, typically
offer moderate to high peak computational power. This
potential power, however, cannot always be turned into
actual application speedup. This flaw becomes worth of
particular attention for /O and memory-bound applica-
tions, since all the cores usually share the same memory
and I/O subsystem.

Indeed, the simulation of biological systems produces
a large amount of data, which can be regarded as streams
of data resulting from the on-going simulations. The
management of these streams is not trivial on multi-
core platforms, as the memory bandwidth cannot usually
sustain a continuous flux of data coming form all the cores
at the same time. A related aspect concerns the filtering
and the analysis of raw results, which require the merging
of data obtained from different simulation instances — and
possibly their statistical description or mining — with data
reduction techniques. In distributed computing, this phase
is often demoted to a secondary aspect in the computation
and treated with off-line post-processing tools, frequently
not even disclosed in performance results. This approach
is no longer practical because of a number of reasons:

1) the ever-increasing size of produced data burdens
on the main weaknesses of multi-core platforms, i.e.
memory bandwidth and core synchronisations;

2) the “sequentialisation” of simulation and analy-
sis phases slow down the design-to-result process,
which is particularly annoying during the tuning of
the biological model,

3) the design of the simulator is often specifically
optimised for a specific parallel platform, either
multi-core or distributed (or not optimised at all).

This paper presents a critical rethinking of the paral-
lelisation of stochastic processes in the light of hybrid
multi-core and distributed platforms and the tools that

are required to derive an efficient simulator from both
performance and easy engineering viewpoints. This latter
aspect will be of crucial importance for the next generation
of biological tools, that will be prevalently used by bioin-
formatics scientists, who are likely to be more interested in
the accurate modelling of natural phenomena rather than
on the synchronisation protocols required to build efficient
tools on both multi-core platforms and large distributed
execution environments.

In this work, the simulator for the Calculus of Wrapped
Compartments (CWC) will be used as test-bed. CWC is
a recently proposed formalism, based on term rewriting,
for the representation of biological systems [3]. The CWC
simulator [4], which currently targets multi-core platforms,
has been designed exploiting a high-level methodology
based on parallel patterns and considering the whole sim-
ulation workflow: from simulation to on-line data analysis
and mining. This latter aspect provides bioinformatics
scientists with immediate feedback on simulation results
and their main statistic estimators while the simulation is
still running, thus with an early feedback on simulation
effectiveness.

In this paper, the very same design is extended to
a hybrid distributed and multi-core execution environ-
ment. This work takes advantage from the extension
to distributed platforms of the high-level programming
framework used to develop the simulator itself, i.e. the
FastFlow framework [5]. As result, the extension of the
CWC simulator itself has required no substantial changes
to the simulation and result analysis code, and involved
a very limited coding effort. Notwithstanding, the new
version keeps the same features and provides the user with
same strict feedback on simulation results, by way of the
on-line (parallel) analysis of (parallel) simulation results.

II. BACKGROUND AND RELATED WORK

The related work is approached from two different per-
spectives: the engineering of tools for parallel computing
(Sec. II-A) and the formalisms and tools for systems
biology (Sec. II-B).

A. High-level development tools

Programming tools and frameworks are needed to effi-
ciently target the architectures hosting inter networked —
possibly heterogeneous — multi-core devices, which appear
to be the reference architecture ferrying programmers from
the mainly sequential to mainly parallel programming era
[6]. The urgency is even more crucial given that both
grids and clouds provide application programmers with
the possibility to reserve collections of multi-cores to
support parallel applications eventually presented as (or
orchestrated by) web services.

Shared memory multi-cores and clusters/networks of
processing elements, however, require quite different tech-
niques and tools to support efficient parallelism exploita-
tion. The de facto standard tools in the two cases are
OpenMP [7] and MPI [8], used either alone or in con-
junction. Despite being very efficient on some classes of

applications, OpenMP and MPI share a common set of
problems: poor separation of concerns among application
and system aspects, a rather low level of abstraction
presented to the application programmers and poor support
for really fine grained applications. These are all consid-
erations that hinder the ease of use of MPI and OpenMP.

At the moment it is not clear if the mixed MPI/OpenMP
programming model always offers the most effective
mechanisms for programming clusters of symmetric mul-
tiprocessing (SMP) systems [9]. Furthermore, when di-
rectly using communication libraries such as MPI, the
abstraction level is rather low. The programmer has to
think about decomposing the problem, integrating the
partial solutions, and bother with communication problems
such as deadlocks and starvation. In order to reduce
complexity and simultaneously providing the user with
a higher level of abstraction, algorithmic skeletons have
been proposed [10]. They provide predefined parallel
computation and communication patterns, hiding the par-
allelism management to the user.

The algorithmic skeleton community has proposed var-
ious programming frameworks, aimed at providing the
application programmer with very high-level abstractions
completely encapsulating parallelism exploitation patterns
and solving most of the problems mentioned above [10],
[11]. Initial skeleton-based programming frameworks tar-
geted only cluster/network of workstations. More recently,
some of the existing frameworks have been extended
in such a way that clusters of multi-cores may also be
exploited. SkeTo provides data parallel skeletons as proper
C++ abstractions. It has been recently extended to target
multi-core clusters using a two-step dynamic task schedul-
ing strategy, which enables balancing of the load both
between nodes of the cluster and cores of the single node
[12]. The Muesli programming framework is provided
as a C++ library offering both data and stream parallel
skeletons. The original version of Muesli generated code
for MPI platforms. Recently, Muesli has been extended
in such a way that both multi-core architectures and
distributed multi-core workstations may be targeted by
generating OpenMP code, in addition to the MPI code
[13].

As mentioned, data produced by a Monte Carlo simu-
lator, as well as from other hardware tools from systems
biology, can be regarded as a stream. Several languages
and libraries are available for programming stream appli-
cations. Some of them, e.g. NVidia CUDA and OpenCL,
are very close to the metal and cannot be considered as
high-level languages. Some others provide programmers
with a higher level of abstraction, but are oriented to coarse
grain computations (e.g. ASSIST [14], [15], Streamlt [16],
Brook [17]). Not many succeed to target streams, even
at medium or fine grain with a high-level programming
model, inter-alia Intel Threading Building Blocks (TBB),
and FastFlow, which will be discussed in Sec. III.

B. Calculi for Bioinformatics and Simulators

In the field of biological modelling, tools such as
SPiM [18] and Dizzy [19] have been used to capture first
order approximations to system dynamics using a combi-
nation of stochastic simulations and differential equation
approximations. SPiM has long been the standard tool for
simulating stochastic 7 calculus models.

Bio-PEPA [20] is a timed process algebra designed for
the description of biological phenomena and their analysis
through quantitative methods, such as stochastic simu-
lations and probabilistic model-checking. Two software
tools are available for modelling with Bio-PEPA: the Bio-
PEPAWorkbench and the Bio-PEPA Eclipse Plugin.

The parallelisation of stochastic simulators has been
extensively studied in the last two decades. Many of
these efforts focus on distributed architectures. Our work
differs from these efforts in three aspects: 1) it addresses
multicore-specific parallelisation issues; 2) it advocates
a general parallelisation schema rather than a specific
simulator; 3) it addresses the on-line data analysis, thus
it is designed to manage large streams of data. To the best
of our knowledge, many related works cover some of these
aspects, but few of them address all three aspects.

The Swarm algorithm [21], which is well suited for
biochemical pathways optimisation, has been used in a
distributed environment — e.g., in Grid Cellware [22], a
grid-based modelling and simulation tool for the analysis
of biological pathways that offers an integrated environ-
ment for several mathematical representations, ranging
from stochastic to deterministic algorithms.

Parameter Sweep Applications (PSAs) execute the same
piece of code multiple times, with unique sets of input
parameters. However, since the instances of a PSA are in-
dependent, this type of application is extremely amenable
to parallelisation in a distributed computing paradigm, that
allows to sample a large space of independent instances.
In [23], a grid-based version of a multi-volume stochastic
simulator is presented for Parameter Sweep Applications
(PSAs).

DiVinE is a general distributed verification environment
meant to support the development of distributed enumer-
ative model-checking algorithms, including probabilistic
analysis features used for biological systems analysis [24].

StochKit [25] is a C++ stochastic simulation frame-
work. Among other methods, it implements the Gillespie
algorithm and in its second version it targets multi-core
platforms. It is therefore similar to our work. Anyway, it
does not implement on-line trajectory reduction, which is
performed in a post-processing phase.

In [26] a parallel computing platform has been em-
ployed to simulate a large biochemical network in hun-
dreds different cellular volumes using Gillespie SSA on
multiple processors. Parallel computing techniques made
it possible to run massive simulations in reasonable com-
putational times, but the analysis of the simulation results
to characterise the intrinsic noise of the network has
been done as a post-processing step. We believe that
our parallelisation framework could further improve those

Applications on multicore, many core & distributed platforms of multicores

Efficient and portable - designed with high-level patterns

FastFlow

Streaming network patterns
Skeletons: pipeline, map farm, reduce, D&C, ...

Arbitrary streaming networks
Lock-free SPSC/MPMC queues + FF nodes

Arbitrary streaming networks
Collective communications + FF Dnodes

Simple streaming networks
Lock-free SPSC queues + threading model

Simple streaming networks
Zero copy networking + processes model

Multicore and manycore Distributed platforms

Clouds, clusters of SMPs

SMP: cc-UMA & cc-NUMA

Figure 1. Layered FastFlow design.

kinds of analyses.

SRSim [27] performs rule-based spatial modelling,
which are embarrassingly parallelised with MPL. In this
case, high latency and nuisances with the connection of
the computing clusters could decrease the speed efficiency.

In [28], the authors propose an adaptation for GPGPUs
of the Gillespie’s SSA by way of the NVidia CUDA frame-
work aiming to compute in parallel different trajectories
(i.e. different simulation instances). The implementation,
tested on two simple models, shows remarkable speedups
compared to the execution on a single-core workstation.
The implementation, which is hand-optimised for the
specific architecture, is hardly portable on other platforms
and does not implement any kind of on-line trajectory
reduction. The latter problem specifically requires efficient
global synchronisation mechanisms that are missing in
GPGPUs.

StochSimGPU [29] exploits GPUs for parallel stochas-
tic simulations of biological systems. The tool allows
to compute averages and histograms of the molecular
populations across the sampled realizations on the GPU.
The tool relies on a GPU-accelerated version of the Matlab
framework, which can be hardly compared in flexibility
and performance with a C++ implementation.

As a matter of fact, GPGPUs are becoming more and
more used in scientific and high-performance computing.
GPGPUs can provide relevant speedups for applications
that suit the SIMD class of parallelisation, but they still
need a lot of work on tuning the algorithm to the underly-
ing architecture, in order to achieve a proper exploitation
of the memory hierarchy. These tasks require a high
level of expertise, and the learning curve to master this
technology is rather steep.

III. THE FASTFLOW PROGRAMMING FRAMEWORK

FastFlow [30] has been originally designed as a
structured parallel programming environment for shared-
memory multi-core platforms, and it has been recently
extended to support distributed systems [31]. FastFlow
provides programmers with predefined and customisable
parallel design patterns — i.e. farms, pipelines and other
stream-oriented parallel programming patterns. It has been

initially designed and implemented to be very efficient in
the execution of fine grain parallel applications [5], [32].

FastFlow design is layered (see Fig. 1). The lower layer,
called simple streaming networks, basically provide two
basic abstractions:

e process-component, i.e. a control flow realized with
Posix threads and processes, for multicore and dis-
tributed platforms respectively.

o 1-1 channel, i.e. a communication channel between
two components, realised with wait-free single-
producer/single-consumer queues (FF-SPSC) [33]
and zero-copy ZeroM(Q channels [34] for multicore
and distributed platforms, respectively.

Both realisations of the 1-1 channel are the top of the
state-of-the-art in their classes, in terms of latency and
bandwidth. As an example, FF-SPSC exhibits a latency
down to 10ns per message on a standard Intel Xeon
2GHz [33]. ZeroMQ is an LGPL open-source commu-
nication library [34]. It provides the user with a socket
layer that carries whole messages across various trans-
ports: inter-thread communications, inter-process commu-
nications, TCP/IP and multicast sockets. ZeroMQ offers an
asynchronous communication model, which allows a quick
construction of complex asynchronous message-passing
networks, with reasonable performance. The message API
offers the possibility to perform zero-copy sends and and
non-blocking calls to the socket layer.

Above this mechanism, the second layer — called ar-
bitrary streaming networks — further generalizes the two
concepts, providing:

o FastFlow node, i.e. the basic unit of parallelism that
is typically identified with a node in a streaming
network. It is used to encapsulate sequential portions
of code implementing functions, as well as high-level
parallel patterns such as pipelines and farms. From
the implementation viewpoint, the £f_node C++
class realizes a node in the shared-memory scenario
and the ff_dnode extends it in the distributed
memory setting. (see Fig. 2).

o collective channel, ie. a collective communica-
tion channel, either among ff_nodes or many
ff_dnodes.

Eventually, the third layer provides the farm, pipeline

and other parallel patterns as C++ classes.

Each £f_node is used to run a concurrent activity in a
component, and it has associated two channels: one used
to receive input data (pointers) to be processed and one
to deliver the (pointers to the) computed results. The svc
method encapsulates the computation to be performed on
each input datum to obtain the output result. svc_init
and svc_end methods are executed when the application
is started and before it is terminated. The three methods
constitute the only thing the programmer has to provide
to instantiate an £f_node.

The predefined pattern provided by FastFlow may be
customised in different ways. For example, default pat-
terns may be arbitrarily nested in order to get pipelines
with farm stages and vice-versa. Using the customisation

1 class ff node {
> protected:
3 virtual bool push(void* data) { return qout—>push(data)

3

4 virtual bool pop(voidsx* data) { return qin—>pop(data);}
5 public:
6 virtual void* svc(void * task) = 0;
7 virtual int svc_init () { return 0; };
8 virtual void svc_end() {}
9
10 private :
1 SPSCx qin;
12 SPSCx qout;
13}

Figure 2. FastFlow’s £f_node class schema

Table T
COLLECTIVE COMMUNICATION PATTERNS AMONG ff_nodes.

unicast unidirectional point-to-point communication between two
peers

broadcast sends the same input data to all connected peers

scatter sends different parts of the input data, typically partitions,
to all connected peers

onDemand the input data is sent to one of the connected peers, the
choice of which is taken at run-time on the basis of the
actual work-load

fromAll a.k.a. all-gather, collects different parts of the data from
all connected peers combining them in a single data item

fromAny collects one data item from one of the connected peers

features, different patterns may be implemented, such as
Divide &Conquer, map and reduce patterns. FastFlow is
being extended to also support data parallel patterns and
to offload data parallel computations to GPUs, where such
device(s) are available.

In the current version (see Fig. 1), which supports
distributed platforms, many graphs of f£f nodes can
be connected by way of ff_dnodes, which supports
network collective channels. The set of communication
collectives allows exchange of messages among a set of
distributed nodes, using well-known predefined patterns.
The semantics of each communication pattern currently
implemented are summarised in Table 1.

FastFlow programming model is based on streaming
of pointers, which are used as synchronisation tokens.
This abstraction is kept also in the distributed version (i.e.
across network channels) by way of two auxiliary methods
provided by £f_dnode for data marshalling and unmar-
shalling. These (virtual) methods provide the programmers
with the tools to serialise and de-serialise data flowing
across £f_dnodes. The hand-made serialisation slightly
increases the coding complexity (e.g., with respect to Java
automatic serialisation) but makes it possible to build very
efficient network channels. As a matter of a fact, the lesson
learned from Java RMI is that automatic serialisation and
high-performance can be hardly coupled.

IV. THE CWC MULTI-CORE SIMULATOR

A. The Calculus of Wrapped Compartments

The Calculus of Wrapped Compartments (CWC) [3],
[4] has been designed to describe biological entities (like
cells and bacteria) by means of a nested structure of
ambients delimited by membranes.

The terms of the calculus are built on a set of atoms
(representing species, i.e. molecules, proteins or DNA
strands), ranged over by a, b, ..., and on a set of labels
(representing compartment types, i.e. cells or tissues),
ranged over by /, A term is a multiset ¢ of simple
terms, where a simple term is either an atom a or a
compartment (@ | #), consisting of a wrap (a multiset of
atoms @), a content (a term t') and a type (a label).

Multisets are denoted by listing the elements sepa-
rated by a space. As usual, the notation n * a denotes
n occurrences of the atom a. For instance, the term
2xa (b c|d e) represents a multiset containing two
occurrences of the atom a and an {-type compartment
(b c|d e)* which consists of a wrap with two atoms
b and c on its surface, and containing the atoms d and el

Interactions between biological entities are described
by rewriting rules written as ¢ : P +— O where P and
O are terms built on an extended set of atomic elements
which includes variables (ranged over by X, Y, ...) and ¢
represents the compartment type to which the rule can be
applied. An example of rewrite rule is £/ : a b X — ¢ X,
that is often written as ¢ : a b — ¢, giving X for
understood to simplify notations.> The application of a
rule £ : P — O to a term ¢ consists in finding (if it
exists) a subterm w in a compartment of type ¢ such that
w = o(P) for a ground substitution &, and replacing it
with o(O) in t. We write + ' to mean that ¢ can be
obtained from ¢ by applying a rewrite rule.

The standard way to model the time evolution of
biological systems is that presented by Gillespie [1]. In
Gillespie’s algorithm a numerical rate is associated with
each considered chemical reaction, which is used as the
parameter of an exponential distribution modelling the
probability that the reaction takes place. In the standard
approach, this reaction rate is obtained by multiplying the
kinetic constant of the reaction by the number of possible
combinations of reactants that may occur in the region
in which the reaction takes place, thus modelling the law
of mass action. In this case, a stochastic rule is written
as 0 : P+ O, where k represents the kinetic constant
of the corresponding reaction. In CWC, a rewrite rule is
associated with a rate function depending on the overall
content of the compartment in which the reaction takes
place. This allows to tailor the reaction rates on the specific
characteristics of the system, as for instance when repre-
senting nonlinear reactions as Michaelis-Menten kinetics.

!For uniformity we assume that the term representing the whole system
is always a single compartment labelled T with an empty wrap.

2 At the left-hand side of a rule, we force exactly one variable to occur
in each compartment content and wrap. This prevents ambiguities in the
instantiations needed to match a given compartment.

B. The CWC simulator

The CWC simulator [35] is an open source tool that
implements Gillespie’s algorithm on CWC terms. It han-
dles CWC models with different rating semantics (law
of mass action, Michaelis-Menten kinetics, Hill equation)
and it can run independent stochastic simulations. The
CWC simulator was designed using the FastFlow high-
level methodology and targets multi-core platforms. It
exploits both parallel simulation and data analysis in a
single workflow. To make it possible, all the logical phases
of the process (i.e. data distribution, parallel simulations,
result gathering, parallel trajectory, data assembling and
analysis) must be effectively pipelined. This implies that
all phases work on a data streams.

The simulation workflow, sketched in Fig. 3, is com-
posed of a three-stage pipeline: simulation, analysis, and
display of results. The former two stages are in turn
pipelines, whereas the display of results is realised by
way of a Graphical User Interface (GUI). In the picture,
all grey boxes, as well as all the code needed for syn-
chronisation and data streaming (double-headed arrows), is
automatically generated by the FastFlow framework. The
implementation of the whole software actually consists in
declaring the structure of the workflow in term of FastFlow
objects (i.e. farm and pipelines), and filling white boxes
with sequential code. All data is passed through memory
references (no data copy).

1) The simulation pipeline: The simulation pipeline is
composed of three main parts: a generation of simulation
tasks stage, a farm of simulation engines stage and a
alignment of trajectories stage [4].

The input of the simulation pipeline (either from GUI
or from file) contains the model to be simulated and the
parameters of the simulation. The output is a stream of
arrays of simulation results. Each of these arrays holds
a point for each of the trajectories of all (independent)
simulations, aligned at a given simulation time. Actually,
each array represents a snapshot (called “cut”) at a given
simulation time of the whole dataset of results. This not
necessarily represents the current status (at a given point
in wall-clock time) of all running simulations. Stochastic
processes exhibit an irregular behaviour in space and
time according to their nature, since different simulations
may cover the same simulation timespan, following many
different (randomly-chosen) paths, in a different number of
iterations. Therefore, parallelisation tools should support
the dynamic and active balancing of workload across the
involved cores. This mainly motivates the structure of the
simulation pipeline. The first stage generates a number
of independent simulation tasks, each of them wrapped
in a C++ object. These objects are passed to the farm of
simulation engines, which dispatch them (on-demand) to a
number of simulation engines (sim eng). Each simulation
engine brings forward a simulation that lasts a precise
simulation time (simulation quantum). Then it reschedules
back the operation along the feedback channel. Simulation
results produced in this quantum are streamed toward the
next stage which sorts out all received results and aligns

generation of
simulation tasks

alignment of
trajectories

main pipeline

\
:
filtered f 3

N
)

1

1

)

1

farm | :

raw w2q i

i 7 530 !
simulation o8+ simulation - 1
results oef8 results | display of i
= %8 results |

o OT — i

SEs . i

8385 Graphical 1

@ User |

Interface i

P ——— | P —— 1

) vanamce J mean | eee k -means | |

~ [}

1

!

1

|

Figure 3.

Architecture of the CWC multi-core simulator with on-line parallel analysis, where solid boxes are £f_nodes and dashed boxes are

FastFlow patterns. Double-headed arrows are streams; grey boxes are automatically generated by the FastFlow framework; white boxes hold user-

defined code.

simulation pipeline (host 1))

pipelines

: N
sim farm

farm of simulation

1
| (distributed)
1
1

main pipeline (host 0)

Scatter consumer

FromAny producer

filtered E 3

e
5% 8 P
o83 g
clg =25
O c O S5 0
=55 S Qo
[ECQ
ol €0
-l U it vt 2T 8
oET simulation pipeline (host n) © o
" 0

- \
sim farm

N

Scatter consumer
FromAny producer

raw 20
e 52 9 frerec
simulation o8 simulation -
results Sc8 results | display of
© w28 >»»| | results
COT —
cck
335 i Graphical
@ User
Interface

variance)

k means |

J

mean

e,

start new simulations, steer and terminate running simulations

Figure 4.

Architecture of the CWC distributed and multi-core simulator with on-line parallel analysis, where solid boxes are £f_nodes, double-

stroked boxes are £f_dnodes, and dashed boxes are FastFlow patterns. Double-headed arrows are streams; grey boxes are automatically generated
by the FastFlow framework; white boxes hold user-defined code. The distributed workflow is obtained by replicating the simulation pipeline of the

multi-core version in Fig. 3 via the farm pattern.

them according to the simulation time. Once all simulation
tasks overcome a given simulation time, an arrays of
results is produced and streamed to the analysis pipeline.

In this process, the farm scheduler prioritises “slow”
simulation tasks, in such a way that the front-line task
proceeds as much aligned as possible to simulation time.
This solves both the load balancing problem by keeping
all simulation engines always busy and reduces to the
minimum the transient storage of incomplete results, thus
reducing the shared-memory traffic.

2) The analysis pipeline: By design, each cut of sim-
ulation trajectories (i.e. an array of simulation results),
can be analysed immediately and independently (thus
concurrently) from each other. For example, the mean and
variance (as well as other statistical estimators) can be im-
mediately computed and streamed out to the display stage.
More complex analysis, i.e. ones aimed to understand
system dynamics, have further requirements. In the most
general case, they require the access to the whole dataset.
Unfortunately, this can be hardly done with a fully on-line
process. In many cases it is possible to derive reasonable

approximation of these analysis from a sliding window
of the whole dataset. For this reason, stream incoming
in the analysis pipeline is passed through a stage that
creates a stream of (partially overlapping) sliding windows
of trajectories cuts. Each sliding window can eventually
be processed in parallel and therefore is dispatched to
a farm of statistic engines. Results are collected and re-
ordered (i.e. gathered) and streamed toward user interface
and permanent storage [36].

3) The graphical user interface: The CWC simulation-
analysis pipeline is wrapped in a back-end tool that can be
steered either via command line tools or a graphical user
interface, which makes it possible to design the biological
model, run simulations and analysis and to view partial
results during the run. Also, the front-end allows to control
the simulation workflow from a remote machine.

C. The CWC distributed and multi-core simulator

Thanks to the high-level design of the CWC simu-
lator and the extension of the FastFlow to distributed
platforms [31], the porting of the CWC simulator to

distributed platforms has been possible with a very limited
coding effort. The architecture of the CWC distributed
simulator is shown in Fig. 4. It is clear that the de-
sign directly derives from the existing multi-core version,
shown in Fig. 3, where the simulation pipeline has been
substituted with a farm of simulation pipelines. Each of
them can be run on a different platform: it receives simu-
lation parameters from the generation of simulation tasks
node, and feeds the alignment of trajectories node with a
stream of results. These nodes have been upgraded from
ff_nodes to £f_dnodes to support network channels.
Also, the simulation pipeline is extended with two fringe
ff_dnodes to implement de-serialising and serialising
activities without touching existing code. Notice that they
are not strictly needed since their functionality can be also
embedded in the farm’s dispatch and gather nodes, but this
requires to subclass them, thus altering rather than reusing
previous version. Observe that the two additional nodes do
not bring service-time penalties, since all data exchanges
between them and the dispatch/gather process happen via
pointer passing, and they are working in pipeline with the
farm. Moreover, they can be used to tune communication
grain by coalescing successive items in the result streams,
e.g. to tune the workflow against the network latency.

If needed, the analysis pipeline can be made distributed
following exactly the same schema.

V. EXPERIMENTAL EVALUATION

The evaluation of the CWC simulator takes into account
the performance on both multi-cores and cluster of multi-
cores. The ability of the CWC formalism to describe
simple but significant biological systems, together with the
effectiveness of the proposed on-line analysis to capture
the behaviour of the system has been discussed in previous
works [3], [36]. A single example of the output of the
simulator is reported for the sake of completeness.

A. Simulation and analysis of multi-stable systems

One of the best studied examples of multi-stability in
genetic systems is the bacteriophage A life cycle [37]:
the CWC framework can represent this kind of biological
events. This process involves two different biological enti-
ties, the phage and the bacterium, which represent nested
structures of ambient delimited by membranes. Moreover,
a step of the process includes the integration of a strand
of DNA in the circular molecule of DNA, which is the
genome of E. Coli and, even if it is not delimited by
physical membranes, it can be considered a functional
compartment. Lambda phage is a virus particle consisting
of a head, containing a double-stranded linear DNA, and a
tail. The phage particle recognises and binds to its host, E.
Coli, causing DNA in the head of the phage to be ejected
through the tail into the cytoplasm of the bacterial cell.
When this happens, it can enter into one of two alternative
stages, called lysogeny and lysis. The lysogeny stage is a
dormant stage, in which the phage inserts its DNA into
the host’s DNA and passively reproduces with the host.
When the host becomes stressed, the phage is more likely

to go into lysis, in which case it reproduces more phages,
kills the host and spreads to other bacteria cells. The
decision between lysis and lysogeny can be thought of
as a switching mechanism.

A simplified model for the bacteriophage was proposed
in [38]. In their model, the gene cI expresses the A
repressor C'I which dimerises (atom C72) and binds to
DNA (atom D) as a transcription factor at either of two
binding sites. Binding of this transcription factor to one
site enhances the transcription of C'I (positive feedback),
while binding to the other site represses transcription of
CI (negative feedback). The CWC rules in this system are:

.cI 01 2% or2

o125 or or

. CI12 D% DOT2

. DC12%% 012 D

. C12 D &% poT2*

. DOI2* &% o712 D

. DCI2 CI2 &% DCT20T2

- DCI2012 % DCOT2 C12

. DCI2 P+ DCI2 P CI2 CI20T % o

where the DCI2 and DCI2* complexes denote the
binding to the two sites, and DCI2C12 denotes binding
to both sites. K; are forward equilibrium constants, k;
is the protein synthesis rate, and k; is the degradation
rate. P represents the RNA polymerase assumed here to
be constant, and two proteins per mRNA transcript were
considered. In this model the stochastic time trajectories
of CI switch between two stable equilibria if the noise
amplitude is sufficient to drive the trajectories occasionally
out of the basin of attraction of one equilibrium into the
basin of attraction of the other equilibrium (see Fig. 5 left).

Figure 5 (right) shows the resulting clusters (gray cir-
cles) computed on-line using QT on the A-phage model for
species C'I over 100 stochastic simulations, starting with
the term 10xCI D P. Circles diameters are proportional
to each cluster size and arrows display the local trends of
the clustered trajectories.

K-means is suitable for stable switch systems, where
the number of clusters and their tendencies are known
in advance. In the other cases QT, although more com-
putationally expensive, can build accurate partitions of
trajectories giving evidence of instabilities with a dynamic
number of clusters.

~ A A A A A A

B. Performance on multi-core and cluster of multi-cores

The performance of the simulator is tested on the bacte-
riophage A life cycle, described in Sec. V-A. Experiments
have been executed on two platforms:

o Intel 32 cores, an Intel workstation, equipped with

4 eight-core E7-4820 Nehalem (64 HyperThreads)
@2.0GHz with 18MB L3 cache and 64 GBytes of
main memory with Linux x86_64. The Nehalem
processor uses HyperThreading with 2 contexts per
core that share execution units.

70 50

45 o e
“'-— 'l.o"'"~. o
- - - -
5 40 e L < ot
8 35 ol P A o .Q. 8007
S el e © ® P Aad T
e 3 R B ® ee ..o.’ o
n = 30 e Py -
@ = - - e ° K
3 E s, - v %% B
2 o 25 VA7 A B -
= 2 ﬂ “ire - -
#* g 5 U ’ - ” = “
S DA 4 ‘
-
g 15
10 et
@
o) i
smwo’._éﬁu"—"’ o s

0 20 40 60 80 100 120
time time

Figure 5. Simulation results on the A-phage model. Left figure reports the 100 raw trajectories, right figure shows the on-line QT clustering results.

35 35
30 30
25 25
g 20 g 20 T
el kel o Naj
& 15 S 5 e
10 10 e
P - ideal A ideal
5 e 128 trajectories ----x-- | 5 e 128 trajectories - |
512 trajectories %+ . 512 trajectories ---*--
0 1024 trajectories =~ 0 & 1024 trajectories e~
5 10 15 20 25 30 5 10 15 20 25 30
n. sim. workers n. sim. workers

Figure 6. Speedup of the multi-core simulator on the bacteriophage X life cycle on the Intel 32 cores platform with different number of simulations
(trajectories). Left) using a single statistical engine. Right) using 4 statistical engines.

8 25
7
20
6
15
g 5 1
el el
(9] Q
g g
o 4 “ 10
3
5 >~
2 ideal T ideal
- 2 cores per host ----x--—- 2 cores per host --—-x---
| __4cores per host - 0 4 cores per host -
1 2 3 4 5 6 7 8 0 5 10 15 20 25
n.of hosts aggreated n. of cores

Figure 7. Speedup of the multi-core simulator on the bacteriophage A life cycle on the Intel cluster of multi-cores with two different usage of cores
per node. Left) w.r.t. the number of hosts. Right) w.r.t. aggregated number of cores.

o Intel cluster of multi-cores, a Infiniband connected
cluster of Intel workstations, each of them equipped
with 2 six-core Xeon-X5670 (12 HyperThreads)
@3.0GHz with with 12MB L3 cache and 24 GBytes
of main memory with Linux x86_64. The Infiniband
network is used via the TCP/IP stack (IPoIB).

The speedup of the multi-core version of the simulator
is shown in Fig. 6, against the number of simulation
engines (one per core) in two configurations. Fig. 6 (left)
uses a single statistical engine in the analysis pipeline,
and Fig. 6 (right) uses a farm with 4 statistical engines.
Observe that, in the case of a single statistical engine, the
simulator succeeds to effectively use all the simulation en-
gines only up to 512 independent simulations (producing
512 independent trajectories). The simulator exhibits an
almost ideal speedup for limited data sets. The speedup
decrease as soon as the output data (linear in size with
the number of trajectories) become significant, due to the
cost of on-line data filtering and analysis, i.e. as soon as
the simulation pipeline and the analysis pipeline become
unbalanced. As discussed in the previous sections, the
filtering and analysis of data has not a negligible cost for
large data sets.

The speedup of the distributed version of the simulator
is shown in the preliminary experiments in Fig. 7, against
the number of hosts (left) and the aggregated count of
cores in different hosts (right). In both cases 4 statistical
engines are used. As shown in Fig. 7 (left), the simulator
exhibits a reasonable scalability with respect to the number
of hosts. In this case, the speedup is also influenced by the
number of simulation engines per hosts since the kind of
latency and bandwidth involved in data streaming depend
on the kind of channel (shared-memory or network). De-
spite the architecture exhibits a reasonable neutrality with
respect to engines-to-cores-to-host mapping (as shown in
Fig. 7 right), further experimentation is needed to tune
message sizes (via message coalescing) and study the
bottlenecks of the design on larger configurations and
different simulations. It can be expected, for example, that
alignment of trajectories stage can be a bottleneck, as it
receives the full pressure of data produced by many hosts.
Lifting data-alignment to the simulation pipeline can help
in mitigating this effect, as this stage aggregates output
items (i.e. coalesces many small data items in fewer larger
data items), thus reducing the impact of network latency
in distributed communications.

VI. CONCLUSIONS

We presented the design and the implementation of
a distributed version of the CWC simulator, which is
obtained with low engineering and coding efforts from
the previous multi-core version. The distributed version
maintains the good features of the previous one — i.e.
scalability, automatic load balancing and fast feedback to
the bioinformatics scientists — and can be executed in a
cluster of multi-cores platforms. Preliminary experimental
evaluations show that the design is flexible and robust with

respect to target platform, and it is able to squeeze the full
power of heterogeneous parallel platforms.

We believe that the design has the potentiality to sur-
vive in the hostile environment populated by platform
heterogeneity, coding complexity, high-performance and
performance portability. In this regard, we believe it is an
evolution of the species of simulators for systems biology.

VII. ACKNOWLEDGMENTS

This work has been partially supported by the EC-FP7
STREP project “Paraphrase” (n. 288570) and the Fon-
dazione San Paolo IMPACT project (id. ORTO11TPXK).

REFERENCES

[1] D. Gillespie, “Exact stochastic simulation of coupled chem-
ical reactions,” J. Phys. Chem., vol. 81, pp. 2340-2361,
1977.

[2] R. Alur, C. Belta, and F. Ivancic, “Hybrid modeling and
simulation of biomolecular networks,” in Proc. of the 4th
International Workshop on Hybrid Systems: Computation
and Control (HSCC), Rome, Italy, ser. LNCS, vol. 2034.
Springer, 2001, pp. 19-32.

3

—

M. Coppo, F. Damiani, M. Drocco, E. Grassi, E. Sciacca,
S. Spinella, and A. Troina, “Simulation Techniques for the
Calculus of Wrapped Compartments,” Theoretical Com-
puter Science, vol. 431, pp. 75-95, 2012.

[4] M. Aldinucci, M. Coppo, F. Damiani, M. Drocco,
M. Torquati, and A. Troina, “On designing multicore-
aware simulators for biological systems,” in Proc. of Intl.
Euromicro PDP 2011: Parallel Distributed and network-
based Processing. Ayia Napa, Cyprus: IEEE, Feb. 2011,
pp- 318-325.

[5] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Fastflow: high-level and efficient streaming on multi-core,”
in Programming Multi-core and Many-core Computing
Systems, ser. Parallel and Distributed Computing. Wiley,
2013, ch. 13.

[6] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen,
J. Wawrzynek, D. Wessel, and K. Yelick, “A view of
the parallel computing landscape,” Communications of the
ACM, vol. 52, no. 10, pp. 56-67, 2009.

[7

—

L. Park, M. J. Voss, S. W. Kim, and R. Eigenmann, “Parallel
programming environment for OpenMP,” Scientific Pro-
gramming, vol. 9, pp. 143-161, 2001.

[8] P. S. Pacheco, Parallel programming with MPI. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1996.

[9

[

F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP
on IBM SP for the NAS benchmarks,” in Proc. of the 2000
ACM/IEEE conference on Supercomputing (SC). 1EEE,
2000.

[10] M. Cole, “Bringing skeletons out of the closet: A prag-
matic manifesto for skeletal parallel programming,” Paral-
lel Computing, vol. 30, no. 3, pp. 389-406, 2004.

[11] H. Gonzédlez-Vélez and M. Leyton, “A survey of algo-
rithmic skeleton frameworks: High-level structured parallel
programming enablers,” Software: Practice and Experi-
ence, vol. 40, no. 12, pp. 1135-1160, 2010.

[12]

[13]

(14]

(15]

[16]

(171

(18]

(19]

(20]

(21]

[22]

(23]

[24]

Y. Karasawa and H. Iwasaki, “A parallel skeleton library
for multi-core clusters,” in Proc. of the Intl. Conference
on Parallel Processing (ICPP). Washington, DC, USA:
IEEE, 2009, pp. 84-91.

P. Ciechanowicz and H. Kuchen, “Enhancing muesli’s data
parallel skeletons for multi-core computer architectures,”
in Proc. of the IEEE Intl Conference on High Performance
Computing and Communications (HPCC). Washington,
DC, USA: IEEE, 2010, pp. 108-113.

M. Vanneschi, “The programming model of ASSIST, an
environment for parallel and distributed portable applica-
tions,” Parallel Computing, vol. 28, no. 12, pp. 1709-1732,
Dec. 2002.

M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Dane-
lutto, P. Pesciullesi, R. Ravazzolo, M. Torquati, M. Van-
neschi, and C. Zoccolo, “A framework for experimenting
with structure parallel programming environment design,”
in Parallel Computing: Software Technology, Algorithms,
Architectures and Applications, ser. Advances in Parallel
Computing, vol. 13. Elsevier, 2004, pp. 617-624.

W. Thies, M. Karczmarek, and S. P. Amarasinghe,
“Streamlt: A language for streaming applications,” in Proc.
of the 1lth Intl. Conference on Compiler Construction
(CC). London, UK: Springer, 2002, pp. 179-196.

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan, “Brook for gpus: stream
computing on graphics hardware,” in ACM SIGGRAPH ’04
Papers. New York, NY, USA: ACM Press, 2004, pp. 777—
786.

A. Phillips and L. Cardelli, “A correct abstract machine
for the stochastic pi-calculus,” in Proc. of BIOCONCUR,
London, England, ser. Electr. Notes Theor. Comput. Sci.,
2004.

S. Ramsey, D. Orrell, and H. Bolouri, “Dizzy: Stochas-
tic simulation of large-scale genetic regulatory networks
(supplementary material),” J. Bioinformatics and Compu-
tational Biology, vol. 3, no. 2, pp. 437-454, 2005.

F. Ciocchetta and J. Hillston, “Bio-pepa: An extension of
the process algebra pepa for biochemical networks,” in
Proc. of 1st Workshop ”From Biology To Concurrency and
back (FBTC), Lisbon, Portugal, ser. Electr. Notes Theor.
Comput. Sci., vol. 194, no. 3. Elsevier, 2008, pp. 103—
117.

T. Ray and P. Saini, “Engineering design optimization using
a swarm with an intelligent information sharing among
individuals,” Eng. Opt., vol. 33, pp. 735-748, 2001.

P. K. Dhar and et al., “Grid cellware: the first grid-
enabled tool for modelling and simulating cellular pro-
cesses,” Bioinformatics, vol. 7, pp. 1284-1287, 2005.

E. Mosca, P. Cazzaniga, I. Merelli, D. Pescini, G. Mauri,
and L. Milanesi, “Stochastic simulations on a grid frame-
work for parameter sweep applications in biological mod-
els,” High Performance Computational Systems Biology,
International Workshop on, pp. 33-42, 2009.

J. Barnat, L. Brim, and D. Safrdnek, “High-performance
analysis of biological systems dynamics with the divine
model checker,” Briefings in Bioinformatics, vol. 11, no. 3,
pp. 301-312, 2010.

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

[37]

(38]

L. Petzold, StochKit: stochastic simulation kit web page,
2009, http://www.engineering.ucsb.edu/~cse/StochKit/
index.html.

J. Intosalmi, T. Manninen, K. Ruohonen, and M. Linne,
“Computational study of noise in a large signal transduction
network,” BMC bioinformatics, vol. 12, no. 252, 2011.

G. Gruenert, B. Ibrahim, T. Lenser, M. Lohel, T. Hinze, and
P. Dittrich, “Rule-based spatial modeling with diffusing,
geometrically constrained molecules,” BMC bioinformatics,
vol. 11, no. 307, 2010.

H. Li and L. Petzold, “Efficient parallelization of the
stochastic simulation algorithm for chemically reacting
systems on the graphics processing unit,” Int. J. High
Perform. Comput. Appl., vol. 24, no. 2, pp. 107-116, May
2010.

G. Klingbeil, R. Erban, M. Giles, and P. Maini,
“Stochsimgpu: parallel stochastic simulation for the sys-
tems biology toolbox 2 for matlab,” Bioinformatics, vol. 27,
no. 8, p. 1170, 2011.

FastFlow website, 2009.
mc-fastflow.sourceforge.net/

[Online]. Available: http:/

M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and
M. Torquati, “Targeting distributed systems in fastflow,” in
Euro-Par 2012 Workshops, Proc. of the CoreGrid Work-
shop on Grids, Clouds and P2P Computing, ser. LNCS.
Springer, 2013.

M. Aldinucci, S. Ruggieri, and M. Torquati, ‘“Porting
decision tree algorithms to multicore using FastFlow,” in
European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML
PKDD), ser. LNAI vol. 6321. Barcelona, Spain: Springer,
Sep. 2010, pp. 7-23.

M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin,
and M. Torquati, “An efficient unbounded lock-free queue
for multi-core systems,” in Proc. of 18th Intl. Euro-Par
2012 Parallel Processing, ser. LNCS, vol. 7484. Rhodes
Island, Greece: Springer, Aug. 2012, pp. 662-673.

ZeroMQ website, 2012. [Online]. Available: http://www.
zeromgq.org/
CWC Simulator project, Sourceforge website,

2010. [Online]. Available: http://sourceforge.net/projects/
cwcsimulator/

M. Aldinucci, M. Coppo, F. Damiani, M. Drocco, E. Sci-
acca, S. Spinella, M. Torquati, and A. Troina, “On par-
allelizing on-line statistics for stochastic biological simula-
tions,” in Euro-Par 2011 Workshops, Proc. of the 2st Work-
shop on High Performance Bioinformatics and Biomedicine
(HiBB), ser. LNCS, vol. 7155. Springer, 2012, pp. 3-12.

A. Arkin, J. Ross, and H. McAdams, “Stochastic kinetic
analysis of developmental pathway bifurcation in phage A-
infected escherichia coli cells,” Genetics, vol. 149, no. 4,
p- 1633, 1998.

J. Hasty, J. Pradines, M. Dolnik, and J. Collins, “Noise-
based switches and amplifiers for gene expression,” Pro-
ceedings of the National Academy of Sciences, vol. 97,
no. 5, p. 2075, 2000.

