Parallel Exploration of the Nuclear Chromosome
Conformation with NuChart-II

Fabio Tordini*, Maurizio Drocco*, Claudia Misale*, Luciano Milanesif, Pietro Liéf, Ivan Merellif, Marco Aldinucci*
*Computer Science Department, University of Turin, Italy.
tordini @di.unito.it, drocco@di.unito.it, aldinuc @di.unito.it
TComputer Laboratory, University of Cambridge, UK.
pietro.lio@cl.cam.ac.uk
Hnstitute for Biomedical Technologies - Italian National Research Council, Segrate (Mi), Italy.
luciano.milanesi @itb.cnr.it, ivan.merelli @itb.cnr.it

Abstract—High-throughput molecular biology techniques are
widely used to identify physical interactions between genetic
elements located throughout the human genome. Chromosome
Conformation Capture (3C) and other related techniques allow
to investigate the spatial organisation of chromosomes in the
cell’s natural state. Recent results have shown that there is a
large correlation between co-localization and co-regulation of
genes, but these important information are hampered by the lack
of biologists-friendly analysis and visualisation software. In this
work we introduce NuChart-II, a tool for Hi-C data analysis
that provides a gene-centric view of the chromosomal neighbour-
hood in a graph-based manner. NuChart-II is an efficient and
highly optimized C++ re-implementation of a previous prototype
package developed in R. Representing Hi-C data using a graph-
based approach overcomes the common view relying on genomic
coordinates and permits the use of graph analysis techniques to
explore the spatial conformation of a gene neighbourhood.

Keywords—Systems Biology, Parallel Computing, Hi-C data,
Neighbourhood Graph, Chromosome Conformation Capture

I. INTRODUCTION

The three-dimensional organization of chromosomes and
the physical interactions occurring along and between them
play an important role in the regulation of gene activity. The
spatial organization of chromatin is involved in compartmen-
talizing the nucleus and bringing widely separated functional
elements into close spatial proximity. This structural confor-
mation of the DNA in the nucleus is of critical importance for
the gene regulation, in particular while analysed in correlation
with other epigenetics effects.

Over the last decade, a series of molecular and genomic ap-
proaches have been developed to study three-dimensional chro-
mosome folding at increasing resolution and throughput [1];
these methods are all based on Chromosome Conformation
Capture (3C) and allow the determination of the frequency
with which any pair of /oci in the genome is in close enough
physical proximity (probably in the range of 10-100 nm) to
become cross-linked [2]. The three-dimensional (3D) confor-
mation of chromosomes is involved in compartmentalizing the
nucleus and bringing widely separated functional elements into
close spatial proximity. Among 3C-based techniques, Hi-C is a
method that adapts the above approach in order to exploit Next-
generation sequencing, providing read pairs correspondence to
genomic loci that physically interact in the nucleus [3]. The

output of a Hi-C process is a list of pairs of locations along the
chromosome, which can be represented as a square matrix Y,
where Y; ; stands for the sum of read pairs matching in position
¢ and position j, respectively. This matrix-based representation,
called contact map, is reliable while looking at the interactions
between two chromosomes, but becomes unsuitable to describe
the neighbourhood of a gene or a cluster of genes. On the other
hand, the possibility of creating a graph-based representation
of Hi-C data can be very useful to create a map on which
other omics-data can be mapped in order to characterize the
different spatially associated domains.

Representing a genome as a graph gives the possibility
to change the point of view, focusing on the cooperation
among genes which can in turn be interpreted using statistical
tools common in graph theory and network analysis. Common
measurements, like centrality index analysis, permit to describe
the neighbourhood of each node of the graph (i.e. genes), so
as to evince information on the most influential gene of the
network. Community analysis is another interesting study over
the resulting graph since it can provide valuable information
concerning genes interaction. Community analysis includes the
detection of cliques and clusters in the network of genes.

Although several tools for Hi-C data processing exist, most
of them propose contact maps for the analysis of chromatin
structure (see section II-A). NuChart [4] proposed a graph-
based approach: it was initially implemented as an R pack-
age designed to describe the chromosomal neighbourhood by
integrating Hi-C data and information about genes position.
NuChart works directly with sequenced reads to identify the
related Hi-C fragments and, consequently, the genes containing
those fragments, considering both intra-genic and inter-genic
cases. The implementation, relying on the R environment, is
however unfit to scale up to larger data sets and highly precise
data analysis (which require many consecutive iterations of
graph building process), due to its overhead in managing
large data structures and its weaknesses in exploiting the full
computational power of multi-core platforms.

NuChart-I1 is an improved C++ version of the R prototype,
which has been purposely designed for performance and
scalability on large datasets. It has been designed according
to a structured parallel programming approach [5], [?]; in
particular it has been designed on top of the FastFlow paral-
lel programming framework, that provides high-level parallel

programming patterns for the C++ language [?]. The challenge
was to design a software able to fully exploit the computational
power exposed by multi-core architectures, making effective
use of parallel processing capabilities. We have thoroughly
studied the original NuChart, dividing the whole application
into four main phases: 1) data retrieval from static datasets;
2) construction of the graph; 3) weighing of the edges as
a result of the normalisation step; 4) output of results. Two
main phases are suitable for being rewritten in terms of loop
parallelism, since their kernels can be run concurrently on
multiple processors with no data-dependencies involved: the
construction of the graph and the weighing of the edges. These
two phases constitute by far the most onerous parts of the
application in terms of execution time: particularly when the
diameter of the graph increases, these phases take up the 80%
of the whole execution time.

This paper is organized as follows: section II examines
the background from which this work has emerged, giving
an overview of Systems Biology tools for Hi-C data analysis,
together with a briefing on parallel programming techniques.
Section IIT explains in details our work: a formal definition
of our neighbourhood graph is given, and the whole applica-
tion is described, focusing on the edge weighing phase that
encompasses the normalisation step. Section IV describes the
experiments we have conducted to test NuChart-II. Section V
discusses the experiments conducted, and the data obtainable
by analysing the resulting neighbourhood graphs. In this sec-
tion we also describe the normalisation algorithm and discuss
the performances in the edges weighing phase, obtained either
using FastFlow or performed on top of other widely used
parallel computing frameworks such as OpenMP and Intel
TBB. Section VI concludes this paper.

II. BACKGROUND

In this section we provide a comprehensive list of the
available tools designed to explore and visualize Hi-C data,
followed by an overview of the most commonly used and
studied parallel computing frameworks.

A. Omic Tools

3C-based techniques used to characterize the nuclear orga-
nization of genomes and cell types have widespread among
scientific communities, and a number of systems biology
methods designed to analyse such data have been proposed.
Particular attention is given to the detection and normalisation
of systematic biases: the raw outputs of many genomic tech-
nologies are affected both by technical biases, arising from
sequencing and mapping, and biological factors, resulting from
intrinsic physical properties of distinct chromatin states. This
makes difficult to evaluate their outcomes, as it may result in
false-positives or false-negatives.

If Fluorescence in situ hybridization experiments are avail-
able, a good normalization solution is represented by FisHi-
Cal [8]. This is an R package that performs an iterative FISH-
based Hi-C calibration that exploits the information coming
from both these methods. It is the first tool that integrates
FISH and Hi-C data, and operates over these information to
calibrate the direct measure for physical distance provided by
FISH experiments and the genome-wide capture of chromatin

contacts obtained by Hi-C experiments. Yaffe and Tanay [9]
proposed a probabilistic model based on the observation of the
genomic features. This approach can remove the majority of
systematic biases, at the expense of very high computational
costs, due to the observation of paired-end reads spanning
all possible fragment end pairs. Hu et al [10] proposed a
parametric model based on a Poisson regression. This is a
simplified, and less computationally intensive normalisation
procedure than the one described by Yaffe and Tanay, since
it corrects the systematic biases in Hi-C contact maps at
the desired resolution level, instead of modelling Hi-C data
at the fragment end level. The drawback here is that the
sequence information is blurred within the contact map. The
first NuChart prototype [4] solved this issue by exploiting Hu
et al. solution to estimate a score to each read, identifying half
of the Hi-C contact instead of normalizing the contact map,
thus preserving the sequence information. NuChart-1I leverage
this solution proposing a ex-post normalisation, that is used
to estimate a probability of physical proximity between two
genes, expressed as a score assigned to an edge connecting
two nodes in the neighbourhood graph. Considering general
software for the interpretation of Hi-C data, an interesting
package is HOMER [11], which contains several programs and
routines to facilitate the analysis of Hi-C data. Like most of
the available applications, HOMER relies on the creation of
contact maps for the interpretation of Hi-C data, exploiting
Principal Component Analysis and hierarchical clustering with
this representation. Several of the HOMER programs sup-
port multiple processors to help speed up the computation,
although, while we are writing this paper, it only works
at the chromosome level. HiTC [12] has been designed to
facilitate the exploration of high-throughput, 3C-based data. It
allows users to transform, normalize and visualize interaction
maps. An interaction map is a two-dimensional heat-map
representation of the matrix of Hi-C counts, whose entries
correspond to the number of times two restriction fragments in
a given genomic region have been ligated in 3C and sequenced
as a pair. The HiTC package proposes a list of options to define
the appropriate data visualization, such as contrast, color or
counts trimming. Fit-Hi-C [13] assigns statistical confidence
estimates to mid-range, intra-chromosomal contacts by jointly
modelling the random polymer looping effect and previously
observed technical biases in Hi-C data sets.

The visualization and exploration of Hi-C data assumes a
dramatic importance when analysing Hi-C data. To the best of
our knowledge, no other tool proposes a gene-centric, graph-
based visualization of the neighbourhood of a gene, as NuChart
does.

B. Parallel Computing Tools

Over the years, research on loop parallelism has been carried
on using different approaches and techniques that vary from
automatic parallelisation to iterations scheduling. In this paper
we focus on the normalisation phase of NuChart-II, and com-
pare the results obtained with FastFlow against those obtained
with OpenMP and TBB, because they represent, to a major
extent, the most widely used and studied frameworks for loop
parallelisations.

Intel Threading Building Blocks (7BB) [14] is a library that
enables support for scalable parallel programming using stan-

dard C++. It provides high-level abstractions to exploit task-
based parallelism, independently from the underlying platform
details and threading mechanisms. The TBB parallel_for
and parallel_foreach methods may be used to paral-
lelise independent invocation of the function body of a for
loop, whose number of iterations is known in advance. C++11
lambda functions can be used as arguments to these calls, so
that the loop body function can be described as part of the call,
rather than being separately declared. The parallel_ for
splits the range [0, num_iter) into sub-ranges and processes
each sub-range 7 as a separate task using a serial for loop in
the code.

OpenMP [15] uses a directive based approach, where the
source code is annotated with pragmas (#pragma omp) that
instruct the compiler about the parallelism to be used in the
program. In OpenMP, two constructs are used to parallelise
a loop: the parallel and the loop construct. The parallel
construct, introduced by the parallel directive, declares
a parallel region which will be executed in parallel by a
pool of threads. The loop construct, introduced by the for
directive, is placed within the parallel region to distribute
the loop iterations to the threads executing the parallel re-
gion. The two constructs are often fused together into the
#pragma omp parallel for directive. OpenMP sup-
ports several strategies for distributing loop iterations among
threads. The scheduling strategy may be specified via the
schedule (type [, chunk size]) clause, which is ap-
pended to the for directive. The type of scheduling policy
can be one among static, dynamic, guided, auto, runtime, each
one providing a different thread scheduling policy.

FastFlow" is a parallel programming environment origi-
nally designed to support efficient streaming on cache-coherent
multi-core platforms and distributed systems [?], [?]. It is
realised as a C++, pattern-based, parallel programming frame-
work, aimed at simplifying the development of applications
for multi-core and GPGPUs platforms. It provides developers
with a set of high-level, parallel programming patterns (aka
algorithmic skeletons), obtained by the composition of two
basic algorithmic skeletons: a farm skeleton, and a pipeline
skeleton. Leveraging the farm skeleton, FastFlow exposes a
ParallelFor pattern [16], where farm workers are sequen-
tial wrappers that execute chunks of a loop iterations hav-
ing the form for (idx=start; idx<stop; idx+=step).
Just like TBB, FastFlow’s ParallelFor pattern uses C++11
lambda functions as a concise and elegant way to create a
function object: lambdas can ‘“capture” the state of non-local
variables by value or by reference and allow functions to be
syntactically defined when needed.

III. GENES NEIGHBOURHOOD GRAPH

We recall that a graph is a formal mathematical represen-
tation of a collection of vertices (V') connected by edges (E),
which model a relationship among vertices. In this context,
vertices represent genes. We say that two genes are connected
if there exists paired-end Hi-C data belonging to both of
them (Figure 1). We define this paired-end Hi-C data as a
connection, meaning a spatial relationship between genes. A
more formal definition of our graph can be expressed as:

IFastFlow is an open source project: http://mc-fastflow.sourceforge.net/

G=(V.E)
where
V={g|g¢€ Genes }
and
E={(91.92) g1 =92 N 1,92 €V }.

The resulting graph G is an undirected, weighted graph
with a symmetric binary relation between the adjacent ver-
tices — i.e., if gy is connected to g, then go is connected to
g1 — while the weights on the edges provide a likelihood of
physical proximity for the adjacent vertices, as a result of the
normalisation phase. The neighbourhood graph can be defined
as the induced subgraph obtainable starting from a given root
vertex v, and including all vertices adjacent to v and all edges
connecting such vertices, including the root vertex. Despite
being an undirected graph, it is not a simple graph: self-loops
are allowed to exist. This happens because the paired end of a
gene’s fragment might be extremely close to the first end, so
that both fragments belong to the same gene, thus forming a
self-loop. Upon these formal basis, our neighbourhood graph
represents a topological map of the specific nucleus region to
which a gene belongs.

GeneX Chr: chr2 | Start: 89029883 | Seq: CTCTTCCTTATTTATGAAGCTT GeneY
Chr: chr5 | Start2: 52212737 | Seq: AGTGA CATGTTGATATGCTTCATG

Fig. 1 — Genes are the vertices of our graph, while edges represent paired-ends
fragments that belong to the adjacent genes

A. NuChart-11

NuChart-II is an improved C++ version of the first R
prototype. In the development of this new version of the
software, particular attention has been paid at optimising the
data structures employed for the construction of the graph,
in order to facilitate the parallel implementation of the al-
gorithm. This novel implementation refines the normalisation
routine, which relies on a modified version of the Hu et al.
approach [10]: while the original prototype used the Poisson
regression model to provide a score to each read, NuChart-II
exploits the same regression analysis to assign a confidence
score to each edge of the neighbourhood graph, so that the user
can evaluate the reliability of each contact. The engineering
of the new software has been conducted on top of FastFlow,
using the ParallelFor pattern discussed above (see sec-
tion II-B): FastFlow aims at simplifying the programmers life
in developing complex parallel applications, while providing
high runtime efficiency. Both the graph construction and the
normalisation routine have been tested against OpenMP’s
parallel for and Intel TBB’s parallel_for.

Graph Construction: starting from one or more root nodes,
a graph of adjacent genes is constructed. Neighbours iden-
tification begins by searching those chromosome fragments
belonging to the starting gene(s). These fragments are then
compared with other chromosome fragments located in a
different genomic region, annotated in the coupled reads. When
a match is found and the new fragment overlaps a gene’s

region, an edge between the starting gene and the novel
detected one is created.

NuChart-II can also handle the case of inter-genic contacts:
if the identified chromosome fragment is inter-genic, the
corresponding genomic position is represented on the graph as
a singularity point. These singularity points may be expanded
to the closest nearby genes (after and before genes). Note
that singularity points do not belong to the genes domain,
as they merely represent a position along the chromosome
fragment expressed in terms of coordinates. Their graphical
representation differs from other genes (Figure 2).

Neighbours can be searched up to the desired “distance”
from the root, that determines the levels of the resulting graph:
a search at level 1 yields all the genes directly adjacent to
the root (which is at level 0); a search at level i returns all
directly adjacent genes for each gene discovered up to level
i — 1, starting from the root.

BeforeGene

GeneX

8 _72372488_72372691

AfterGene

Fig. 2 — Singularity points not belonging to the vertices domain have a different
graphical representation

Taking inspiration from the work of Hong et al. [17], the
algorithm for graph construction proceeds as Breadth First
Search. At each iteration level, it collects all the candidate
connections in the current BFS level (by comparing reads and
genes coordinates), then searches for the genes’ neighbours,
in parallel, over all the connections. At the end of each level
iteration, the parallel execution is synchronized: at this point
thread-local next-level containers are processed and a partial
graph is constructed with the nodes discovered at the current
BFS level. The definitive graph is built in batch at the end
of the BFS execution. The iterations proceed until all the
nodes of the graph have been visited, or preferably up to the
desired level. Algorithm 1 reports a pseudo-code for the graph
construction.

This high-level approach required some adjustment to the
BFS procedure and the introduction of new thread-local con-
tainers, needed to handle concurrent write accesses to shared
data structures. Specifically, C[INTH], V[NTH] and E[NTH]
are used to store per-thread data, where NTH is the number
of threads in use and thid identifies thread’s own container,
such that 0 < thid < NTH. @ represents our working queue
that contains the genes discovered throughout the computation.
L _MAX determines the maximum distance from the root that
has to be reached (—1 means explore all graph). I" is used at
every level synchronisation to store partial graphs, that will be
merged into a definitive graph at the very end of the graph
construction process.

Concerning data structures and memory management, the
objects involved in the computations contain a considerable

amount of information that burden the working set with lots
of unused data. This undesirable effect has been prevented by
duplicating only the needed resources, resulting in a reduced
working set that helps minimising the cache thrashing and
permits to obtain substantial performance improvements.

Algorithm 1 Graph Construction

BuildNeighbourhoodGraph (root, L_MAX, NTH) {
0 =T = Graph := 0
C[NTH] = V[NTH] = E[NTH] := 0
lv := 0

push root in Q
while (Q not @ and lv < L_MAX) {
pop g from Q
// find Hi-C Reads for ¢
ParallelFor (r in Reads, NTH) {
if (r.Start in g[Start, Stop] and r.Chr == q.Chr)
add r to C[thid]
}
// find neighbour genes for ¢
ParallelFor (c in C[thid], NTH) {
wntra = 0
for_each (g in Genes) {
if (g overlaps c.PairedEnd)
add g to V[thid]
add (g, g) to E[thid]
intra := intra + 1
}
HandleIntergenicCase (Genes, intra)
}
// level synchronisation
I' := BuildPartialGraph (V[thid],E[thid])

for_each (thid in [0, NTH-1]) {
for_each (v in V[thid]) { // next level vertices
if (not wv.Visited)
push v in Q
}
}

v :=1lv +1

C[thid] = V[thid] = E[thid] := 0
}
Graph := BuildGraph (I")

Edge Weighing: this task encompasses the normalisation
process, which is needed in order to remove systematic biases
arising from sequencing and mapping. The weight assumes the
role of a “confidence score” that characterize the reliability
of each contact represented on the neighbourhood graph. We
recall that an edge identifies the existence of Hi-C fragments
belonging to both connected genes; for each edge, a contact
map (M) is constructed directly modelling the read count data
at a resolution level of 1 MB. Hi-C data matrix is symmetric,
thus we consider only its upper triangular part, where each
point of M; ; denotes the intensity of the interaction between
positions ¢ and j. Using the local genomic features that
describe the chromosome (fragment length, GC-content and
mappability), we can set up a generalized linear model (GLM)
with Poisson regression, with which we estimate the maximum
likelihood of the model parameters. The model is given by the
formula:

e(Y|X) = g{XT5}.

Here 3 denotes the parameter vector to be estimated and g
denotes a known link function. The contact map incorporates
the information about the independent variables of our model
(i.e. the expected value p = e(Y|X)); chromosome length
and GC-content act as regressors (i.e. the coefficients of the

linear combination g(X 7T 3). This model is used to count the
occurrences in a fixed amount of space: for this reason we
choose the Poisson distribution, and the natural logarithm as
the link function for our model. With the best-fit coefficients
returned by the linear regression the score is computed, so that
the edge contains an estimate of the physical proximity, plus
the genomic information for both genes, which are preserved
and not blurred within the contact map.

The generalized linear model with Poisson regression has
been implemented adapting the Iteratively Weighted Least
Squares algorithm (IWLS) proposed by Nelder and Wedder-
burn [18]. The listing below reports a pseudo-code of the
function:

Algorithm 2 Edge Weighing

ComputeEdgeScore (edge, T) {

LenM = GececM = MapM := @ // cover matrices
X=Y=B:=10
Conv := true

// populate cover matrices using genomic features

X .
Y

ToMatrix (LenM, GccM)
BuildContactMap (edge.Chrl, edge.Chr2)

while (Conv) {
ApplyLinkFunction (Y)
B := ApplyGLM(Y, X, MapM)
Conv := CheckConvergence (B, T)

}

edge.Score := f(B)

Fragment length and GC-content are combined to form the
linear predictor matrix for the GLM model. The mappability
feature, stored within the MapM matrix, is used as an offset for
the linear regression. The regression is run until a convergence
criterion is met: in our case we check that the absolute value
of the x? (chi-squared) difference at each iteration is less than
a certain threshold 7:

IX* = X2a)| < T.

Algorithm 2 shows a pseudo-code of the weighing algo-
rithm: the function ApplyGLM writes the best-fit parameters
in vector B, which is the result of the regression: these
coefficients are used to calculate the score (i.e. the estimation
of physical proximity) for the edge connecting the two genes.
Also, we compute dispersion and standard error, so as to
provide a useful summary of model fit.

IV. EXPERIMENTS

NuChart-II has been designed to overcome the weaknesses
of the R prototype, which had significant bottlenecks in
memory management and limitations in the exploitation of
the available computational resources, causing restrictions in
the usability of the tool. This novel implementation addresses
these weaknesses, making possible a genome-wide exploration
of Hi-C contacts — thanks to the optimal memory management
and data structure design — with outstanding improvements in
terms of execution time, obtained exploiting loop parallelism
techniques on multi-core architectures. We have conducted a
number of experiments to verify correctness and goodness of
NuChart-II: starting from the work in [4] we have replicated

some of the tests conducted there, in order to have a basis for
comparing the accuracy of the results. We have increased the
number of iterations to further explore genes’ neighbourhood,
while also testing the novel tool on bigger datasets.

As target architecture we considered a NUMA Intel work-
station equipped with 4 eight-core E7-4820 Nehalem running
at 2.0GHz, featuring 18MB L3 cache per NUMA node, 256KB
L2 cache and 64KB L1 cache (L1d + L1i), with 64 GB of main
memory. The Nehalem processor uses HyperThreading with 2
contexts per core. We use up to 32 threads in order to exploit
all physical cores without making use of the second context.
Thanks to the internal structure of the FastFlow ParallelFor,
it is possible to use all physical cores while thread pinning is
automatically managed by the FastFlow library. We used the
GNU gcc 4.8.0 compiler with the optimisation flag -03. As a
performance metric, together with the overall execution time,
we used also the speedup, calculated as

S =T(seq)/T(n)

where T'(seq) is the sequential execution time measured during
a plain sequential execution, and T'(n) is the parallel execution
time using n worker threads, keeping the problem size fixed.

DNA Exploration

We performed several executions involving the creation
of neighbourhood graphs for relevant genes or gene clusters,
at different levels of iterations, in order to demonstrate the
accuracy and usability of NuChart-II. The tests have been
conducted either considering intra-genic contacts only, or
expanding also inter-genic contacts. LiebermanAiden et al.
Hi-C experiment SRA:SRR027963 [3] and Dixon et al. Hi-
C experiment SRA:SRR400262 [19] are the datasets used as
a test-bed for the genome exploration. We used chromosome
fragments obtained with Hindlll as digesting enzyme .

Figure 3 shows a neighbourhood graph for the gene TP53
at level 1 (left) and level 2 (right), according to the Lieber-
manAiden Hi-C experiment. In figure 4, also the inter-genic
contacts have been expanded for the same gene TP53. The
root gene is yellow coloured. In figure 3 (and 4) two direct
neighbours of the root gene TP53 exhibit a high degree of
connected components: the role of hub that the two genes
(KIA0753 and PHF2) acquire, suggest their importance in
maintaining the interactions in that particular genomic region.

A drawback of this visualization is that the readability
is dramatically compromised when the number of nodes and
edges increases, likely resulting in a tangle of edges hardly
understandable. NuChart-II supports plotting with iGraph and
GraphViz: these tools perform nicely with small-to-medium
sized graphs, but cannot provide useful representation of huge
graphs with more than ten thousand edges (as it happens
when the diameter of the graph increases). Textual and tabular
outputs become useful for the analysis of the genomic regions
explored: the probability of a connection can be estimated by
evaluating an edge’s weight, while the overall graph structure
is shown in terms of the distance of each discovered gene from
the root(s).

Also, we are investigating possible approaches to detect
communities and clusters, which may help in giving alternative
representations of the graph and may open new perspectives
on the Hi-C data analysis and interpretation.

. S@EFSFLARFSF13 @‘@‘Q\@@rwzm’@ B @ pug
8) FEily
@xs MDKz @‘ P Ay 5
W"/ Raf@e sy

OF Ry
:ﬁ;./@ﬁu ’

@&

cS ooy,
G G 6 Oupr@peld D T O D

. K@
chré_1074437_10743010

chrls_4277 0242767208

@éé chr21_3s5Toge7: s3s11509(R)<

o e g,

Fig. 4 — Neighbourhood graph for gene TP53 according to LiebermanAiden experiment, with inter-genic expanded. Neighbours at Level 1 (up) and Level 2 (down)

V. DISCUSSION
Network Analysis and Statistics

The graph-based approach opens new perspectives on the
study of the 3D chromosome conformation and the genes
interaction: the social network point of view allows to study
the relationships among genes in terms of network theory.
NuChart-II performs statistical measures over the graphs and
produces additional outputs useful to examine the results:
starting with a centrality index analysis, it is possible to
the identify the most important and influential genes. In this
particular context, the node degree distribution leads us to
consider the genes network as a scale-free network, which
suggests further investigations towards detecting the presence
of community structures. This network perspective permits to
shed some new light over the genes interaction.

Performance

Both the graph construction and the edges weighing phase
are bounded to the memory size required to hold the data. We
have accurately tuned the crucial steps in order to maximize
the use of memory hierarchy and fully exploit cache locality,
while minimising cache trashing.

Details of the graph construction phase have been presented
elsewhere. The edges weighing phase is an embarrassingly
parallel application: any arbitrary subset of the edges can
be processed independently from each other by mean of a
parallel loop pattern. With Fastflow’s ParallelFor this
data-parallelism can be properly exploited to boost up per-
formances and drastically reduce execution time. This can be
accomplished by simply defining our weighing kernel as the
lambda function of the ParallelFor.

During execution, each worker thread gets a bunch of
edges to work on, according to the grain size: we have
found that the best performances are reached when the grain
size is purposely kept small. Each thread uses three thread-
local read-only static data structures that hold information
about local genomic features. These data are used to build
all matrices needed to construct the regression workspace.
The task involves tight loops doing Floating Point arithmetic
calculations on data that fit the L3 cache and can fully benefit
from compiler optimizations and vectorization. On the other
hand, a number of dynamic memory allocations are necessary
during the execution of the normalisation step. The use of
a memory allocator not designed for parallel programming
causes a serialization of the operations that leads to a reduction
of the total execution time.

Despite the large memory footprint, the implementation
with FastFlow shows a quasi-ideal speedup: the memory
intensive computations performed hide the latency to memory
accesses, and when compared against OpenMP and Intel TBB,
the recorded performances are substantially similar (figure 5).
Intel TBB begins to suffer for the dynamic memory allocations
when the number of threads is greater than 24, causing its
performance to flatten.

Tests have been conducted using as much similar con-
figurations as possible, trying either with static scheduling
or with dynamic scheduling and variable chunk size. With

Intel TBB’s parallel_for, we used the affinity parti-
tioner, as it attempts to perform some automatic cache op-
timizations, although it did not bring substantial improve-
ments with respect to the default auto partitioner. With Fast-
Flow’s ParallelFor we found that the best performances
were reached when using the scheduler as thread. OpenMP
parallel for produced the best performance with dy-
namic scheduling.

We have conducted our tests with a maximum of 31 cores
in our machine with 32 cores (excluding two-ways hyper-
threading): when using FastFlow’s ParallelFor the sched-
uler can be adapted to be run as thread or as an object. when
the former solution is chosen, the number of running threads is
#worker_threads+ 1. When this number equals the number
of cores, the extra thread used (which performs busy-waiting
during synchronisation) introduces non negligible overhead,
especially in fine grain computations. We have anyway noticed
that this configuration yields more desirable results in terms
of overall performance.

VI. CONCLUSIONS AND FUTURE WORKS

The novel implementation of NuChart-II allows the soft-
ware to scale genome-wide, which is crucial to exploit its full
capability for a correct analysis, interpretation and visualisation
of the chromosome conformation. This graph-based approach
opens new perspectives for the analysis and processing of
Hi-C data, focusing more on the interactions of a gene with
its neighbourhood. Furthermore, the normalisation phase has
been revisited and provides a valuable estimate of physical
proximity for two genes, while keeping available all genomic
data related to the spatial region where the genes lie. We
have shown that such genome-wide exploration and analysis is
possible with the aid of novel high-level parallel programming
patterns, that allow to address many of the issues that burdened
the original R prototype, obtaining performances that would
have been inconceivable with the original R prototype. As for
the future works, we are investigating practical and convenient
solutions to address the visualisation problem: starting from
community structures detection, the graph visualization can be
ameliorated by providing a representation at different scales:
when the scale is small only communities and their connections
are shown, while as the scale grows genes must become visible
and readable. We aim at building dynamic, interactive graphs
where all the physical, chemical and statistical information
are easily accessible by direct interaction with the graph.
We are investigating the benefits obtainable when using a
scalable, lock-free memory allocator. We are also considering
a possible GPGPU implementation of the weighing phase,
where the huge computational power exposed by modern GPU
devices can be used to reduce the execution time of heavy
mathematical calculations.

ACKNOWLEDGEMENT

This work has been partially supported by the EC-FP7
STREP project Paraphrase (no. 288570), the EC-FP7 STREP
project REPARA (no. 609666) and the Fondazione San Paolo
IMPACT project (ID. ORTO11TPXK).

Gene LMO2 on SRR400264 L2 - 12361 Edges

3000 !
2000

TBB

FF
OMP |

//

1000

500

300

200
150

100

Execution time (s) - logscale

50 1 1 1 1
1 4 8 12 16 20 24 28 32

Working Threads

32
28
24
20
16
12

Speedup

Gene LMO2 on SRR400264 L2 - 12361 Edges

"ideal
TBB

1 4 8 12 16 20 24 28 32
Working Threads

Fig. 5 — Execution time (left) and speedup (right) of the normalisation phase for 12361 edges, resulting from a Level 2 neighbourhood graph for the gene LMO2,

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

according to the Dixon et al. SRA:SRR400264 experiment

REFERENCES

E. de Wit and W. de Laat, “A decade of 3C technologies: insights into
nuclear organization,” Genes & Development, vol. 26, no. 1, pp. 11-24,
Jan. 2012.

J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, “Capturing Chro-
mosome Conformation,” Science, vol. 295, no. 5558, pp. 1306-1311,
2002.

E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, and
T. e. a. Ragoczy, “Comprehensive mapping of long-range interactions
reveals folding principles of the human genome,” Science, vol. 326, no.
5950, pp. 289-293, 2009.

1. Merelli, P. Li, and L. Milanesi, “NuChart: An R Package to Study
Gene Spatial Neighbourhoods with Multi-Omics Annotations,” PLoS
ONE, vol. 8, no. 9, Sep. 2013.

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubi-
atowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
and K. Yelick, “A view of the parallel computing landscape,” Commu-
nications of the ACM, vol. 52, no. 10, pp. 56-67, 2009.

M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Design patterns percolating to parallel programming framework imple-
mentation,” International Journal of Parallel Programming, Sep. 2013.

M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “Fastflow:
high-level and efficient streaming on multi-core,” in Programming
Multi-core and Many-core Computing Systems, ser. Parallel and Dis-
tributed Computing, S. Pllana and F. Xhafa, Eds. Wiley, 2014, ch. 13.

Y. Shavit, F. Hamey, and P. Li6, “FisHiCal: an R package for iterative
FISH-based calibration of Hi-C data,” Bioinformatics, vol. 30, no. 18,
Sep. 2014.

A. T. Eitan Yaffe, “Probabilistic modeling of Hi-C contact maps
eliminates systematic biases to characterize global chromosomal archi-
tecture,” pp. 1059-1065, 2011.

M. Hu, K. Deng, S. Selvaraj, Z. Qin, B. Ren, and J. S. Liu, “HiCNorm:
removing biases in Hi-C data via Poisson regression.” Bioinformatics
(Oxford, England), vol. 28, no. 23, pp. 3131-3133, Dec. 2012.

V. C. Seitan, A.J. Faure, Y. Zhan, R. P. P. McCord, B. R. Lajoie, E. Ing-
Simmons, B. Lenhard, L. Giorgetti, E. Heard, A. G. Fisher, P. Flicek,
J. Dekker, and M. Merkenschlager, “Cohesin-based chromatin interac-
tions enable regulated gene expression within preexisting architectural
compartments.” Genome research, vol. 23, no. 12, pp. 2066-2077, Dec.
2013.

N. Servant, B. R. Lajoie, E. P. Nora, L. Giorgetti, C.-J. Chen, E. Heard,
J. Dekker, and E. Barillot, “HiTC: exploration of high-throughput 'C’
experiments,” Bioinformatics, vol. 28, no. 21, pp. 2843-2844, Nov.
2012.

F. Ay, T. Bailey, and W. Noble, “Statistical confidence estimation for
Hi-C data reveals regulatory chromatin contacts,” 2014.

[14]

[15]

[16]

[17]

[18]

[19]

“Intel Threading Building Blocks,
threadingbuildingblocks.org.

project site,” 2013, http://
L. Dagum and R. Menon, “Openmp: An industry-standard api for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,

pp. 46-55, Jan. 1998.

M. Danelutto and M. Torquati, “Loop parallelism: a new skeleton
perspective on data parallel patterns,” in Proc. of Intl. Euromicro
PDP 2014: Parallel Distributed and network-based Processing,
M. Aldinucci, D. D’Agostino, and P. Kilpatrick, Eds. Torino, Italy:
IEEE, 2014. [Online]. Available: http://calvados.di.unipi.it/storage/
paper_files/2014_ff_looppar_pdp.pdf

S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core cpu and gpu,” in Proceedings of the 2011
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 78-88. [Online]. Available: http://dx.doi.org/10.
1109/PACT.2011.14

J. A. Nelder and R. W. M. Wedderburn, “Generalized linear models,”
Journal of the Royal Statistical Society, Series A, General, vol. 135, pp.
370-384, 1972.

J. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. Liu,
and B. Ren, “Topological domains in mammalian genomes identified by

analysis of chromatin interactions.” Nature, vol. 485, no. 5, pp. 376-80,
2012.

