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Abstract—The implementation of DNA alignment tools for
Bioinformatics lead to face different problems that dip into
performances. A single alignment takes an amount of time
that is not predictable and there are different factors that can
affect performances, for instance the length of sequences can
determine the computational grain of the task and mismatches
or insertion/deletion (indels) increase time needed to complete
an alignment. Moreover, an alignment is a strong memory-
bound problem because of the irregular memory access pat-
terns and limitations in memory-bandwidth. Over the years,
many alignment tools were implemented. A concrete example
is Bowtie2, one of the fastest (concurrent, Pthread-based) and
state of the art not GPU-based alignment tool. Bowtie2 exploits
concurrency by instantiating a pool of threads, which have access
to a global input dataset, share the reference genome and have
access to different objects for collecting alignment results. In
this paper a modified implementation of Bowtie2 is presented,
in which the concurrency structure has been changed. The
proposed implementation exploits the task-farm skeleton pattern
implemented as a Master-Worker. The Master-Worker pattern
permits to delegate only to the Master thread dataset reading and
to make private to each Worker data structures that are shared in
the original version. Only the reference genome is left shared. As a
further optimisation, the Master and each Worker were pinned on
cores and the reference genome was allocated interleaved among
memory nodes. The proposed implementation is able to gain up
to 10 speedup points over the original implementation.

I. INTRODUCTION

The diffusion of the Next Generation Sequencing (NGS)
has increased the amount of data obtainable by genomic
experiments. From a DNA sample, a NGS run is able to
produce millions of short sequences, called Reads, which
should be mapped onto a reference genome. Each Read is a
sequence of nucleotides, which contains also the information
about the quality of the sequencing process done to determine
the reliability of the nucleotide called during sequencing.
Bowtie2, is one of the fastest alignment tool [1] [2]. It is
suffix-array and genome compression based and indexes the
genome by using the Burrows-Wheeler transform (BWT) [3]
and the FM Index [4]. The genome is loaded read-only in
memory and it is shared among threads. In the multithreaded
execution, a pool of threads is created. Those threads get Reads
from a shared dataset, populate shared data structure with
the alignment result and, finally, the main thread writes the
alignment result into the output file. All accesses to shared data
and objects are protected by mutexes (either Pthreads locks or
spin-locks). The proposed implementation aims to:

e  give access to the dataset only to the master thread;
e add to each Worker a private instance of all classes
that are shared in the original version (both for the
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alignment algorithm and for results);

e avoid Workers and Master threads’ migration by pin-
ning them to cores;
provide memory affinity for each thread’s private data;
allocate the genome with an interleaved policy among
memory nodes.

The proposed design exploits the high-level farm pattern of
FastFlow, a structured parallel programming framework target-
ing shared memory multi-core architectures [5], implemented
on top of nonblocking multi-threading and lock-less (CAS-
free) queues, and providing the programmer with high-level
mechanism to tune task scheduling to achieve both load-
balancing and memory affinity. With FastFlow it was possible
to implement the Master-Worker pattern with few source code
modifications, while threads pinning and genome interleaving
were realised by using libnuma. This paper is organised as
follows. Related works are discussed in Section II, Section III
provides a brief introduction of the Bowtie2 alignment tool
and Section IV presents the Stream Parallelism programming
model and describes the FastFlow programming framework.
In Section V the FastFlow porting of Bowtie2 is presented.
Section VI reports performances evaluations and Section VII
reports datasets analysis. Section VIII concludes the paper.

II. RELATED WORKS

Over years many algorithms for sequence alignment have
been proposed and different tools were implemented, these
already entire exploit multithreading. All these tools have
different characteristics both in alignment algorithms and in
the genome indexing.

A. Alignment Tools

The first step done before an alignment is to create and load
the reference genome. The used techniques are hash tables and
Burrows-Wheeler Transform [3]. The hash-based technique
builds a hash table for subsequences of both genome and
Reads. Keys are created by hashing subsequences and values
are lists of positions in which subsequences can be found. The
Burrows-Wheeler Transform (BWT) [3] is a string permutation
algorithm used in data compression tools as bzip2. Ferragina
and Manzini have enhanced it with the implementation of
the FM-index [4] [6], an opportunistic data structure for text
compression that permits fast substring queries. The name
stands for Full-text index in Minute space. It is used to find
rapidly the number of occurrences of a string pattern within
the compressed text created, as well as the position in which
the string is located. Hash-based tools, such as SOAP [7],
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SHRiMP [8] and mrFAST [9] are particularly suitable for
short sequences alignment. SOAP is designed for efficient
gapped and ungapped alignment of short Reads generated
by Illumina-Solexa sequencing technology and it is able to
execute single-end or pair-end alignment, small RNA discovery
and mRNA tag sequence mapping. Shrimp and the last version
Shrimp2 [10], are a short Reads mapper that support both
colour-space and letter-space sequences. MrFAST maps short
Reads emphasising the discovery of structural variation and
segmental duplications. It is possible to map both single-end
and paired-end Reads and can support up to 4+4 base-pair
indels.

Burrows-Wheeler Transform (BWT) based tools, such as
Bowtie [12] and Bowtie2 [1], BWA [13] and SOAP2 [14], use
the FM index in order to create a suffix array on sequences
compressed by the BWT algorithm. The combination of these
two algorithms permits the creation of a compressed genome
that can be fully loaded in memory. This technique has the
limitation of a lower sensitivity in alignment with respect to
hash-based indexing and of a reduction of maximum allowed
mismatches (for instance, Bowtie2 allows only up to one
mismatch), but has the advantage to make the alignment faster.
Burrows-Wheeler Aligner (BWA) aligns relatively short Reads.
It consists of three algorithms: BWA-backtrack, BWA-SW and
BWA-MEM. The first is designed for Reads up to 100bp, while
the other two for longer sequences. BWA-MEM is used typ-
ically for high quality Reads, having better performance than
BWA-backtrack for 70-100bp Reads. SOAP2 is the improved
version of SOAP, that both reduces computer memory usage
and increases alignment speed. In this version, the genome
indexing technique was changed from the hash-based one to
the Burrows Wheeler Transformation compression algorithm.
Bowtie2 is presented in Section III.

B. Tools Parallelisation and Optimisations

Alignment tools, generally, exploit parallelism via multi-
threading. For instance, Bowtie, in both versions (Bowtiel
and Bowtie2) implements multithreading with Posix Threads,
while the parallel version of BWA, pBWA [15], was developed
by using the OpenMPI C library and can be executed exploit-
ing both parallelism and multithreading. Shrimp and Shrimp2
alignment tools load the genome in memory in order to exploit
multi-threading for mapping Reads in parallel. In [16] was
presented distributed version of Shrimp, implemented upon the
MapReduce programming model. Alignment tools that exploit
GPUs were also presented. An example is SOAP3 [17], the
GPU-based version of SOAP2. It can find all alignments with
up to 3 mismatches and can be up to tens of times faster
with respect to its previous version SOAP2. SOAP3 is at least
7.5 to 20 times faster than BWA and Bowtie, respectively.
In addition, BarraCUDA [18] and CUSHAW [19] are short
Reads alignment tools that exploit GPUs. Optimisations were
proposed also for the Burrows-Wheeler transformation: this
algorithm has been proposed with a novel locality-aware
design for exact string matching in [20], in which this novel
implementation can reduce LLC misses by 30%, TLB misses
by 20% and resulting in up to 2.6- fold speedup with respect
to the original BWA implementation.
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III. THE BOWTIE2 ALIGNMENT TOOL

Bowtie and Bowtie2 are alignment tool intensively used
in biology, bioinformatics and medical research. While the
first is specialised for short Reads (up to 25-50 nucleotides),
Bowtie2 can align reads of very different length (no upper
limit on read length) and support gapped alignment with gap
penalties. The human genome indexing in Bowtie requires
a small amount of memory to be fully loaded (about 2.3
GB), while other tools (both hash-table based and suffix-array
based) asks for more memory: for instance, mrFAST (hash-
table based) uses about 3.8 GB of memory and BWA (suffix-
array based) requires about 3.2 GB of memory [22]. Different
pipelines use Bowtie2 for bioinformatics, such as Myrna for
a cloud-scale RNA-sequencing differential expression analysis
[23], ChimeraScan for identifying chimeric transcriptions [24],
commercial products such as Geospiza GeneSifter and CLC
Genomics Server. Bowtie is also available as package in some
Linux distribution, for example Debian and Fedora. This tool
is used by researchers because it supports gapped, local, and
paired-end alignment modes and, unlike different alignment
tools (such as Shrimp), it is fast and can be used as the first
step in pipelines for comparative genomics.

A. Bowtie2 Implementation

In shared memory multiprocessor architectures, Bowtie2
implements parallelism by using PThreads library. Bowtie2 can
be executed specifying the desired number of threads which
use synchronisation in fetching Reads, populating structures
for alignment results, and performing global operations. All
threads share the memory image of the index, so the memory
footprint does not increase when multiple threads are used
[12]. The alignment starts after the initialization of all the
global structures, objects, variables and files related to the
indexed genome. Referring to Figure 1, threads also share
different data structures for collecting alignment result and
other statistics (sh-mem output data structures). Each threads
workflow is characterised by first setting up per-thread pointers
to shared global data structures, creating private per-thread
structures, and then cycling the following three steps:

1) Take a Read (or a pair of) from the input file (global to
all threads);

2) Align the Read against the genome loaded into the index
file (shared by threads);

3) Populate global structures related to the alignment output
and general output statistics.

sh-mem Input
(Reads, Genome)

mutex
Private Private
task task
(Reads) (Reads)
mutex

sh-mem Output
Data Structures

Fig. 1: Bowtie2 structure



All these steps are highly based on synchronisation because
of the strong presence of shared data. In particular, mutexes
were removed from

Data structures and routines used during an alignment
for saving Reads’ information for the final result;
Merging metrics objects and counters shared by mul-
tiple threads;

Reporting a matrix of results into the output file;
Tally memory allocation and releasing;

Populating the object related to collecting the list of
lines of output;

Fetching Reads from file.

After collecting lines of output, the main thread flushes the
alignment result to the (eventually) specified file and displays
alignment statistics to the standard output.

IV. STREAM PARALLELISM PROGRAMMING MODELS

The stream parallelism programming model supports the
parallel execution of a stream of tasks through a series of
sequential or parallel stages. Each stage of a stream program
(called kernel or filter) can be represented as a node of a
graph of independent stages, in which nodes communicate
over data channels. Each stage of such a graph works on
one or more tasks coming from the input stream by applying
some kind of computation and writing output tasks to the
output stream. Parallelism is achieved by running each stage
of the graph simultaneously on subsequent or independent data
elements. Stream programs can be represented as a graph of
concurrent activities and can be programmed using a low-level
shared memory or message passing programming framework.
In order to reduce programming effort and raising the level
of abstraction, different parallel programming frameworks has
been implemented. Within the skeletal approach [25] (or
pattern-based parallel programming) can be captured most
common parallel programming paradigms (such as MapRe-
duce, ForAll, Divide & Conquer, etc.) and programmers can be
provided with high-level constructs equipped with well-defined
functional and extra-functional semantics [26]. The pipeline
skeleton and the farm skeleton are two of the most used:
with a pipeline, parallelism is achieved by running each stage
simultaneously on a stream of data while the farm skeleton
consists in running multiple independent stages in parallel,
all working on different tasks of the input stream. The farm
skeleton is typically described as a three-stage pipeline. The
first stage consists of the Emitter, which dispatches stream
items (or tasks) to a set of Workers(the second stage), that
will apply transformations to stream items. The last stage
consists of the Collector, which gather all results from Workers
into a single stream. These logical stages are considered by a
consolidated literature as the basic building blocks of stream
programming [27]. The loop skeleton (also known as feedback)
can generate cycles in a stream graph. This skeleton is used
typically together with the farm skeleton to model recursive
and Divide&Conquer computations.

The FastFlow implementation of the farm pattern is used to
implement the proposed version of Bowtie2.
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A. The FastFlow Library

FastFlow is a parallel programming environment targeting
shared memory multi-core. It is implemented in C++ on top
of Pthreads library and provides developers with task farms
and pipelines parallel patterns [5]. FastFlow is based on four
principles: layered design for supporting local optimizations
and incremental design; efficiency in base mechanisms; stream
parallelism support for implementing stream parallelism ap-
plication, data parallel application or Divide&Conquer appli-
cations; skeleton/pattern based programming model [28]. As
shown in Figure 2, it is designed as a stack of layers in order
to abstract the level of parallelism, starting from cores level up
to high level programming constructs. It supports parallel pro-
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Fig. 2: FastFlow Layered Design

gramming on cache-coherent shared memory multi-core and
many-core architectures [29]. The core of FastFlow provides
an efficient implementation of lock-free (CAS-free) Single-
Producer-Single-Consumer (SPSC) FIFO queues. The next
level extends SPSC queues to Multiple-Producer-Multiple-
Consumer (MPMC) synchronizations implemented using only
SPSC queues and arbiter threads, providing lock-free and
wait-free data-flow graphs. Cache invalidations in core-to-
core synchronizations are significantly reduced thanks to the
lock-free implementations, which makes FastFlow to have
higher speedup for fine-grained computations respect to other
programming tools such as POSIX, Cilk, OpenMP, and Intel
TBB [30]. On the top layer, programmers are provided with a
set of patterns implemented as C++ templates: farm, farm-
with-feedback (i.e. Divide&Conquer) and pipeline patterns,
which can be arbitrarily combined. The FastFlow farm is used
to implement the Master-Worker pattern in Bowtie2, which
consists of an Emitter, a set of Workers and no Collector.

V. BOWTIE2-FF IMPLEMENTATIONS

In the alternative version of Bowtie2 (Bowtie2-FF, from
now on), the original code was changed in order to exhibit a
high-level design using the FastFlow farm pattern. The farm
pattern has specialised to behave as a Master-Worker, where
reading data from input file and collecting alignment results are
mapped onto the Master (Emitter E), whereas the alignment is
mapped onto parallel Workers (W;). As by-product, Bowtie2-
FF exhibits no mutexes since data dependencies are managed
by the FastFlow run time support (via Emitter thread) using a
lock-less approach. Task balancing is automatically achieved
thanks to FastFlow farm on-demand memory-affine scheduling



policy. Two variants of Bowtie2-FF are proposed. In the first,
Emitter and Workers are pinned on cores and data structures
used are allocated in the memory node in which each thread
is pinned, thus providing locality for private data. The second
variant provides threads pinning and genome allocation with
an interleaved policy among memory nodes. Therefore, there
are three variants of Bowtie2-FF:

1) Bowtie2-FF (Bt2FF): Master-Worker with workload dy-
namically partitioned among Workers by using an on-
demand scheduling policy;

Bowtie2-FF with thread pinning (Bt2FF-pin): Master-
Worker with threads pinning on cores and memory affinity
for private data;

Bowtie2-FF with thread pinning and genome interleaving
(Bt2FF-pin+int): Master-Worker with threads pinning on
cores, memory affinity for private data and interleaved
allocation policy among memory nodes for shared data
(genome).

2)

3)

A. Master-Worker

In the original version of Bowtie2, each Worker thread
takes needed data directly from the filesystem. For this reason,
it is necessary to lock a counter variable that identifies the
current Read and let each thread increment it avoiding data
races and, consequently, it is necessary to avoid conflicts in
accessing the input file. Furthermore, data structures related
to Reads and alignment’s results are allocated once at the
beginning of the execution and the used memory is recycled
at each iteration, thus avoiding new allocations. In the very
first version of Bowtie2-FF, the Emitter was allocating each
of the aforementioned structures every time a new Read was
read from file and, at the end of each single alignment, each
Worker destroyed these. This implementation was increasing
the execution time because of the high number of allocation
and deallocation. There would be the same effect by imple-
menting the farm skeleton with both Emitter and Collector.
In order to avoid changing the original allocation policy with
memory recycling, each Worker was provided with a backward
channel towards the Emitter, while Emitter and Collector were
collapsed in the Emitter. In this way, data structures can be
allocated once by the Emitter and recycled at each iteration.
At the end of the computation, the Emitter itself will deallocate
used memory, acting as the Collector. The implemented farm
acts as follows: the first step consists of the instantiation of
a finite number of tasks by the Emitter (£f_task) and of
the initialisation of all task’s members. Fields of £f_task
involved in this first step are related to the current Read
taken from the dataset (Read value, Read id). Once these are
populated, the ££_task is sent to the first available Worker.
Instead, if the current task was previously instantiated and has
been just sent back to the Emitter by a Worker, statistics and
results are merged, a new Read is assigned (if available) and
it is sent back to the first available Worker.

B. Task Scheduling with FF—Queues

As shown in Figure 3, links between the Emitter (E)
and each Worker (W;) and vice-versa, are implemented using
lock-free FIFO queues [31]. Backward connections (W; —E)
accomplish to two main duties: 1) carry results from W; to
E, and 2) recycle exhaust tasks allocated memory in order to
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Fig. 3: Bowtie2-FF structure

avoid any code change in the original one. Despite FastFlow
supports both bound and unbound queues, all the queues are
bounded to a fixed number of elements since the scheduling
policy enforces the absence of deadlocks. Having fixed the size
of queues, the Emitter is allowed to assign a finite number of
tasks per Worker obtaining the following advantages:

e A Worker always has tasks ready in its queue; hence
it never happens that a Worker is waiting for a task
from the Emitter;

Using bounded queues, the workload is dynamically
partitioned among Workers in order to avoid the
possibility of assigning long duration alignment tasks
to few threads;

The Emitter instantiates a finite number of tasks. Each
task coming from Workers is recycled and populated
with new data for a new alignment. The amount of
memory used is bounded to sizeof(task)x #Workers
X QueueSize;

That is, number of tasks created within an execution is not
depending on datasets dimension or on alignments duration,
it only depends on the number of Workers and on the size
of queues connecting Workers and Emitter. Tasks number is
not changing because it is fixed on #Workers x QueueSize
elements. This way, memory allocated by the Emitter for an
alignment job is equal to sizeof{task)x #Workers x QueueSize.
Despite the number of tasks created is the same within each
Bowtie2-FF version, the way the Emitter instantiates and
schedules each task is different depending on the FastFlow
version of Bowtie2. For each Worker, the Emitter in Bt2FF
version follows these steps:

1) Creates a new task and initialises it with data needed for
the alignment (i.e. Read value, Read id);

Task is pushed into the Worker’s queue with a Round-
Robin scheduling policy. Worker aligns the sequence
against the genome and pushes the task with obtained
results into the queue in its backward connection towards
the Emitter;

The Emitter saves alignment results, initialises the re-
ceived task with a new Read value and pushes it into the
first free queue slot selected in a Round-Robin fashion
among Workers;

2)

3)



It can be noticed that the proposed structure can be used also
to realise a distributed version of Bowtie2-FF. The FastFlow
library provides nodes with an extra communication channel
which connects the edge-node of the graph with one or more
edge nodes of other FastFlow application graphs running on
the same or on a different host. A possible applicability for
a distributed version could be executing multiple instances of
Bowtie2-FF against one genome, thus aligning more datasets,
or aligning one dataset against different genomes. In this case
it would be necessary to add one additional thread for farms
orchestration. By distributing workers on multiple hosts could
only slow down the application because of high overhead due
to communications between Emitter and Workers. Figure 4
shows a first comparison between Bowtie2 and the proposed
Bt2FF. Besides locks removal, the execution time decreases of
few seconds. To improve performances, implemented optimi-
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Fig. 4: First comparison between Bowtie2 and Bowtie2-FF

sations consist of: i) pinning threads to cores in order to avoid
threads migration and mitigating the possibility cache misses
due to accessing to different caches and ii) providing memory
affinity for private data or accessed data. Details are presented
in the next section.

C. Memory Access Optimisations

To ensure data locality, tasks are provided with three new
information: 1) the id of the core in which destination Worker
is running; 2) the id of the memory node that contains the core
and 3) destination Worker, that is, the id of the Worker running
on that core. For each Worker, now the Emitter behaves as
follows:

1) It determines on which core the Worker is pinned and the
relative memory node;

2) It creates a new task, which is initialised with the id of
the destination Worker and the memory node id;

3) It allocates each task’s private data needed for the align-
ment (i.e. Read value, Read id, data structure for results
collection) and the task itself into the selected memory
node;

This is valid for the allocation of new tasks. Considering that
tasks are recycled in every iteration, the Emitter initialises
received tasks with a new Read value and pushes them into
the queue of the Worker identified by the relative field of the
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task. In this way, it is guaranteed for each task to be always
sent back to the same Worker. For each Worker, allocating
memory on the node in which they are executing is the way
to get the best memory latency for their local data structures.
Workers running on different nodes instead access the shared
genome, which is allocated by the main thread on its current
node, using the default allocation policy. In order to improve
access to the genome (and avoiding its replication), it has
been allocated with an interleaved policy by using the NUMA
policy library, that is, allocating memory pages in a Round-
Robin fashion into all nodes on the system. This way it is
possible to avoid hot spot on the node in which genome is
allocated. The interleaved allocation function is slower than the
malloc allocation function, but it permits to have advantages
in performances because of spreading the memory load across
memory nodes.

VI. PERFORMANCES ANALYSIS

Because the default allocation policy is the one used in
Bowtie2, it has been tested also using an interleaved allocation
policy for the whole application, in order to compare the orig-
inal application with test conditions as similar as possible. In-
terleaving is provided by the numactl --interleave=all
command. Therefore, performances were measured on five
versions of the software:

D
2)

Bt2FF: the FastFlow version without threads pinning and
without genome interleaving;

Bt2FF-pin: the FastFlow version with threads pinning and
without genome interleaving;

Bt2FF-pin+int: the FastFlow version with both threads
pinning and genome interleaving;

Bt2: the Bowtie2 original implementation;

Bt2-int: the Bowtie2 original implementation but with
memory allocation policy interleaved among nodes.

3)

4)
5)

All versions were tested on datasets with different charac-
teristics. Two of them (ERR039480 and SRRO003161) are
referring to [1] and Unpublished dataset refers to a synthetic
dataset generated in laboratory. Table I summarises datasets.
Bowtie2-FF was tested on an Intel workstation with 4 eight-

TABLE I: Datasets

Dataset Type Read Length  # of Reads
SRR534301 Paired-End RNA-Seq 101 108749331
lane2_CTL_gseq  ChIP-Seq 36 53673423
SRR568427 ChIP-Seq 36 53594954
SRR502198 ChlIP-Seq 36 25675656
SRR003161 Genomic Synthetic 47 — 4931 1376701
ERR039480 Genomic Synthetic 4-2716 36201289
SRR072996 ChIP-Seq 20 60673318
SRR078586 Genomic Hybrid Selection 8-68 3101013
SRR578211 Genomic 49 59654080
Unpublished Genomic Synthetic 100 900006
SRR027963 Hi-C Paired-End 76 18145940
SRR576421 Genomic Dnase-Seq 50 212165270

core E7-4820 Nehalem (64 HyperThreads) @2.0GHz with
18MB L3 cache and 64 GBytes of main memory with Linux
x86_64. Each processor uses HyperThreading with 2 contexts
per core. Each Bowtie version has been executed with 1
up to 32 threads. Speedup has been calculated with respect
to the sequential execution of Bowtie2. In Figure 5, it can
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Fig. 5: Performances of all different versions of Bowtie2

be observed that the version with pinning and interleaving
performs better in the most cases. Analysing performances
about threads migration, number of used CPUs and executed
operation on a test dataset with linux perf tool, it is possible
to notice how Bowtie2-FF with threads pinning and genome
interleaving (Bt2FF-pin+int) performs better than Bowtie2. In
Table II were analysed performances with perf stat —-d on
dataset SRR578211, on a subset of 5 million of Reads of length
49. Perf stat was used to monitor the execution of the original
Bowtie2 version with interleave==all policy (Bt2-int) and
the FastFlow version with threads pinning, memory affinity
and interleaving of shared data (Bt2FF-pin+int) running with
32 threads (31 Workers and 1 Emitter). By this estimation,

TABLE II: Analysis with Perf Stat

Metric Bt2FF-pin+int  Bt2 interleaved
CPUs utilised 30.408 28.655
Context-switches 34816 199592
CPU-migrations 53 901
IPC 1.01 0.75
Stalled cycles per insn 0.58 0.93
Stalled-cycles-frontend  58.59% 69.67%
Stalled-cycles-backend  38.53% 53.19%
Branches-misses 5.08% 5.20%
L1-dcache-misses 4.07% 3.92%
(of all L1-dcache hits)

LLC-load-misses 41.62% 46.14%
(of all LL-cache hits)

Execution time (s) 35 55

we can notice that the FastFlow version can exploit all CPUs
thanks to threads pinning, while Bowtie2, also executed with
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31 Worker threads, uses approximately 28 CPUs. The resulting
speedup with respect to the original Bowtie2 execution is 24.83
for the Bt2FF-pin+int version and 15.8 for the Bt2-int version.
The number of threads migration by pinning Worker threads
in Bowtie2-FF version is 17 times lesser than Bowtie2. The
main thread is not pinned and then those migrations could be
imputable to the main thread.

The front-end is a group of the pipeline stages responsible
for fetch and decode phases, by which providing a stream of
work to the back-end, which works on micro-operations. Intel
Nehalem workstation can deliver up to 4 instruction/cycles
because of its 4 decoders and a CPU cycle is stalled when
the pipeline does not advance during it. Here we can notice
that the FastFlow version, despite of few code modifications, is
able to exploit the workstation better than the original version
decreasing by about 10% front-end stalled cycles and by about
15% back-end stalled cycles. We can also notice that IPC in
Bowtie2-FF is higher than in Bowtie2.

Analysing cache misses both in L1-dcache and in LL-cache
(L3 in this workstation, shared among cores) by executing
Bowtie2 on different datasets there are always different results.
For instance, tests on a real world dataset and a synthetic
one are reported in table III. Bowtie2-FF with threads pinning
and genome interleaving performs better with the real dataset
while, with the synthetic datasets, it has the same performances
as Bowtie2. Although small differences in percentages and
the brief memory analysis, cache-misses can be considered
an important factor that affects performances.



TABLE III: Analysis with Perf Stat

Bt2-FF Pin+Int
Real Dataset

Metric Bt2 interleaved

L1-dcache-misses 4.55% 4.59%

(of all L1-dcache hits)

LLC-load-misses 46.61% 52.99%

(of all LL-cache hits)

Execution time (s) 57.18 77.82
Synthetic Dataset

L1-dcache-misses 10.54% 12.27%
of all L1-dcache hits

LLC-load-misses 36.94% 36.45%
of all LL-cache hits

Execution time (s) 99.31 108.79

VII. DATASETS ANALYSIS

Because of the strong differences in performances
among tests (consider for instance datasets SRR568427 and
SRR576421 in Figure 5), the attention moved on the datasets
analysis in order to understand if there is some particular
feature that affects global performances. To analyse in deep
all datasets, the FastQC tool was used. Despite the number
of different statistics reported by FastQC (i.e. number of
sequences, per-base/per-sequence GC content, overrepresented
sequences, Kmer contents), Reads length appears to be a
factor that can affect performances. In Figure 6 it is re-
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Fig. 6: Speedup trend with respect to Reads length.

ported the comparison between maximum speedup values of
Bt2FF-pin+int and the original implementation. Each point
of the graph represents the obtained speedup with a dataset
with Reads length defined on the x axis. Each point of the
graph refers to, respectively, SRR072996, lane2_CTL_gseq,
SRR578211, SRR0O78586, SRR027963 and SRR534301. Syn-
thetic datasets were not considered (see table I), because
are not representative of real world experiments, and dataset
SRR576421. The last one has very low performances (max-
imum speedup of Bt2 is 9.10, maximum speedup of Bt2FF-
pin+int is 11.81) and it was not represented because it can
be considered a biased dataset. The protocol used to create
this dataset (Dnase-Seq), creates a high number of repeated
sub-sequences (Kmer) over Read length, which are localised
after the 20th nucleotide. Reads created by this protocol are
long 20: the other values should be trimmed because are
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nucleotides specifically recognized by the enzyme used in the
experiment. It should be investigated if these residues are
the reason of low performances. Datasets SRR502198 and
SRR568427 were not reported because Reads length is 36
and they were overlapping the second dataset plotted in the
graph (referred to lane2_CTL_qgseq) which has Reads length
36, too. Maximum speedup obtained by Bowtie2 and Bt2FF-
pin+int in these two datasets are, respectively, 15.03 and 23.34
for SRR502198 and 12.86 and 20.42 for SRR568427. It can
be noticed that Bt2FF-pin+int can always gain speedup points
with respect to Bowtie2. In particular, datasets with Reads of
length less than 70 nucleotides make the FastFlow version of
Bowtie2 to gain up to 10 points of speedup over the original
version. On last two datasets, Bt2FF-pin+int is faster than the
original version but gains at most about 4 speedup points. Even
though this analysis can not be considered fully demonstrative
of the correlation between Reads length and tool performances,
it has been shown that on datasets with short/medium length,
Bowtie2-FF with threads pinning and genome interleaving
performs better than the original version of the tool. It is
confirmed by the FastFlow library because it is designed to
perform better with fine grain tasks. Datasets SRR003161 and
ERR039480 are those with Reads with very different length
(see table I) that are obtained, respectively, with Roche 454
GS FLX Titanium and Ion Torrent PGM technology, which
generate long Reads (up to 1000bp the former, up to 200
the latter). Such a length is generally used in metagenomics
analysis. A further experiment has been done using a genomic
dataset obtained by a 454 GS FLX Titanium sequencing
(85361 Reads, average 600bp). Speedup expectations has been
confirmed: Bowtie2 and Bowtie2-FF with threads pinning
and genome interleaving have same performances, reaching
a maximum speedup of (respectively) 6.61 and 6.86 both
executed with 12 workers. Alignment tests with Roche 454 real
and synthetic datasets can be found in [32], where Bowtie2
has been compared to other tools, reporting a poor speedup
as well (maximum speedup of 7). All these results confirm
that, besides this alignment algorithm is able to align very
long Reads, in terms of performances is not well suited for
metagenomics.

VIII. CONCLUSION

In this paper, a modified version of the Bowtie2 alignment
tool has been presented, in which the concurrency structure has
been modified into a Master-Worker. The proposed implemen-
tation exploits the task-farm skeleton pattern implemented as a
Master-Worker, which permits to delegate only to the Master
thread dataset reading and to make private to each Worker
data structures that are shared in the original version. Only
the reference genome is left shared. As a further optimisation,
the Master and each Worker has been pinned on cores in
order to avoid threads migration and, consequently, threads
were provided with memory affinity to get the best memory
latency for their local data structures. The genome, accessed
by Workers running on different nodes, has been allocated with
an interleaved policy in order to avoid hot spot on the node
in which genome is allocated. The modified version with both
threads pinning and genome interleaving performs better than
the original version, especially with datasets with short Reads,
gaining up to 10 speedup points. This is possible thanks to the
FastFlow library, designed to perform better with fine grain



tasks. Considering that many pipelines for comparative ge-
nomics use Bowtie2 as preliminary step, the proposed version
can be used without changing or adding any input parameter.
With some dataset, the proposed version performs the same as
the original or few seconds better (ERR039480, SRR003161
and SRR576421). The first two of those datasets are synthetic
and are composed by Reads of very different length (see Table
1), while the last is a real world dataset with Reads of fixed
size, but it is biased because of the high presence of kmers. It
should be investigated, as future work, if datasets features are
a reason of performances lowering. Another important factor
that should be investigated is how workers access shared data
and, in general, utilise tools for performance analysis in order
to understand how memory is accessed by threads and trying
to improve it.
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