
1

Analytic Clock Frequency Selection for
Global DVFS

Marco E.T. Gerards, Johann L. Hurink, Philip K.F. Hölzenspies, Jan Kuper, Gerard J.M. Smit
University of Twente, Department of EEMCS

P.O. Box 217, 7500 AE Enschede, The Netherlands
m.e.t.gerards@utwente.nl

Abstract—Computers can reduce their power consumption by
decreasing their speed using Dynamic Voltage and Frequency
Scaling (DVFS). A form of DVFS for multicore processors is
global DVFS, where the voltage and clock frequency is shared
among all processor cores. Because global DVFS is efficient and
cheap to implement, it is used in modern multicore processors like
the IBM Power 7, ARM Cortex A9 and NVIDIA Tegra 2. This
theory oriented paper discusses energy optimal DVFS algorithms
for such processors.

There are no known provably optimal algorithms that min-
imize the energy consumption of nontrivial real-time applica-
tions on a global DVFS system. Such algorithms only exist for
single core systems, or for simpler application models. While
many DVFS algorithms focus on tasks, this theoretical study is
conceptually different and focuses on the amount of parallelism.
We provide a transformation from a multicore problem to a
single core problem, by using the amount of parallelism of an
application. Then existing single core algorithms can be used to
find the optimal solution.

Furthermore, we extend an existing single core algorithm such
that it takes static power into account.

Keywords—Dynamic voltage and frequency scaling, energy min-
imization, mathematical programming, parallel processing

I. INTRODUCTION

As the power consumption of computing devices has in-
creased exponentially [1], energy consumption has become one
of the most important design criteria for these devices. For
portable embedded devices this holds even more, since the
energy-density of batteries does not grow with the same rate
as the energy consumption of these devices.

In this paper, we present algorithms for minimizing the
energy consumption of a multicore system that executes a
real-time application with precedence constraints. We focus on
Dynamic Voltage and Frequency Scaling (DVFS) to decrease
the energy consumption. DVFS allows for the decrease of
the clock frequency and voltage of the processor, leading
to a decrease of the power consumption, at the cost of an
increased latency. Mathematical techniques and algorithms are
frequently used to determine optimal clock frequencies. Such
techniques are referred to as algorithmic power management
[1], [2]. Based on a survey of such techniques by Irani and
Pruhs [1], the current paper can be qualified as an algorithmic
power management paper; we use algorithms to find clock
frequencies that globally minimize the energy consumption.

This work is supported through NWO project EASY.

For multicore processors, there are two main flavors of
DVFS, namely local DVFS and global DVFS. While local
DVFS changes the clock frequency per core, global DVFS
makes these changes for the entire chip. For this reason, the
optimal solutions to the local and global DVFS problems are not
interchangeable. Global DVFS is in practice the most common
of these techniques, since it is cheaper to implement [3], [4].
Examples of modern processors and systems that use global
DVFS are the Intel Itanium, the PandaBoard (dual-core ARM
Cortex A9), IBM Power7 and the NVIDIA Tegra 2 [3], [5]–[7].
Because global DVFS is often used, we focus on global DVFS
alone.

The aperiodic real-time applications that we consider consist
of many tasks with an execution order that is restricted by
precedence constraints. Each task has an execution time, an
arrival time and a deadline; our solution method does not impose
any restrictions on these properties of the tasks. Before such an
application can be executed, its tasks need to be scheduled. Note
that both the scheduling policy and clock frequency selection
have an influence on the energy consumption.

We focus on determining optimal clock frequencies for the
entire run-time of an application. Hereby, we assume that a
feasible schedule for the tasks of the application is given. Since
we consider global DVFS, the concrete assignment of clock
frequencies does not influence the relative order of the execution
of tasks and therefore does not influence the feasibility of a
solution with respect to precedence constraints.

Optimal clock frequency selection is a nontrivial problem,
since it may be efficient to finish some tasks early, such that
later tasks can run on a lower clock frequency as several
authors have demonstrated [8], [9]. This property makes the
problem a global problem over time. Furthermore, the amount
of parallelism (i.e., number of active cores at a given time) is
important when calculating the optimal clock frequencies [10].

Conceptually, this paper is different from many DVFS papers.
While many papers choose a clock frequency for tasks, we
choose a clock frequency that depends on the amount of
parallelism, while respecting constraints for individual tasks.
This is based on the following intuition.

Since low clock frequencies have a higher energy efficiency,
it is better to increase the clock frequency when only a few
cores are active (increasing the energy only for few cores)
and decrease the clock frequency when more cores are active
(decreasing the energy for more cores). This may lead to a
reduction of the total energy consumption. However, since
the energy consumption depends in a superlinear and convex



2

way on the clock frequency [8], [9], [11], [12], very high
clock frequencies lead to extreme high costs. Hence, the clock
frequency when only very few cores are active should not be
arbitrarily high meaning that a trade-off is required. While this
trade-off has been formally studied in a simplified setting [10],
we study it in the context of a nontrivial application with arrival
time and deadline restrictions.

We present an algorithm that finds the optimal clock
frequencies by generalizing the aforementioned intuition. The
approach presented in this paper solves the multicore problem
by first transforming it to a single core problem (depending
on the amount of parallelism), then solving this single core
problem, and finally transforming the solution of the single
core problem back to the original problem. We combine
several existing techniques from the literature to motivate our
transformation and to solve our problem.

The main contributions of our paper are as follows.
• An overview of existing literature to motivate the reduc-

tion, and the application of specific approaches from the
literature to solve the single core problem (Section II).

• A method to reduce the (multicore) global DVFS problem
to a single core problem (Section IV).

• An optimal algorithm for the single core problem that
takes static power into account (Section V).

Although our solution is only optimal under the modeling
assumptions mentioned in Section III, the insights from this
paper are also useful for other systems.

II. RELATED WORK

Several papers discuss optimal DVFS for multiproces-
sor/multicore systems with precedence constraints and a single
deadline for the entire application [13], [14]. In contrast, we
allow independent arrival times and deadlines for all tasks in our
application. Applications that can be modeled and optimized
using our model are, for example, streaming applications
such as audio- and video decoders [9] and telecommunication
applications, where frames and/or datagrams all have individual
deadlines and are processed by parallel tasks.

In our previous research [15], we study a simplified real-
time system with precedence constraints, where all tasks arrive
when the application begins and a single deadline for the entire
application is used. In that research, we already prove that
optimal scheduling for a restricted version of the real-time
system that we consider in the current paper is NP-hard. The
main topics of our previous article are the interaction between
scheduling and clock frequency selection for a restricted real-
time system with a single deadline for the entire application and
energy efficient scheduling, in contrast to the current paper that
focuses on clock frequency selection and discusses the more
complex and very general real-time system with precedence
constraints, arbitrary arrival times, deadlines and work.

Cho and Melhem [10] show how for a restricted model the
optimal clock frequencies depend on the amount of parallelism.
Although we do not use the same model, their observation,
that there is an interplay between parallelism and energy
consumption, is also used throughout our paper. Pruhs et al.
[16] present the power inequality, which can be used to relate
the optimal clock frequencies of tasks to each other in a local

DVFS system, but provide no method to actually calculate the
optimal clock frequencies. We focus on global DVFS alone
for a general real-time system and do provide optimal clock
frequencies.

Yang et al. [17] use a similar observation in their paper
on global DVFS for frame-based systems. For these kinds of
systems, they show how the optimal clock frequencies depend
on the amount of parallelism in an application. It was proven
[15], [17], that when at time t1 there are n active cores and
at time t2 there are m active cores, the ratio between the
optimal clock frequencies is α

√
m/n (for some constant α to

be discussed). We use this factor in a substitution of variables
to transform our multiprocessor problem to an equivalent single
core problem. This reduction is one of the main contributions
of the current paper, since based on this substitution we can
use single core algorithms to solve our multicore problem.

Yao et al. [8] study optimal scheduling and DVFS for a
real-time single core system with arbitrary arrival times and
deadlines, and present an algorithm called YDS. The base for
YDS is the observation that the dynamic power consumption
depends on the clock frequency, the voltage (which depends on
the clock frequency), and YDS assumes that the capacitance of
the processor is constant. Kwon and Kim [18] extend the YDS
algorithm such that it takes variable switched capacitances into
account. They use a substitution of variables to translate their
problem to a problem that can be solved by YDS. We use the
idea of a substitution of variables in our paper to translate the
multicore problem to a single core problem.

Irani et al. [19] show that, when static power is present,
the YDS algorithm is still effective. Although increasing the
clock frequency decreases the static energy consumption for the
period when the tasks are executed, it also creates additional
idle periods during which the processor again consumes the
same amount of static energy. This explains why DVFS remains
an effective technique as long as the dynamic power is not
negligible. Le Sueur and Heiser [20] confirm this observation
experimentally. We use the observation by Irani et al. [19] to
derive an algorithm that takes static energy into account.

We rewrite our problem to a single core problem with a
fixed order for the tasks, which makes the problem easier to
solve, i.e., we can use a specialized algorithm that takes this
ordering into account and has a lower time complexity than
YDS. Instead of using YDS, we use an algorithm that is based
on the algorithm by Huang and Wang [9] (with a quadratic
time complexity) and we extend this algorithm such that it
takes static power into account.

To the best of our knowledge, there are no papers that present
algorithms that derive the optimal clock frequencies (local or
global DVFS) for a real-time system with arbitrary arrival times,
deadlines and work.

III. MODEL

In this paper we research the theoretical effects of DVFS on a
multicore system that executes a nontrivial real-time application,
and follow the commonly accepted modeling assumptions from
the literature. Section III-A considers the power model of a
global DVFS processor. Afterward, in Section III-B, we discuss
how to subdivide a multicore schedule into so-called pieces.



3

A. System model
The power consumption of a multicore processor consists

of the dynamic power consumption and the static power
consumption. We assume that dynamic power is only used
when a core is used for calculation [10], [17], i.e., when a core
is active. Because of this, the dynamic power consumption of
the system depends on the number of active cores. We use the
dynamic power model from Yang et al. [17] to express the power
consumption pD = c1f

α of a single core, where f denotes
the clock frequency, and c1 and α are technology dependent
constants; usually α ≈ 3. This model implicitly assumes that
the voltage is linearly related to the clock frequency, a common
assumption in the power management literature (see the survey
articles by Chen and Kuo [11], and Zhuravlev et al. [12]).

The static power of a processor is often approximated by a
linear function of the voltage [21]. Because we assume that
the voltage is linearly related to the clock frequency, we model
the static power as pS(f) = c2 + c3f.

The total power of the multicore processor as a function of
the clock frequency, called the power function, is given by

pm(f) = mc1f
α + c2 + c3f,

where m is the number of active cores. The power function
is convex, a property that is often used when calculating
the optimal clock frequencies [8], [9]. This power model is
approximate, which makes it possible to study the effect of
parallelism using closed form formulas [10]. Such models are
very common in the literature [8]–[13], [16].

For now, we assume that the clock frequency for the
multicore system can be changed at any time, and we make
the common assumption that continuous clock frequencies are
available [8], [13], [16], [17]. The function that maps time to a
clock frequency, called the clock frequency function, is denoted
by ϕ : R+ → R+.

The total energy consumption is obtained by integrating
power over time, i.e., when exactly m cores are active during
the time interval [t1, t2] the energy consumption for this time
interval is

E =

∫ t2

t1

pm(ϕ(τ))dτ.

Note that the clock frequency does not influence the energy
that is due to the term c3, and for ease of notation we exclude
c3 from out equations in the remainder of the paper.

Below a certain clock frequency that is called the critical
clock frequency, the static power becomes dominant. clock
frequencies below f crit are inefficient under circumstances that
are discussed in Section V.

Although the speed of the processor itself scales linearly with
the clock frequency, this is not always true for memory. Cho
and Melhem [10] use a model similar to ours and considered
the influence of operations of which the speed does not depend
on the clock frequency (like memory access). They show
that a model that takes such operations into account can be
transformed to a model where the speed scales linearly with
the clock frequency. Hence, we may assume that the speed
scales linearly with the clock frequency and refer interested
readers to the paper by Cho and Melhem [10].

Proc. 1 T1 T2 T5 T6 T8

Proc. 2 T3 T7

Proc. 3 T4

P1 P2 P3 P4 P5 P6 P7

clock cycles

Figure 1: A feasible schedule for Example 1

Due to the convexity of the power function, the clock
frequency is rarely changed in the optimal solution. Yao et
al. [8] observed that the number of clock frequency changes
of the optimal solution grows slowly with the number of
tasks. This means that our optimization techniques keeps the
number of clock frequency changes (and the overhead) low.
According to the recent article by Park et al. [21], the time and
energy overhead of DVFS is comparable with context switching
overhead. The transition delay overhead is at most 62.68µs
[21] on an Intel Core2 Duo E6850. We assume that the tasks
are, in this respect, large enough, and because of this we can
neglect the overhead of changing clock frequencies.

B. Pieces

An application consists of multiple tasks. Each task corre-
sponds to a certain amount of work, measured in clock cycles.
A task can have precedence constraints with other tasks, an
arrival time and a deadline. As in the article by Li [13], we
assume that the cores communicate through highly efficient
communication mechanisms (e.g., shared memory). Since we
have assumed that a schedule is given, we do not formalize
the definitions of tasks. Instead, we informally start with an
example of an application.

Example 1. Consider an application that consists of N = 8
tasks with precedence constraints. The amount of work of
the tasks T1, . . . T8 is given by 4, 2, 3, 6, 2, 2, 2 and 2
respectively. Tasks T3 and T8 have the deadlines 30 and 150
respectively, tasks T3, T4 and T8 have arrival times 19, 5 and
140 respectively, the other tasks have no deadline and are
available from the beginning.

In the context of this example, the exact precedence con-
straints are not relevant, only the fact that they create “gaps”
in the schedule. A possible feasible schedule for the application
is depicted in Figure 1, in which the tasks with a deadline are
highlighted.

We assume without loss of generality that the given schedule
does not contain any period where all cores are idle. Since
only static power is consumed during these processor-wide idle
periods, our assumption does not change the optimal solution.



4

The following lemma states that the average speed is optimal
if the real-time constraints are met, and the number of active
cores remains constant.

Lemma 1. Given a work interval [a, b] during which exactly
m cores are active, and an execution time t for this work, then
using the clock frequency b−a

t is optimal for this interval.

Proof: The infinite version of Jensen’s inequality states:

pm

(
1

t2 − t1

∫ t2

t1

ϕ(τ)dτ

)
≤ 1

t2 − t1

∫ t2

t1

pm(ϕ(τ))dτ.

Multiplying this equation by t2− t1 directly leads to the result
of the lemma.

Irani et al. [19] used Jensen’s inequality similarly to prove a
single core version of this lemma.

When using this lemma, t has to be chosen such that the
real-time constraints are met. Furthermore, the choice of t may
influence the energy consumption of the entire schedule, not
only of the interval [a, b].

Note, that only at the start or completion of the execution
of a task, the number of active cores can change. Furthermore,
timing constraints such as arrival times or deadlines are also
related to these start and completion times. Therefore, we are
only interested in work intervals (a, b) where no tasks start or
complete their execution.

The following corollary shows that it is optimal to use a
single constant clock frequency for these intervals.

Corollary 1. Given work interval (a, b) during which no task
starts or ends. Then there is an optimal clock frequency function
ϕ that is constant during the execution of the work in [a, b].

Proof: This is a direct consequence of Lemma 1.
Because the optimal clock frequency is constant on the

interval [a, b] as specified in Corollary 1, we subdivide the
schedule into such intervals. We choose these intervals such
that they are as large as possible and call these intervals pieces.

Definition 1 (Piece). A piece is a maximal interval [a, b] such
that no task starts or finishes in (a, b).

A given schedule uniquely subdivides into K pieces, and let
the k-th piece be denoted by Pk. For ease of notation, we use
the index set K = {1, . . . ,K}.

Let mk denote the number of active cores during piece Pk;
this number of active cores during piece Pk cannot change,
because no task starts or ends its execution during this piece.
Furthermore, let the number of clock cycles for which piece
Pk has to be executed be denoted by wk. Hence wkmk work is
executed for this piece. The total work W can be obtained by
summing the work of all tasks, but can now also be expressed
in terms of pieces by W =

∑K
k=1 wkmk.

Let the begin time of piece Pk be denoted by tbk and its
completion time be denoted by tck. The actual values for tbk and
tck depend on the clock frequencies of the pieces P1, . . . , Pk,
which is discussed later. For each piece Pk we can assign an
arrival time ak, which is the latest arrival time among all tasks
that start at the beginning of this piece. This makes sure that
the piece is not started before the arrival time of any task in
this piece. Similarly, for piece Pk a deadline, denoted by dk,

can be derived; this is the earliest deadline among all tasks
that are completed at the end of this piece.

Example 2 (Continued from Example 1). Figure 1 also shows
the subdivision of the schedule from Example 1 into seven
pieces (P1, . . . , P7). A new piece starts whenever a task starts
or finishes its execution. The number of clock cycles the pieces
are active (wk) is given by w1 = 4, w2 = 2, w3 = 1, w4 = 2,
w5 = 1, w6 = 2 and w7 = 2. The number of active cores is
given by m1 = 1, m2 = 3, m3 = 2, m4 = 2, m5 = 1, m6 = 2
and m7 = 1. Piece P3 has deadline d3 = 30 (deadline of task
T3) and piece P7 has deadline d7 = 150 (deadline of task T8).
The arrival time of piece P2 is a2 = 19 = max{19, 5}. For
piece P7, the arrival time is a7 = 140.

During the execution of piece Pk the power function pmk
is used, since during the entire execution of piece Pk exactly
mk cores are active. To determine the energy consumption, we
consider the static and dynamic power separately.

The application begins at some given time tB , and the power
consumption of the processor is accounted for until some time
tC . This means that the static energy consumption is c2(tC−tB).
For the begin time, we take tb1, while for the end time we assume
that either tC = dK or tC = tcK ; both situations are discussed
when we present a solution to the problem.

Based on Corollary 1, we assign a constant clock frequency
fk to each piece Pk. For a given frequency assignment fk to
piece Pk (k ∈ {1, . . . ,K}), the dynamic energy consumption
of piece Pk is the power (mkc1f

α
k ) times the duration of piece

Pk at the chosen clock frequency
(
wk
fk

)
giving mkc1f

α−1
k wk.

To obtain the total dynamic energy consumption we have to
sum this over all pieces.

The total energy consumption can now be expressed in terms
of pieces and consists of the static and dynamic energy.

E = c2(tC − tB) +

K∑
k=1

mkc1f
α−1
k wk.

IV. OPTIMIZATION MODEL

Based on the discussion in the previous section, the problem
considered in this paper reduces to energy minimization, under
constraints such as ordering constraints (piece Pk is executed
before piece Pk+1), arrival times and deadlines. More precisely,
we get the following mathematical optimization problem.

Optimization Problem 1.

min
f1,...,fK
tb1,...,t

b
N

c2(tC − tB) +

K∑
k=1

mkc1f
α−1
k wk (1)

s.t. tbk +
wk
fk
≤ dk, for all k ∈ K, (2)

tbk ≥ ak, for all k ∈ K, (3)

tbk +
wk
fk
≤ tbk+1, for all k ∈ K, (4)

fk ≥ 0, for all k ∈ K, (5)

tbK +
wK
fK
≤ tC . (6)



5

The energy consumption is given as a cost function (1),
which has to be minimized. The constraint (2) enforces that
all pieces meet their deadline, (3) ensures that pieces do not
begin before their arrival time, (4) enforces that piece Pk is
finished before piece Pk+1 starts, while (5) guarantees causality.
The last constraint (6) makes sure that the application is not
finished after the time for which the static energy consumption
is accounted for.

For this problem, standard approaches from the literature
cannot be used, due to the multicore aspect with weights mk in
the cost function that result from the number of active cores. We
rewrite this problem to an (intuitively) easier to analyze problem.
For this, we substitute the variables for clock frequencies and
work. This substitution cancels out some terms, and the values
mk—making the problem a multicore problem—disappear from
the equations. The idea behind the substitution is based on
the ratio α

√
ma/mb between optimal clock frequencies of a

multicore processor, described in several papers [15], [17].
The substitution of variables is as follows.

f̂k = fk α
√
mk, (7)

ŵk = wk α
√
mk. (8)

Substitution into the cost function (energy) gives:

E = c2(tC − tB) +

K∑
k=1

c1f̂
α−1
k ŵk,

while substitution into the deadline constraint gives:

tbk +
wk
fk

= tbk +
ŵk

f̂k
≤ dk.

This leads to the following optimization problem:

Optimization Problem 2.

min
f1,...,fK
tb1,...,t

b
N

c2(tC − tB) +

K∑
k=1

c1f̂
α−1
k ŵk

s.t. tbk +
ŵk

f̂k
≤ dk, for all k ∈ K,

tbk ≥ ak, for all k ∈ K,

tbk +
ŵk

f̂k
≤ tbk+1, for all k ∈ K,

f̂k ≥ 0, for all k ∈ K,

tbK +
ŵK

f̂K
≤ tC .

Problem 2 is of interest because it has the same form
as a well-known single core problem (real-time system with
agreeable deadlines) from the literature [9], [22]. In this single
core problem, the variable ŵk is the work of task T̂k, while
f̂k is the optimal clock frequency of task T̂k. Furthermore,
deadlines and arrival times are again given by ak and dk and
the execution order is predetermined. As this relation is used
throughout this paper, we give a formal definition.

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

0

10

20

Time

C
um

ul
at

iv
e

w
or

k

Deadline

Arrival time

Optimal

Figure 2: Optimal clock frequencies for the equivalent single
core problem

Definition 2 (Equivalent single core problem). The multicore
global DVFS problem with K pieces (P1, . . . , PK) is equiv-
alent to the single core problem with K tasks (T̂1, . . . , T̂K),
where each piece Pk is represented by a task T̂k with work
ŵk = wk α

√
mk, clock frequency f̂k = fk α

√
mk, and the same

completion times and begin times.

Based on this, Problem 1, can be transformed to the
equivalent single core problem, this problem is then solved
and the resulting solution is transformed back to obtain the
optimal clock frequencies and begin times for the pieces. In the
following, we give an example of this important transformation
and solution technique.

Example 3 (Continued from Example 2). For illustration
purposes, we use the power function pm(f) = mf3. The
number of clock cycles w1 = 4, w2 = 2, w3 = 1, w4 = 2,
w5 = 1, w6 = 2 and w7 = 2, together with the parallelism
described by m1 = 1, m2 = 3, m3 = 2, m4 = 2, m5 = 1,
m6 = 2 and m7 = 1 are transformed to ŵ1 = 4, ŵ2 = 2 3

√
3,

ŵ3 = 3
√

2, ŵ4 = 2 3
√

2, ŵ5 = 1, ŵ6 = 2 3
√

2 and ŵ7 = 2. Hence,
the global DVFS problem with 7 pieces is now transformed to
the equivalent single core problem with 7 tasks.

For now, we can use any convex problem solver (e.g., CVX
[23]) to solve this problem, which gives the solution: f̂1 =
f̂2 = f̂3 = 0.2715, f̂4 = f̂5 = f̂6 = 0.0549 and f̂7 = 0.2. The
next section provides an efficient algorithm to this problem,
meaning that a general convex problem solver is not required
anymore. Figure 2 shows the relation between the variables
of the equivalent single core problem. The graph “Optimal”
shows the cumulative workload that has been executed at
a given time. The slope of this graph is the optimal clock
frequency. The completion times of the tasks are indicated using
squares. This graph must stay above the graph “Deadline”,
otherwise a deadline is missed. For example, at time 30, exactly
4 + 2 3

√
3 + 3
√

2 ≈ 8.1444 work must have been done. Similarly,
the graph “Optimal” has to stay below the graph “Arrival
time”, which depicts the arrival times of the equivalent single



6

core problem. A well-known property of the solution of the
single core problem is that—due to convexity of the power
function p1—the number of clock frequency changes is kept
to a minimum. The solution f̂1, . . . , f̂K , as shown in Figure 2,
meets this property: if other clock frequencies would be used
they are either too high, too low, or would imply unnecessary
changes of the clock frequency.

The optimal clock frequencies for the original multicore
global DVFS problem are obtained by transforming the optimal
solution for the equivalent single core problem f̂1, . . . , f̂K back
to f1, . . . , fK . After this transformation, the optimal clock
frequencies for the original global DVFS problem are given
by f1 = 0.2715, f2 = 0.1882, f3 = 0.2155, f4 = 0.0436,
f5 = 0.0549, f6 = 0.0436 and f7 = 0.2000. During the
execution of task T4 the clock frequency changes four times.

In the next section, we show how to calculate the optimal
clock frequencies using an efficient algorithm.

V. OPTIMAL SOLUTION

In the previous section, we reduced the global DVFS problem
to an equivalent single core problem with static power, but we
did not provide a solution to this problem yet. While we can
use any convex optimization tool to solve our problem, there
are a few reasons to develop a tailored method. Firstly, such
an approach is specific to our problem, and should therefore
be more efficient. Secondly, the approach, presented in the
following provides insights that can be the base for online
algorithms or algorithms that use slack in an optimal way.

With respect to static energy, we consider two subproblems.
Section V-A considers the case where the static energy con-
sumption has to be taken into account for a given fixed period
of time (tC = dK), hence the solution does not influence the
static energy consumption. We refine this result in Section V-B,
where we extend the results such that it can be used when
static energy has to be accounted for only until the last task
has finished its execution (tC = tcK).

A. Fixed static energy
In this subsection we assume that the processor is active

until the deadline of the last task T̂K . This means that the
static energy consumption can no longer be influenced by the
selected clock frequencies, i.e., we can assume c2 = 0 [19].

For readability, we refer to the workload after transformation
as tasks in contrast to pieces, since then the terminology in
this section matches that of the literature on single core DVFS.
Recall that task Tn is the n-th task in the multicore problem,
while task T̂k is the k-th task in the equivalent single core
problem and corresponds to piece Pk in the multicore problem.

In the single core problem that results from the aforemen-
tioned reduction, the order of the tasks is given. To solve
the single core problem, we adopt the “RecursiveSmoothing”
algorithm of Huang and Wang [9], resulting in the function
optfreq (see Algorithm 1). For correctness and optimality of
this algorithm, we refer to the article of Huang and Wang [9].

The idea behind Algorithm 1 is as follows. Unnecessary clock
frequency fluctuations have to be eliminated in the optimal
solution, because otherwise the clock frequencies of consecutive

Algorithm 1 Optimal clock frequencies

(f̂x, . . . , f̂z) = Function optfreq (x,z,tB ,tC)

F =

∑z
i=x ŵi

tC − tB

y := argmax
j∈{x,...,z}

max
(
tB +

∑j
i=x ŵi
F

− dj ,

aj − tB −
∑j
i=x ŵi
F

)
if tB +

∑y
i=x ŵi
F

− dy > 0 then {y misses its deadline}
(f̂x, . . . , f̂y) = optfreq (x,y,tB , dy)
(f̂y+1, . . . , f̂z) = optfreq (y + 1,z,dy , tC)

else if ay−tB−
∑y
i=x ŵi
F

> 0 then {y violates arrival}
(f̂x, . . . , f̂y−1) = optfreq (x,y − 1,tB , ay)
(f̂y, . . . , f̂z) = optfreq (y,z,ay , tC)

else {no task is infeasible}
(f̂x, . . . , f̂z) = (F, . . . , F )

end if
return (f̂x, . . . , f̂z)

tasks can be replaced by a common clock frequency leading
to a decrease of the energy consumption (see Lemma 1). This
means that the clock frequency is only changed when a task
T̂k arrives or when a task meets its deadline.

This idea is implemented by the algorithm as follows. First
a candidate solution with a constant clock frequency F is
determined for the complete interval, hence F is chosen such
that all tasks are executed between tB and tC . However, some
tasks can miss their deadline or are required to begin too early.
To avoid unnecessary clock frequency fluctuations, the task
with the greatest deadline/arrival time violation is determined,
this task is denoted by T̂y. The algorithm enforces the begin
or completion time for this task such that it does not violate
a constraint anymore. This divides the set of tasks into two
parts, namely the tasks scheduled before the critical task T̂y and
the tasks scheduled after it. The algorithm is then recursively
applied to both groups of tasks and the optimal solution follows.

B. Variable static energy

In this section, we assume that the processor is switched off
after the last task is completed, i.e., we choose tC = tcK . This
means that it may pay off to increase the clock frequency for
the last tasks, such that the processor can be turned off and
the static energy consumption decreases.

Before we solve this problem, we first restrict our attention
to a much simpler problem, namely the single core problem
with ak = 0 for all k ∈ {1, . . . ,K} (i.e., arrival times are not
taken into account). In this relaxed problem, it can be assumed
without loss of generality that a task T̂k+1 starts immediately
when task T̂k is finished, since that minimizes the static energy
consumption. Then the problem becomes as follows.



7

Algorithm 2 Solution to Problem 3

(f̂x, . . . , f̂z) = Function optfreq2(`,K,tB ,tC)
j = `
while j ≤ K do

h = max

(
arg maxk∈{j,...,N}

∑k
i=j

wi
dk − dj−1

)
f̂j , . . . , f̂h = max

(
f crit,

∑h
i=j

wi
dh − dj−1

)
j = h+ 1

end while

Optimization Problem 3.

min
f1,...,fK
tb1,...,t

b
N

c2(tC − tB) +

K∑
k=1

c1f̂
α−1
k ŵk

s.t.
k∑

n=1

ŵk

f̂k
≤ dk, for all k ∈ K,

f̂k ≥ 0, for all k ∈ K,

tbK +
ŵK

f̂K
≤ tC .

In the optimal solution for this problem there is only one idle
period during which the processor is turned off, namely after
the last task of the application. Increasing the clock frequency
also increases the length of period during which the processor
is off, and with it the static energy consumption decreases. As
a consequence, no clock frequency fk < f crit should be used,
since increasing fk decreases the energy consumption.

Summarizing, for the optimal solution, fluctuations of the
clock frequency have to be avoided, and no clock frequencies
below f crit are used. The optimal solution to this prob-
lem can be determined using Algorithm 2 (i.e., by calling
optfreq2(1,K, tB , tC)). This algorithm chooses the lowest
clock frequencies, which leads to a schedule respecting the
deadlines of the tasks, while avoiding unnecessary clock
frequency changes.

Theorem 1. Algorithm 2 gives the optimal solution to Prob-
lem 3.

Proof: We show that the solution f̂1, . . . , f̂K (we denote
the respective clock frequency function by ϕ̂(τ)), that is
produced by Algorithm 2 is optimal. The optimal solution
is unique since the cost function is a strictly convex function
which is minimized on a closed convex set.

Assume the theorem is false and the unique optimal solu-
tion is given by f̄1, . . . , f̄K (we denote the respective clock
frequency function by ϕ̄(τ)). Since using any clock frequency
f̄k < f crit is not optimal, we assume that f̄k ≥ f crit.

Now, consider the smallest m such that f̂m 6= f̄m. The two
possible scenarios are considered separately:

(i) f̄m > f̂m:
In this case we consider the smallest n > m, such that
f̄n < f̂n. Such a value does exist, since otherwise the
optimal solution requires more energy than the solution

found by Algorithm 2, which is a contradiction. It holds
that f̄m > f̂m > f̂n > f̄n, since the sequence f̂1, . . . , f̂K
produced by Algorithm 2 is non-increasing.
For all tasks T̂m, . . . , T̂n−1, we have t̄ck < t̂ck ≤ dk. We
now take a value t > 0, such that f̄mt ≤ wm, and
f̄nt ≤ wn, and t < maxk∈{m,...,n−1} dk − t̄ck.
We consider two small portions of work w′m = f̄mt from
task T̂m, and w′n = f̄nt from task T̂n. For w′m and w′n,
we change the clock frequencies to f = 1

2 f̄m + 1
2 f̄n.

The total execution time of these two portions of work
remains 2t, while the energy consumption becomes.

p1(f)2t = p1

(
1

2
f̄m +

1

2
f̄n

)
<

1

2
p1(f̄m)2t+

1

2
p̄1(f̄n)2t

= p1(f̄m)t+ p1(f̄n)t.

Here, the strict inequality is due to the strict convexity
of the single core power function p1.
Note that we have chosen the portions of work and the
clock frequencies such that no deadline is violated, while
the energy consumption of the optimal solution decreases.
This contradicts the assumption that the solution is
optimal.

(ii) f̄m < f̂m:
Note, that the solution from Algorithm 2 is constant for
tasks T̂m, . . . , T̂n (for some n ≥ m), where t̂cn = dn.
Hence, there must be some time t̄bm < t ≤ dn such that:∫ t
t̄bm
ϕ̂(τ)dτ =

∫ t
t̄bm
ϕ̄(τ)dτ, otherwise task T̂n misses its

deadline in the optimal solution f̂ .
But this means that the optimal solution can be improved
by using the constant clock frequency f̂m on the interval
[t̂bm, t], which contradicts the assumption that the solution
is optimal.

Both cases contradict the assumption that Algorithm 2 is not
optimal, which proves the theorem.

In the following, we combine Algorithm 1 and Algorithm 2
to solve the original problem with arrival times. In this optimal
solution there is some task T̂` which is the last task that finishes
exactly on the arrival time of the next task, i.e. tc` = a`+1. When
no such task exists, we take ` = 0.

Clearly, the processor is active from the start of task T̂1 until
the arrival of task T̂`+1. The static energy consumption during
this period is constant. Hence, the results from Section V-A
can be used; the optimal clock frequencies for tasks T̂1, . . . , T̂`
can be determined using optfreq (1,`,a1,a`+1).

For tasks T̂`+1, . . . , T̂K it holds by definition that tci > ai+1.
Hence, when calculating the optimal solution, the arrival times
do not have to be considered. This means that we can use
Algorithm 2 to find the optimal clock frequencies.

Now it has become straightforward to calculate the optimal
clock frequencies. For a given `, Algorithm 1 and Algorithm 2
can be used for tasks T̂1, . . . , T̂` and tasks T̂`+1, . . . , T̂K
respectively. The value ` is determined by iterating over all
possible values of `, namely 0, . . . ,K − 1, and choosing the
value that gives a feasible solution with the lowest cost.



8

VI. CONCLUSIONS

The energy consumption can be reduced by using higher
clock frequencies when fewer cores are active. The superlinear
relation between clock frequency and power imposes a bound
on the amount of increase of the clock frequency.

We have translated the multicore global DVFS problem to
an equivalent single core problem. For this, we subdivide a
given schedule into so-called pieces. The workload of a piece
is multiplied by α

√
m, where m is the number of active cores

of the piece. After this transformation, all references to the
amount of parallelism disappear from the problem. We can
consider these transformed pieces as tasks in an equivalent
single core problem. This is one of our major contributions,
since it enables the use of single core DVFS techniques for
multicore global DVFS systems.

All processors consume static power. For this, we considered
two different scenarios: (i) static power is consumed until the
deadline of the last task, (ii) static power is consumed until the
last task is finished. For single core systems, the first problem
was solved in the literature, while the second problem was
solved using an algorithm that we introduced. This algorithm
is a further contribution to the theory of single core DVFS.

Future Work
In future work we like to address the problem where the

workload is not known before the tasks are executed. Zitterell
and Scholl [24] solved this problem for the single core case.
We want to derive a similar result for global DVFS, by using
our transformation of the multicore problem to a single core
problem.

REFERENCES

[1] S. Irani and K. R. Pruhs, “Algorithmic problems in power management,”
SIGACT News, vol. 36, no. 2, pp. 63–76, jun 2005. [Online]. Available:
http://doi.acm.org/10.1145/1067309.1067324

[2] K. Pruhs, “Green computing algorithmics,” in Foundations of Computer
Science (FOCS), 2011 IEEE 52nd Annual Symposium on, oct. 2011, pp.
3–4.

[3] J. L. March, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato, “A new
energy-aware dynamic task set partitioning algorithm for soft and hard
embedded real-time systems,” The Computer Journal, vol. 54, no. 8, pp.
1282–1294, 2011.

[4] P. Chaparro, J. González, G. Magklis, C. Qiong, and A. González,
“Understanding the thermal implications of multi-core architectures,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 18, no. 8,
pp. 1055–1065, aug. 2007.

[5] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s
next-generation server processor,” Micro, IEEE, vol. 30, no. 2, pp. 7–15,
march-april 2010.

[6] A. Kandhalu, J. Kim, K. Lakshmanan, and R. R. Rajkumar, “Energy-
aware partitioned fixed-priority scheduling for chip multi-processors,” in
17th International Conference on Embedded and Real-Time Computing
Systems and Applications, vol. 1. Los Alamitos, CA, USA: IEEE
Computer Society, 2011, pp. 93–102.

[7] D. Zhang, D. Guo, F. Chen, F. Wu, T. Wu, T. Cao, and
S. Jin, “Tl-plane-based multi-core energy-efficient real-time scheduling
algorithm for sporadic tasks,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 47:1–47:20, jan 2012. [Online]. Available:
http://doi.acm.org/10.1145/2086696.2086726

[8] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,” in Proceedings of IEEE 36th Annual Foundations of
Computer Science, 1995, pp. 374–382.

[9] W. Huang and Y. Wang, “An optimal speed control scheme supported
by media servers for low-power multimedia applications,” Multimedia
Systems, vol. 15, no. 2, pp. 113–124, 2009.

[10] S. Cho and R. G. Melhem, “On the interplay of parallelization, program
performance, and energy consumption,” IEEE Trans. Parallel Distrib.
Syst., vol. 21, no. 3, pp. 342–353, mar 2010. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2009.41

[11] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (DVS) platforms,” in Embedded and
Real-Time Computing Systems and Applications, 2007. RTCSA 2007.
13th IEEE International Conference on, 2007, pp. 28–38.

[12] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,
“Survey of energy-cognizant scheduling techniques,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 24, no. 7, pp. 1447–
1464, 2013.

[13] K. Li, “Scheduling precedence constrained tasks with reduced processor
energy on multiprocessor computers,” Computers, IEEE Transactions
on, vol. 61, no. 12, pp. 1668–1681, 2012.

[14] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supinski,
and M. Schulz, “Bounding energy consumption in large-scale MPI
programs,” in Proceedings of the 2007 ACM/IEEE conference on
Supercomputing - SC ’07, 2007, pp. 1–9.

[15] M. E. T. Gerards, J. L. Hurink, and J. Kuper, “On the interplay between
global DVFS and scheduling tasks with precedence constraints,” 2013,
(under review).

[16] K. Pruhs, R. van Stee, and P. Uthaisombut, “Speed scaling of
tasks with precedence constraints,” in Approximation and Online
Algorithms, T. Erlebach and G. Persinao, Eds. Springer Berlin
/ Heidelberg, 2006, vol. 3879, ch. Lecture Notes in Computer
Science, pp. 307–319, 10.1007/11671411 24. [Online]. Available:
http://dx.doi.org/10.1007/11671411 24

[17] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor,” in Proceedings of
the conference on Design, Automation and Test in Europe - Volume 1, ser.
DATE ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp.
468–473. [Online]. Available: http://dx.doi.org/10.1109/DATE.2005.51

[18] W.-C. Kwon and T. Kim, “Optimal voltage allocation techniques
for dynamically variable voltage processors,” ACM Transactions on
Embedded Computing Systems, vol. 4, no. 1, pp. 211–230, 2005.

[19] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,”
ACM Trans. Algorithms, vol. 3, no. 4, pp. 41:1–41:23, nov 2007.
[Online]. Available: http://doi.acm.org/10.1145/1290672.1290678

[20] L. Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The
laws of diminishing returns,” in Proceedings of the 2010 International
Conference on Power Aware Computing and Systems, HotPower’10.
USENIX Association, 2010, pp. 1–8.

[21] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang,
“Accurate modeling of the delay and energy overhead of dynamic voltage
and frequency scaling in modern microprocessors,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 32,
no. 5, pp. 695–708, 2013.

[22] E. Bampis, C. Dürr, F. Kacem, and I. Milis, “Speed scaling with
power down scheduling for agreeable deadlines,” Sustainable Computing:
Informatics and Systems, vol. 2, no. 4, pp. 184–189, 2012.

[23] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, V. Blondel,
S. Boyd, and H. Kimura, Eds. Springer-Verlag Limited, 2008, vol. 371,
ch. Lecture Notes in Control and Information Sciences, pp. 95–110.

[24] T. Zitterell and C. Scholl, “A probabilistic and energy-efficient
scheduling approach for online application in real-time systems,” in
Proceedings of the 47th Design Automation Conference, ser. DAC ’10.
New York, NY, USA: ACM, 2010, pp. 42–47. [Online]. Available:
http://doi.acm.org/10.1145/1837274.1837287


