
Algorithms for Mapping Parallel Processes onto

Grid and Torus Architectures

Roland Glantz, Henning Meyerhenke, and Alexander Noe

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract. Static mapping is the assignment of parallel processes to the processing elements (PEs)

of a parallel system, where the assignment does not change during the application’s lifetime. In our

scenario we model an application’s computations and their dependencies by an application graph. This

graph is first partitioned into (nearly) equally sized blocks. These blocks need to communicate at block

boundaries. To assign the processes to PEs, our goal is to compute a communication-efficient bijective

mapping between the blocks and the PEs.
This approach of partitioning followed by bijective mapping has many degrees of freedom. Thus, users

and developers of parallel applications need to know more about which choices work for which applica-

tion graphs and which parallel architectures. To this end, we not only develop new mapping algorithms

(derived from known greedy methods). We also perform extensive experiments involving different classes

of application graphs (meshes and complex networks), architectures of parallel computers (grids and

tori), as well as different partitioners and mapping algorithms. Surprisingly, the quality of the partitions,

unless very poor, has little influence on the quality of the mapping.
More importantly, one of our new mapping algorithms always yields the best results in terms of the

quality measure maximum congestion when the application graphs are complex networks. In case of

meshes as application graphs, this mapping algorithm always leads in terms of maximum congestion

and maximum dilation, another common quality measure.

1 Introduction

Symmetric dependencies of computations within a parallel application can be modeled by an undirected
graph Ga, called application graph, e. g. the mesh of a numerical simulation. Iterative algorithms in such a
simulation act upon the vertices of Ga, and for each such vertex require the values of the neighboring vertices
from the previous iteration. Thus, a vertex of Ga represents some computation, and an edge of Ga indicates
a dependency between computations, i. e. an exchange of data. It is important to note that this modeling is
not restricted to simulations at all. In fact, the nodes of Ga could represent arbitrary parallel processes and
the edges symmetric communication requirements between the processes.

Typically, running an application on computers with distributed parallelism requires the application
graph to be spread over the computer’s processing elements. One way to carry out this task, called static
mapping, is to (i) partition the application graph Ga into blocks of equal size (or of equal weight in case the
computational requirements at the nodes are not homogeneous) for load balancing purposes and (ii) map the
blocks of Ga onto the processing elements (PEs) of a parallel computer, see Figure 1. Mapping may involve
the communication graph Gc, whose vertices represent the blocks of Ga’s partition and whose edges indicate
block neighborhood and therefore communication between different PEs.

The parallel computer is often represented as a graph Gp, called processor graph (or topology graph), the
vertices of which represent the PEs, and the edges of which represent physical communication links between
the PEs. We require that Gc has the same number of vertices as Gp and make the assumption that Gp is
sparse, which is true for many real architectures today [1]. In this paper we address the problem of finding
a bijective mapping Π of Gc’s vertex set onto Gp’s vertex set (processors) that is communication-efficient.
We refer to Π as bijective topology mapping or simply mapping. One can also see the problem as embedding
the guest graph Gc into the host graph Gp.

ar
X

iv
:1

41
1.

09
21

v3
 [

cs
.D

S]
 2

 M
ar

 2
01

5

(a) (b)

c
e

(c)

Fig. 1. (a) Application graph Ga with 4-way partition indicated by colors. (b) Communication graph Gc induced by

Ga and the partition. Gc expresses the neighborhood relations of Ga’s blocks. Edge weights (shown through width)

indicate communication volumes between blocks. (c) Processor graph Gp. Nodes and edges represent the PEs and the

communication links, respectively. Communication between the green and the red block in Gc, i. e. via ec, requires

two hops in Gp.

Motivation. Communication costs are crucial for the scalability of many parallel applications. Static mapping,
in turn, is crucial when it comes to keeping communication costs under control through (i) providing a
partitioning with few edges between blocks and (ii) mapping nearby blocks onto nearby PEs: due to the
sparse nature of many large-scale parallel computers, communication costs may vary by several orders of
magnitude depending on the distance between the PEs involved [2]. Also, numerous recent applications
involve massive complex networks such as social networks or web graphs [3]. These networks usually lead to
denser communication graphs and make improved mapping strategies even more desirable.

Contribution. We investigate numerous algorithms for static mapping, the scenario being that an application
graph is first partitioned into blocks, followed by a bijective mapping of the blocks onto the nodes of a pro-
cessor graph. The graph partitioners we employ are the state-of-the-art packages METIS [4] and KaHIP [5].
While METIS is widely used for graph partitioning and has been employed for mapping before, it is the
first time that the high-quality partitioner KaHIP is used in the mapping context.

To assess and improve the performance of mapping algorithms, we implement several state-of-the-art
methods. Moreover and more importantly, we develop and implement two new algorithms as straightforward,
yet very effective adaptations of existing greedy algorithms.

The three most striking results of our extensive mapping experiments on meshes and complex networks
as application graphs, as well as grids and tori as processor graphs, are: First, the strengths and weaknesses
of the mapping algorithms are, to a large extent, independent of the class of application graphs (mesh or
complex network) and the processor graphs. Second, the graph partitioner and its partitioning quality is of
minor importance for the quality of the mapping. Third, for complex networks as application graphs, one of
our new mapping algorithms always yields the best quality in terms maximum congestion. In case of meshes,
this mapping algorithm always leads in terms of maximum congestion and maximum dilation.

2 Preliminaries

2.1 Problem Description

We represent the communication of a parallel application as a graph Gc = (Vc, Ec, ωc), where a weight
ωc({u, v}), {u, v} ∈ Ec, indicates the volume of communication between u and v, i. e. between the corre-
sponding blocks of the application graph.

The parallel computer takes the form of a graph Gp = (Vp, Ep, ωp), the processor graph. Here, ωp : Ep 7→
IN indicates the bandwidths of the physical communication links. We require |Vp| = |Vc|.

Our aim is to find a bijective topology mapping (short mapping) Π : Vc 7→ Vp that minimizes the overhead
due to communication between the processes. A first graph-theoretic definition of the overhead (costs) was
given in [6]. In the following we present three aspects of overhead (for more in-depth definitions see [7]).

2

An edge ec = {uc, vc} of Gc gives rise to communication between Π(uc) and Π(vc) on Gp. Sending a unit

of information along a path P in Gp with edges e1, . . . el takes time at least t(P) =
∑l

i=1(1/ωp(ei)). Sending
all information via an edge ec = {uc, vc} ∈ Ec, i. e. from processes in uc to processes in vc, then takes time
at least

d(ec) = d(ec, Π) = ωc(uc, vc) t(Π(uc), Π(vc)), where

t(up, vp) = min(t(P) | P connects up and vp) (1)

Thus, maximum and average dilation, defined as

mD(Π) = max
ec∈Ec

d(ec) and (2)

aD(Π) = (
∑

ec∈Ec

d(ec))/|Ec| , (3)

respectively, provide lower bounds for the communication time of a parallel application, mD(Π) being the
tighter lower bound.

When multiple messages are exchanged at the same time, more than one of them may be routed via
the same edge. Hence, if c(e) denotes the total volume of communication routed via e ∈ Ep, divided by the
bandwidth ω(e), then the maximum (weighted) congestion

mC(Π) := maxec∈Ecc(ec) (4)

provides another lower bound for the time. Minimizing mD(Π), aD(Π) and mC(Π) is NP-hard, cf. Garey
and Johnson [8] and more recent work [7, 9]. Due to the problem’s complexity, exact mapping methods
are only practical in special cases. Leighton’s book [10] discusses embeddings between arrays, trees, and
hypercubes.

As in previous studies [7], we assume that the routing algorithm sends the messages on uniformly dis-
tributed shortest paths in Gp. In particular, the routing algorithm is oblivious to the utilization of the parallel
system.

2.2 Graph partitioning

Given a graph G = (V,E) and a number of blocks k > 0, the graph partitioning problem asks for a division

of V into k pairwise disjoint subsets V1, . . . , Vk (blocks) such that no block is larger than (1 + ε) ·
⌈
|V |
k

⌉
,

where ε ≥ 0 is the allowed imbalance. The most widely used objective function is the edge cut (whose
minimization is NP-hard [8]), i. e., the total weight of the edges between different blocks. Yet, a more
important factor for modeling the communication cost of parallel iterative graph algorithms seems to be the
maximum communication volume (MCV) [11], which has received growing attention recently, e. g. in the 10th
DIMACS Implementation Challenge on graph partitioning. MCV considers the worst communication volume
taken over all blocks Vp (1 ≤ p ≤ k) and thus penalizes imbalanced communication: MCV (V1, . . . , Vk) :=
maxp

∑
v∈Vp

|{Vi | ∃{u, v} ∈ E with u ∈ Vi 6= Vp}|.

3 Related Work

In this section we give a brief overview of algorithms for static mapping. More on topology mapping can be
found in [12, 13] and particularly in Pellegrini’s survey [14].

3

It should be mentioned that partitioning and mapping can be done simultaneously, i. e. communication
between PEs is taken into account already during partitioning [15–17]. In this paper, however, we focus on
the complementary approach where partitioning and topology mapping form different stages of a software
pipeline.

One can apply a wide range of optimization techniques to the topology mapping problem. Hoefler and
Snir [7] employ (among others) the Reverse Cuthill-McKee (RCM) algorithm, originally devised for mini-
mizing the bandwidth of a sparse matrix [18]. If both Gc and Gp are sparse, the simultaneous optimization
of both graph layouts can lead to good mapping results [19].

A common approach to static mapping, i. e., partitioning and topology mapping combined, is to recur-
sively partition Ga and Gp in the same fashion, i. e. such that the number of blocks and sub-blocks per
block is equal on each level [20]. Such a hierarchical approach to mapping may take into account the actual
hierarchy of a heterogeneous multi-core cluster [21]. Typically, the number of sub-blocks per block is small.
Thus, on the scope of an individual block, an optimal mapping of a block’s sub-blocks can be found by
evaluating all possibilities. If the number of sub-blocks is two, the method is called dual recursive bisection.
It has been shown effective in the software Scotch [19]. While an optimal mapping of a block’s sub-blocks
on the scope of an individual block is not an issue in dual recursive bisection, neighboring relations between
sub-blocks of different blocks still pose a challenge. In this paper we apply dual recursive bisection to the
pair (Gc, Gp) instead of (Ga, Gp). This (basic) form of dual recursive bisection does not take into account
neighboring relations between the sub-blocks of different blocks (as in [7]).

Greedy approaches such as the ones by Hoefler and Snir [7] and Brandfass et al. [22] build on the idea of
increasing a mapping by successively adding new maps vc → vp such that (i) vc has maximal communication
volume with one or all of the already mapped vertices of Gc and (ii) vp has minimal distance to one or all
of the already mapped vertices of Gp. For more details see Sections 4.1.

Hoefler and Snir [7] compare RCM, DRB and a greedy approach experimentally on abstractions of three
real architectures. While their results do not show a clear winner, they confirm previous studies [14] in that
performing mapping at all is worthwhile. It is important to note, however, that Hoefler and Snir perform
mapping from reordered matrices, not from partitioned graphs as we do here.

Many metaheuristics have been used to solve the mapping problem. Uçar et al. [23] implement a large
variety of methods within a clustering approach, among them genetic algorithms, simulated annealing, tabu
search, and particle swarm optimization. The authors require, however, that the processor graph is homoge-
neous, i. e. t(up, vp) depends only on whether up = vp or not. Our approach is more general than theirs in
that we allow t(up, vp) to take different values for up 6= vp (see Equation 1).

Bhatele et al. [24] discuss topology-aware mappings of different MPI communication patterns on emerging
architectures. Better mappings avoid communication hot spots and reduce communication times significantly.
Geometric information can also be helpful for finding good mappings on regular architectures such as tori [25].

4 Methods for Topology Mapping

The simplest topology mapping is the identity, i. e. when block i of the application graph (or vertex i of the
communication graph Gc) is mapped onto node i of the processor graph Gp, 1 ≤ i ≤ k. We refer to this
mapping as Initial. It depends on how the graph partitioner, in our case METIS or KaHIP, numbers the
blocks and on how the nodes of Gp are numbered. In our experiments Gp is a 2D or 3D grid or torus since such
topologies are used in real architectures, e. g. tori for BlueGene [26]. The nodes are ordered lexicographically
w. r. t. the nodes’ canonical integer coordinates. We also carry along a mapping called Random, where the
bijection Π : {1, . . . , k} 7→ {1, . . . , k} is random. The latter is done for comparison purposes, keeping in mind
that Random is usually a very bad solution.

Four algorithms in our collection, i. e., RCM, DRB, GreedyAll and GreedyMin are from the literature
(for RCM and DRB see Section 1 and [18, 7]). Algorithms GreedyAll and GreedyMin are described in

4

Section 4.1 (also see the references therein). There we also specify the last two algorithms, GreedyAllC
and GreedyMinC, which are variants of GreedyAll and GreedyMin and which, to our knowledge, are
new.

4.1 Greedy Algorithms

As a prerequisite for the algorithms described in this section we need to compute t(·, ·) once for a given
processor graph Gp (see Equation 1). Using Johnson’s algorithm [27, 28] we can do so in time O(|Vp|2 log |Vp|
+ |Vp||Ep|). Since Gp is sparse, this amounts to O(|Vp|2 log |Vp|) = O(|Vc|2 log |Vc|). This running time is not
included in the running times for the greedy algorithms in this section, as t(·, ·) is computed only once for a
given processor graph.

The mapping algorithm GreedyAll consists of the “construction method” proposed in [22]. Using our
terminology, the algorithm starts by picking a node v0c of Gc such that

∑
e={v0

c ,vc}∈Ec
ω(e) is maximal, i. e. v0c

is a vertex whose communication with neighboring vertices is heaviest. Then, it computes for each vertex vp
of Gp the term

∑
up∈Vp

t(up, vp). Here, t(up, vp) is the (minimum) time needed to send a unit of information

from up to vp (see Section 2.1). A vertex v0p for which this sum is minimal (a most central node in Gp w. r. t.
communication time) then becomes the vertex onto which v0c is mapped. The experiments of this paper
involve processor graphs which are grids and tori. On the latter all nodes are equally central.

The remaining pairs (vic, v
i
p), i ≥ 1, are formed as follows. First, a not yet mapped vertex vic of Gc is found

such that
∑i−1

j=0 ωc({vjc , vic}) is maximal, i. e. vic is a vertex that communicates most heavily with the already

mapped vertices. Then, a not yet mapped vertex vip of Gp is found such that
∑i−1

j=0 t(v
j
p, v

i
p) is minimal, i. e.

a vertex that is most central w. r. t. the already mapped vertices of Gp. Note that the choices of vic and vip
are independent of each other. Our implementation of GreedyAll has running time O(|Vc|2). This running
time is achieved by updating vectors sumc (sump) that, for each vertex vc (vp) which has not been mapped
yet, stores the sum of the edge weights (distances) to the vertices in Gc (Gp) that have been mapped already.
We use the same two vectors in GreedyAllC, see Algorithm 1.

The mapping algorithm GreedyMin stems from [7]. Its general idea is the same as that behind GreedyAll.
The only differences are that (i) v0p is picked randomly, (ii) vic (i ≥ 1) is chosen such that maxi−1j=0ωc({vic, vjc})
is maximal, and (iii) vip (i ≥ 1) is chosen such that t(vi−1p , vip) is minimal. Again, as in GreedyAll, the
choices of vic and vip are independent of each other. Our implementation of GreedyMin (which is less generic
than that in [7]) has running time O(|Vc|2).

4.2 GreedyAllC and GreedyMinC

Neither GreedyAll nor GreedyMin link the choices of vci and vpi . Both algorithms aim at (i) a high
communication volume of vci with all or one of the already mapped vertices of Gc and (ii) a high centrality
of vpi w. r. t. all or one of the already mapped vertices of Gp. The actual increase of communication times
caused by the new pair (vci , v

p
i) (increase w. r. t. the partial mapping defined so far) is not considered.

We therefore propose new variants GreedyAllC and GreedyMinC. They take this increase of commu-
nication time into account. Specifically, the choice of vip depends on the choice of vic (same as in GreedyAll/
GreedyMin). Let vp be a candidate for being mapped onto by vic. Then, (minimal) times of communication
between vic and the vertices of Gc that have been mapped before, i. e. v0c , . . . v

i−1
c , amount to∑

(ωc({vic, vc} t(vp, Π(vc))) | {vic, vc} ∈ Ec , vc ∈ {v0c , . . . vi−1c }) (5)

Analogous to GreedyAllC and GreedyMinC, we set vip to some vp such that the expression in Equa-
tion 5 is minimal. Thus, our objective function for choosing vp, i. e. Equation 5, is about actual communication
times and not just distances on Gp. We have experimented with replacing the sum in Equation 5 by the

5

maximum and found out that this tends to decrease the quality of the mappings. For the pseudocode of
GreedyAllC see Algorithm 1.

Algorithm 1 The algorithm GreedyAllC.
Input: Communication graph Gc = (Vc, Ec, ωc) and processor graph Gp = (Vp, Ep, ωp) with |Vc| = |Vp|.
Output: Pairs (vic, v

i
p), 0 ≤ i < |Vc|, such that Π : Vc 7→ Vp defined by Π(vic) = vip is a bijective mapping

with low values of mC(Π), mD(Π) and aD(Π).

1: Find v0c ∈ Vc with maximal
∑

e={v0
c ,vc}∈Ec

ω(e)

2: Find v0p ∈ Vp with minimal
∑

up∈Vp
t(up, vp)

3: Create vectors sumc and sump of length |Vc|
4: Initialize entries of sumc to zero and entries of sump to one

5: for i← 0, . . . , |Vc| − 2 do

6: sumc(v
i
c)← −1 /* Mark vic as assigned */

7: sump(vip)← int max /* Mark vip as assigned */

8: for all ec = {vic, w} ∈ Ec do

9: if sumc[w] ≥ 0 then /* w is not yet assigned */

10: sumc[w]← sumc[w] + ωc(ec)

11: end if

12: end for

13: Pick vi+1
c such that sumc(v

i+1
c) is maximal

14: for j ← 1, . . . , |Vp| − 1 do

15: if sump[j] < int max then

16: /* j is not yet assigned */

17: sump[j]← 0

18: for all ec = {vi+1
c , w} ∈ Ec do

19: if sumc[w] < 0 then

20: /* w has already been assigned, i. e. Π(w) is defined */

21: sump[j]← sump[j] + ωc(ec) ∗ t(j,Π(w))

22: end if

23: end for

24: end if

25: end for

26: Pick vi+1
p such that sump(vi+1

p) is maximal

27: end for

Proposition 1. The running time of GreedyAllC is O(|Vc||Ec|).

Proof. The outermost loop from line 5 to line 27 and the inner loop from line 8 to line 12 take amortized time
O(|Ec|). So does the outer loop from line 14 to line 25 and the inner loop from line 18 to line 23. Since the
latter two loops are contained in the outermost loop from line 5 to line 27, the running time of Algorithm 1
is indeed O(|Vc||Ec|). Even a trivial implementation of lines 13 and 26 (with running time O(|Vc|)) does not
change the result.

The running time for GreedyMin is the same as for GreedyAllC because the two algorithms differ
only at lines 1 to 4, and the running times of both algorithms are not determined by this part.

6

5 Experiments

In this section we specify our test instances, our experimental setup and the way we evaluate the mapping
algorithms.

Test Instances. The application graphs fall into two classes: The class WalshawLarge consists of the
eight largest graphs in Walshaw’s graph partitioning archive [29], and the class ComplexNets consists
of 12 complex networks (see Tables 1 and 2). The latter form a subset of the 15 complex networks used
in [30] for partitioning experiments. It turned out, however, that KaHIP [gpMetis with k-way partitioning,
respectively], while respecting the allowed imbalance, occasionally generated empty blocks for the complex
network p2p-Gnutella [as-22july06 and loc-gowalla edges]. Using gpMetis with recursive bisection instead
of k-way partitioning was not an option because gpMetis then quite often violated the balance constraint
and produced blocks heavier than (1 + ε) times the average block size (only on complex networks). For each
of the classes WalshawLarge and ComplexNets the benchmarking comprises the following processor
graphs.

– 2DGrid(16× 16), 2DGrid(32× 32), 3DGrid(8× 8× 8)

– 2DTorus(16× 16), 2DTorus(32× 32), 3DTorus(8× 8× 8)

Table 1. Meshes used for benchmarking

Name #vertices #edges

fe tooth 78 136 452 591

fe rotor 99 617 662 431

598a 110 971 741 934

fe ocean 143 437 409 593

144 144 649 1 074 391

wave 156 317 1 059 331

m14b 214 765 1 679 018

auto 448 695 3 314 611

Table 2. Complex networks used for benchmarking.

Name #vertices #edges Type

PGPgiantcompo 10 680 24 316 largest connected component in network of PGP users

email-EuAll 16 805 60 260 network of connections via email

soc-Slashdot0902 28 550 379 445 news network

loc-brightkite edges 56 739 212 945 location-based friendship network

coAuthorsCiteseer 227 320 814 134 citation network

wiki-Talk 232 314 1 458 806 network of user interactions through edits

citationCiteseer 268 495 1 156 647 citation network

coAuthorsDBLP 299 067 977 676 citation network

web-Google 356 648 2 093 324 hyperlink network of web pages

coPapersCiteseer 434 102 16 036 720 citation network

coPapersDBLP 540 486 15 245 729 citation network

as-skitter 554 930 5 797 663 network of internet service providers

7

Experimental Setup. All computations are sequential and done on a workstation with two 4-core Intel(R)
Core(TM) i7-2600K processors at 3.40GHz. Our code is written in C++ and compiled with GCC 4.7.1.

Evaluation. The benchmarking of the mapping algorithms described in Section 4 is done separately on the
classes WalshawLarge and ComplexNets. First, graphs from both classes are partitioned into 256, 512
and 1024 parts using the graph partitioner KaHIP v. 0.62 (http://algo2.iti.kit.edu/documents/kahip/)
[31]. In particular, the meshes and social networks are partitioned with the configuration eco and ecosocial,
respectively. The allowed imbalance is always 1.03, i. e. ε = 3%. To recursively bipartition Gc and Gp during
DRB, we also use KaHIP (configurations fast and ecofast, perfect balance).

Since the partitioning process depends on random choices, we run KaHIP with 20 different seeds. For
each seed we construct a communication graph Gc from the partition, map Gc onto all processor graphs with
the same number of vertices and then compute the minimum, the arithmetic mean and the maximum of the
mapping’s runtime t, mC (see Equation 4), mD and aD (see Equation 2). Thus we arrive at the values tmin,
tmean, tmax, mCmin, etc. (twelve values for each combination of Gc, Gp, and a mapping algorithm).

Next we form the geometric means of the twelve values over all graphs in WalshawLarge and Com-
plexNets, respectively. Thus we arrive at twelve values tgmmin, . . . for any combination of a graph class
(WalshawLarge or ComplexNets), a processor graph, and a mapping algorithm. Finally, the last 9 val-
ues (all except runtimes) are set into proportion to the corresponding values for Initial. This yields the
values QmCgm

min, QmCgm
mean, QmCgm

max, QmDgm
min, QmDgm

mean, QmDgm
max, QaDgm

min, QaDgm
mean and QaDgm

max.
A Q-value smaller than one means that the quality is higher than that of Initial because we are minimizing.

We also investigate the influence of graph partitioning on the quality of the mapping algorithms. In
addition to using KaHIP as described above, we apply two variants of METIS v. 5.1.0 [4]

1. We run gpMetis with the option of k-way partitioning, an allowed imbalance of 1.03 and 20 seeds
(imbalance and seed number are as for KaHIP).

2. We run ndMetis with 20 seeds. This results in a fill-reducing ordering of Ga’s adjacency matrix. The
ordering is then turned into a partitioning of Ga by going through the vertices in the new order and
assigning block numbers such that all blocks have almost equal size (maximal deviation is one vertex). We
are aware that using ndMetis in this way is not a good choice in view of partitioning quality (ndMetis
is made for other purposes). We proceed like this, however, because we wish to test our collection of
mapping algorithms on partitions with mediocre edge cut and MCV.

We indicate the METIS-based graph partitioning that is underlying a mapping algorithm by using the
subscripts g and n when employing gpMetis and ndMetis, respectively. As an example, greedyAllCn

means that we applied GreedyAllC to partitions obtained via ndMetis.
Finally, for each x ∈ {tgmmin, . . . QaD

gm
max} (this set has 12 values), we form quotients Qx of the form

x from KaHIP partitions

x from gpMetis partitions
,
x from KaHIP partitions

x from ndMetis partitions

As an example, QaDgm
max = 3.2098 for greedyAllCn in Table 5 means that aDgm

max is worse by a factor
of 3.2098 if ndMetis is used instead of KaHIP for mapping meshes onto 2DGrid(16× 16).

6 Results

6.1 Mapping of Meshes onto Grids and Tori

Table 3 shows a comparison of KaHIP partitions with partitions from gpMetis and ndMetis. We measure
running time, edge cut and MCV. As above, we record the best, mean and worst result over 20 seeds and

8

Table 3. Performance of gpMetis and ndMetis on meshes compared to KaHIP. Values smaller than one indicate

that gpMetis/ndMetis is faster or that the quality the gpMetis/ndMetis-partitions is higher.

T imegmmin T ime
gm
mean T ime

gm
max Cut

gm
min Cut

gm
mean Cut

gm
max MCV gm

min MCV gm
mean MCV gm

max

gpMetis 0.0462 0.0451 0.0440 1.0101 1.0101 1.0121 0.9970 1.0449 1.1601

ndMetis 0.1026 0.0999 0.0985 2.2075 2.2371 2.2472 6.0976 5.9880 5.7471

calculate the geometric means of these numbers over all meshes in our collection — giving rise to the numbers
Timegmmax, . . . ,MCV gm

max in Table 3. In terms of partition quality, gpMetis performs significantly poorer than
KaHIP only in terms of MCV gm

mean and MCV gm
max. Here gpMetis is worse by 4.49% and 16.01%, respectively.

The partitions that we derived from ndMetis (in a deliberately sub-optimal way) fall back drastically both
in terms of the edge cut and MCV. In particular, Cutgmmean = 2.2371 and MCV gm

mean = 5.988, which means
that the edge cut from ndMetis is more than double and that MCV increases almost six times if ndMetis
is used instead of KaHIP.

Table 4 shows the quality of the mapping algorithms for (i) partitions based on KaHIP and (ii) mapping
onto the 16× 16 torus. Tables I - V in the Appendix support the following results.

Table 4. Mapping of meshes onto 2DTorus(16× 16). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.028 0.033 0.044 2.087 2.059 2.030 1.389 1.397 1.432 1.667 1.471 1.249

RCM 0.060 0.070 0.088 1.634 1.640 1.645 1.357 1.454 1.586 1.509 1.389 1.242

DRB 50.75 52.18 54.20 0.862 0.904 0.966 0.821 0.886 0.987 1.039 1.010 0.962

GreedyAll 0.948 0.971 0.997 1.310 1.316 1.324 1.252 1.291 1.369 1.359 1.263 1.164

GreedyMin 0.163 0.168 0.183 1.139 1.162 1.199 1.025 1.080 1.149 0.870 0.776 0.654

GreedyAllC 0.918 0.953 0.987 0.683 0.707 0.736 0.665 0.706 0.766 0.730 0.780 0.871

GreedyMinC 0.869 0.939 0.100 0.793 0.813 0.844 0.739 0.789 0.849 0.745 0.756 0.780

1. The mapping algorithms Random, RCM and GreedyAll are worse than Initial on all accounts. While
this was expected for Random, our data show that very simple mapping strategies are not worthwhile
if the underlying partition is good.

2. The algorithm GreedyMin beats Initial only in terms of average dilation. The improvement is, how-
ever, a major one in some cases, e. g. QaDgm

mean = 0.776 and QaDgm
max = 0.654 for the 16× 16 2D torus

(see Table 4). Another strong point of GreedyMin is its low running time.
3. On all six processor graphs our new mapping algorithm GreedyAllC yields the best maximum con-

gestion, mC, and the best maximum dilation, mD. This holds not only for the (geometric mean over all
meshes of the) average over all seeds, but also if the best or the worst result is taken over all seeds. The
quotients are between 0.556 and 0.789. In terms of running time, we are in-between that of GreedyMin
and DRB.

4. DRB yields many major improvements over Initial and, discarding average dilation, is worse only
once (in terms of QmDgm

max on the 3D torus, see Table V in the Appendix). DRB often comes close to
GreedyAllC and sometimes beats it on average dilation.

5. GreedyMinC has its strengths on tori and often beats GreedyAllC on average dilation (on grids and
tori). Interestingly, the overall quality of GreedyAll is much worse than that of GreedyMin (both
from previous work), while this trend is reversed if we look at the modified versions GreedyAllC and
GreedyMinC.

9

We now look at the influence of the partitioning quality on the quality of the mapping algorithms (see
Table 5 (Table VI in the Appendix provides more evidence). As for KaHIP vs. gpMetis, the small lead
of KaHIP over gpMetis w. r. t. MCV translates into an even smaller lead of the corresponding mappings.
Moreover, this small lead is only on average, and there are cases where gpMetis partitions lead to better
mapping results. As for KaHIP vs. ndMetis, poor edge cut and/or MCV seem to have a deteriorating effect
on mapping quality.

Table 5. Mapping of meshes onto 2DGrid(16× 16).

Algo Qtgmmin Qt
gm
mean Qtgmmax QmCgm

min QmC
gm
mean QmCgm

max QmDgm
min QmD

gm
mean QmDgm

max QaDgm
min QaD

gm
mean QaDgm

max

Initialg 1.0205 1.0152 1.1762 0.9930 0.9963 0.9881 1.0010 1.0002 0.9985 1.0042 1.0071 0.9690

Initialn 1.0346 1.0506 1.1932 1.9068 1.9594 2.0013 2.7783 2.8391 2.8141 3.9285 4.2721 4.2889

Randomg 0.9944 0.9749 0.9809 0.9961 0.9983 1.0027 0.9968 0.9847 0.9431 1.0251 1.0307 1.0524

Randomn 1.0120 0.9887 0.9510 1.9659 2.0315 2.0960 2.5159 2.5489 2.5157 3.8256 3.9547 4.3704

RCMg 1.0287 1.0087 1.0103 0.9980 1.0020 0.9955 1.0033 1.0169 1.0310 1.0473 1.0225 1.0019

RCMn 1.1701 1.1362 1.1554 2.0780 2.1376 2.1856 2.8376 2.8998 3.0228 3.6763 3.8054 4.2111

DRBg 1.0083 1.0034 0.9956 0.9991 1.0096 1.0258 0.9951 1.0112 1.0131 1.0179 1.0441 0.9811

DRBn 0.9980 1.0119 1.0194 1.9035 2.0223 1.9517 2.6668 2.8051 2.7540 2.5027 2.9897 3.1595

GreedyMing 1.0039 1.0021 1.0182 1.0110 0.9953 0.9948 1.0295 0.9959 0.9923 1.0031 1.0088 1.0034

GreedyMinn 1.0095 1.0177 1.1114 1.5176 1.4785 1.4779 2.5373 2.5238 2.5750 1.5832 1.5819 1.6219

GreedyAllCg 1.0091 1.0074 1.0236 0.9999 1.0135 1.0144 1.0491 1.0200 1.0085 1.0153 0.9919 0.9771

greedyAllCn 1.1313 1.1499 1.1819 1.9840 1.9265 1.8896 2.9915 2.9117 2.9811 2.1990 2.6233 3.2098

GreedyMinCg 1.0002 1.0073 1.0205 1.0121 0.9887 0.9809 1.0166 0.9987 0.9979 1.0018 1.0013 0.9449

GreedyMinCn 1.1869 1.1879 1.1993 1.6175 1.5741 1.5145 2.5819 2.7487 2.8079 1.6267 2.2717 3.5661

6.2 Mapping of Complex Networks onto Grids and Tori.

Table 6 shows a comparison of KaHIP partitions with partitions from gpMetis and ndMetis. For a
description of the table see the explanation of Table 3 in Section 6.1.

Table 6. Performance of gpMetis and ndMetis on complex networks compared to KaHIP. Values smaller than

one indicate that gpMetis/ndMetis is faster or that the quality the gpMetis/ndMetis-partitions is higher.

T imegmmin T ime
gm
mean T ime

gm
max Cut

gm
min Cut

gm
mean Cut

gm
max MCV gm

min MCV gm
mean MCV gm

max

gpMetis 0.0083 0.0081 0.0078 1.0634 1.0619 1.0560 1.2531 1.2066 1.1536

ndMetis 0.0262 0.0268 0.0257 2.0284 2.0202 2.0121 1.8416 1.9157 2.0040

Compared to the picture we saw on meshes, KaHIP now also leads in terms of the edge cut. Moreover,
the lead of KaHIP in terms of MCV compared to gpMetis and ndMetis is even more pronounced (about
20%).

Regarding topology mapping based on KaHIP partitions, we only comment on results that deviate
from those that we have described for meshes (especially running times show the same trends). The main
differences are in the maximum and average dilation. Sometimes RCM and even Random yield even lower
maximum dilation than GreedyAllC. Moreover, average dilation behaves quite erratically, as is revealed
by a comparison between the aD-values of GreedyMinC in Table 7 and Tables VII through XI in the
Appendix.

10

Table 7. Mapping of complex networks onto 2DTorus(16× 16). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.028 0.032 0.042 1.511 1.509 1.513 0.777 0.780 0.810 3.291 3.241 2.840

RCM 0.104 0.122 0.161 1.366 1.416 1.455 0.822 0.868 0.931 2.672 2.919 2.699

DRB 124.8 138.5 154.0 0.982 1.003 1.021 0.853 0.876 0.926 1.084 1.250 1.476

GreedyAll 5.182 5.344 5.684 1.100 1.119 1.131 1.068 1.011 0.985 1.189 1.315 1.301

GreedyMin 0.248 0.258 0.292 1.057 1.054 1.056 1.109 1.056 1.015 0.858 0.676 0.496

GreedyAllC 5.647 5.871 6.268 0.841 0.839 0.839 0.863 0.820 0.801 0.531 0.442 0.351

GreedyMinC 5.251 5.550 6.153 0.858 0.856 0.855 0.857 0.829 0.808 0.644 0.575 0.481

Regarding maximum congestion, mC, the picture is the same as we saw for meshes: Our new algorithm
GreedyAllC always yields the best results.

Regarding the influence of partitioning quality on the quality of the mappings we see that the higher
partitioning quality of KaHIP compared to gpMetis (in terms of the edge cut and MCV) does not translate
into considerably better mappings, see Table 8 (for additional evidence see Table XII in the Appendix). As
in the case of meshes, the partitions that we derived from ndMetis (in a deliberately sub-optimal way) lead
to poor mappings.

Table 8. Mapping of complex networks onto 2DGrid(16× 16).

Algo Qtgmmin Qt
gm
mean Qtgmmax QmCgm

min QmC
gm
mean QmCgm

max QmDgm
min QmD

gm
mean QmDgm

max QaDgm
min QaD

gm
mean QaDgm

max

Initialg 0.9723 0.9838 0.9812 1.0243 1.0407 1.0623 0.9914 0.9955 1.0209 1.2791 1.4033 1.4395

Initialn 0.9684 0.9963 0.9832 10.004 10.146 10.195 2.9752 2.8494 2.8637 3.9055 3.7684 3.5497

Randomg 1.0292 1.0234 1.0285 0.9832 0.9910 0.9983 1.0866 1.1270 1.1680 1.0194 1.0167 1.1733

Randomn 1.0127 1.0272 1.0027 7.5795 7.7739 7.9801 2.7521 2.8475 2.9019 1.8046 1.5884 1.6585

RCMg 1.0970 1.0851 0.9894 1.0087 0.9939 0.9991 1.1129 1.1367 1.1333 0.9571 0.9581 1.0146

RCMn 0.9611 0.9963 0.9008 7.5698 7.8690 8.2057 3.2024 3.2317 2.9598 1.6997 1.6083 1.4822

DRBg 1.0486 1.0492 1.0620 1.0076 1.0147 1.0027 1.0624 1.0745 1.0913 0.9775 1.0832 1.0793

DRBn 0.4242 0.4094 0.3885 7.6865 8.1313 8.5734 3.4637 3.7612 3.9759 2.0400 2.1615 1.7987

GreedyMing 1.0375 1.0341 1.0102 1.0284 1.0267 1.0278 1.0060 1.0440 1.0791 1.0846 1.1068 1.0990

GreedyMinn 0.6850 0.6860 0.7321 9.0648 9.1580 9.4715 4.4637 4.3656 4.4046 2.5795 2.5664 2.5504

GreedyAllCg 1.0637 1.0637 1.0608 1.0450 1.0392 1.0392 1.0527 1.0582 1.0594 1.3140 1.0434 0.9078

greedyAllCn 0.3690 0.3700 0.3559 7.9916 8.0772 8.1791 3.5868 3.5635 3.6554 4.0989 2.5944 1.6957

GreedyMinCg 1.0847 1.0731 1.0698 1.0454 1.0411 1.0347 1.1240 1.1579 1.2136 1.0790 1.0542 0.9809

GreedyMinCn 0.3688 0.3721 0.3769 9.2443 9.3823 9.8506 5.2981 5.1511 5.1905 2.4001 1.7601 1.3172

7 Conclusions and Future Work

We performed extensive static mapping experiments, our scenario being a consecutive pipeline of graph
partitioning and bijective topology mapping. These experiments involved two classes of application graphs
(8 meshes, 12 complex networks), three ways to partition the application graphs (one by KaHIP, two by
METIS), six processor graphs (3 grids, 3 tori) and 8 mapping algorithms.

Our results indicate that the strengths and weaknesses of the mapping algorithms are, to a large extent,
independent of the class of application graphs (mesh or complex network) and the processor graphs. The
main differences are in the maximum and average dilation. Especially the latter behaves erratically in the
case of complex networks.

11

Second, the quality of the partitions, both in terms of edge cut and MCV, has little influence on the
quality of the mapping, except in cases where MCV is very poor. Thus, even MCV is not a good indicator of
how well a partition can be mapped onto a processor graph — at least within the realm of our experiments.

Third, our variant of a greedy mapping algorithm by Brandfass et al., i. e. GreedyAllC, clearly dom-
inates all state-of-the art algorithms we considered in terms of maximum congestion. The running time of
our algorithm is O(|Vc||Ec|), where Vc and Ec is the vertex and the edge set of the communication graph,
respectively (and therefore usually fairly small).

If the weak influence of partition quality on mapping quality is affirmed for more classes of applica-
tion graphs and more parallel architectures, improvements of static mapping are likely to come only out
of new combinations of partitioning and mapping. In the future we will investigate how to minimize the
communication volume specified in Equation 5 by such a coupled approach.

References

1. H. Meuer, E. Strohmaier, H. Simon, and J. Dongarra, “June 2013 | TOP500 supercomputer sites,” http://top500.

org/lists/2013/06/, June 2013.

2. J. Teresco, M. Beall, J. Flaherty, and M. Shephard, “A Hierarchical Partition Model for Adaptive Finite Element

Computation,” Computer Methods in Applied Mechanics and Engineering, vol. 184, no. 2–4, pp. 269 – 285, 2000.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0045782599002315

3. L. d. F. Costa, O. N. Oliveira Jr, G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L. Antiqueira, M. P. Viana,

and L. E. Correa Rocha, “Analyzing and modeling real-world phenomena with complex networks: a survey of

applications,” Advances in Physics, vol. 60, no. 3, pp. 329–412, 2011.

4. G. Karypis and V. Kumar, MeTiS: A Software Package for Partitioning Unstructured Graphs, Partitioning

Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Version 5.1.0, http://glaros.dtc.umn.edu/

gkhome/fetch/sw/metis/manual.pdf, Univ. of Minnesota, Minneapolis, MN, 2013.

5. P. Sanders and C. Schulz, “High quality graph partitioning,” in Proc. of the 10th DIMACS Impl. Challenge

Workshop: Graph Partitioning and Graph Clustering. AMS, 2013, pp. 1–17.

6. A. Rosenberg, “Issues in the study of graph embeddings,” in Lectures in Computer Science, 1980, pp. 150–176.

7. T. Hoefler and M. Snir, “Generic Topology Mapping Strategies for Large-scale Parallel Architectures,” in ACM

International Conference on Supercomputing (ICS’11). ACM, 2011, pp. 75–85.

8. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman & Co., 1979.

9. Y. M. Kim and T.-H. Lai, “The Complexity of Congestion-1 Embedding in a Hypercube,” Journal of Algorithms,

vol. 12, no. 2, pp. 246 – 280, 1991. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

019667749190004I

10. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan

Kaufmann Publishers, 1992.

11. B. Hendrickson and T. G. Kolda,“Graph partitioning models for parallel computing,”Parallel Computing, vol. 26,

no. 12, pp. 1519–1534, 2000.

12. E. Aubanel, “Resource-Aware Load Balancing of Parallel Applications,” in Handbook of Research on Grid Tech-

nologies and Utility Computing: Concepts for Managing Large-Scale Applications, E. Udoh and F. Z. Wang, Eds.

Information Science Reference - Imprint of: IGI Publishing, May 2009, pp. 12–21.

13. E. Jeannot, G. Mercier, and F. Tessier,“Process Placement in Multicore Clusters: Algorithmic Issues and Practical

Techniques,” IEEE Transactions on Parallel and Distributed Systems, vol. PP, no. 99, pp. 1–1, 2013.

14. F. Pellegrini, “Static Mapping of Process Graphs,” in Graph Partitioning, C.-E. Bichot and P. Siarry, Eds. John

Wiley & Sons, 2011, ch. 5, pp. 115–136.

15. C. Walshaw and M. Cross, “Multilevel Mesh Partitioning for Heterogeneous Communication Networks,” Future

Generation Comp. Syst., vol. 17, no. 5, pp. 601–623, 2001.

16. S. Huang, E. Aubanel, and V. C. Bhavsar, “PaGrid: A mesh partitioner for computational grids,” Journal of Grid

Computing, vol. 4, no. 1, pp. 71–88, 2006.

12

17. I. Moulitsas and G. Karypis, “Architecture aware partitioning algorithms,” in Proc. 8th International Conference

on Algorithms and Architectures for Parallel Processing (ICA3PP’08), 2008, pp. 42–53.

18. E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in Proc. 24th ACM Int. Conf.

ACM, 1969, pp. 157–172.

19. F. Pellegrini, “Scotch and libscotch 5.0 user’s guide,” LaBRI, Université Bordeaux I, Tech. Rep., December 2007.

20. ——, “Static Mapping by Dual Recursive Bipartitioning of Process and Architecture Graphs,” in Scalable High-

Performance Computing Conference (SHPCC). IEEE, May 1994, pp. 486–493.

21. S. Y. Chan, T. C. Ling, and E. Aubanel, “The Impact of Heterogeneous Multi-Core Clusters on Graph Partition-

ing: An Empirical Study,” Cluster Computing, vol. 15, no. 3, pp. 281–302, 2012.

22. B. Brandfass, T. Alrutz, and T. Gerhold, “Rank Reordering for MPI Communication Optimization,” Computers

& Fluids, vol. 80, no. 0, pp. 372 – 380, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S004579301200028X

23. B. Ucar, C. Aykanat, K. Kaya, and M. Ikinci, “Task Assignment in Heterogeneous Computing Systems,”

Journal of Parallel and Distributed Computing, vol. 66, no. 1, pp. 32 – 46, 2006. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0743731505001577

24. A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding Hot-Spots on Two-Level Direct Networks,” in

ACM/IEEE Conference for High Performance Computing, Networking, Storage and Analysis (SC). ACM,

2011, pp. 76:1–76:11.

25. A. Bhatele and L. Kale, “Heuristic-Based Techniques for Mapping Irregular Communication Graphs to Mesh

Topologies,” in 13th Conference on High Performance Computing and Communications (HPCC), 2011, pp. 765–

771.

26. The BlueGene/L Team, “An overview of the BlueGene/L supercomputer,” in Proc. of the 2002 ACM/IEEE

Conference on Supercomputing. ACM, 2002, pp. 1–22.

27. D. Johnson, “Efficient algorithms for shortest paths in sparse networks,” Journal of the ACM, vol. 24, no. 1, 1977.

28. T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. MIT Press, 2001.

29. A. J. Soper, C. Walshaw, and M. Cross, “A combined evolutionary search and multilevel optimisation approach

to graph partitioning,” Journal of Global Optimization, vol. 29, no. 2, pp. 225–241, 2004.

30. I. Safro, P. Sanders, and C. Schulz, “Advanced coarsening schemes for graph partitioning,” in Proc. 11th Int.

Symp. on Experimental Algorithms. Springer, 2012, pp. 369–380.

31. C. Schulz, “Hiqh Quality Graph Partititioning,” Ph.D. dissertation, Karlsruhe Institute of Technology, 2013.

Appendix

Table 9. Mapping of meshes onto 2DGrid(16× 16). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.029 0.033 0.040 2.295 2.264 2.243 1.941 1.926 1.861 1.744 1.550 1.423

RCM 0.057 0.068 0.079 1.564 1.563 1.572 1.288 1.297 1.304 1.670 1.530 1.393

DRB 49.40 50.82 52.68 0.756 0.818 0.881 0.697 0.750 0.773 0.913 0.974 1.012

GreedyAll 0.951 0.973 0.992 1.679 1.680 1.678 1.359 1.361 1.292 1.782 1.720 1.579

GreedyMin 0.160 0.164 0.177 1.120 1.192 1.274 1.092 1.136 1.175 0.871 0.803 0.714

GreedyAllC 0.906 0.942 0.995 0.665 0.722 0.789 0.626 0.665 0.736 0.882 1.027 1.253

GreedyMinC 0.828 0.875 0.919 0.817 0.890 0.957 0.750 0.785 0.817 0.787 0.792 0.901

13

Table 10. Mapping of meshes onto 2DGrid(32× 32). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.093 0.110 0.135 2.933 2.871 2.806 2.268 2.169 2.084 1.769 1.637 1.440

RCM 0.205 0.239 0.273 1.776 1.782 1.781 1.441 1.433 1.418 1.784 1.683 1.481

DRB 216.5 221.6 227.7 0.715 0.757 0.806 0.655 0.690 0.756 0.952 1.060 1.125

GreedyAll 17.55 18.53 18.97 2.116 2.084 2.068 1.609 1.565 1.522 1.956 1.838 1.632

GreedyMin 3.229 3.867 3.947 1.294 1.371 1.442 1.289 1.320 1.408 0.936 0.858 0.732

GreedyAllC 17.20 18.05 18.89 0.569 0.626 0.681 0.556 0.615 0.689 0.876 1.137 1.381

GreedyMinC 15.98 16.71 17.70 0.887 0.948 1.040 0.770 0.837 0.916 0.869 0.892 0.966

Table 11. Mapping of meshes onto 3DGrid(8× 8× 8). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.047 0.056 0.070 2.169 2.131 2.094 1.749 1.739 1.690 1.664 1.508 1.329

RCM 0.113 0.129 0.148 1.631 1.622 1.616 1.289 1.314 1.305 1.476 1.372 1.216

DRB 112.6 115.6 119.8 0.814 0.856 0.920 0.719 0.769 0.819 0.935 0.995 0.946

GreedyAll 4.006 4.050 4.101 1.723 1.704 1.688 1.348 1.326 1.267 1.670 1.618 1.470

GreedyMin 0.687 0.708 0.722 1.214 1.232 1.255 1.051 1.061 1.082 0.976 0.887 0.780

GreedyAllC 3.875 3.996 4.104 0.683 0.713 0.736 0.617 0.633 0.638 0.876 1.055 1.151

GreedyMinC 3.683 3.871 4.067 0.827 0.859 0.891 0.695 0.718 0.757 1.268 1.339 1.388

Table 12. Mapping of meshes onto 2DTorus(32× 32). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.090 0.111 0.139 2.656 2.609 2.566 1.487 1.4728 1.444 1.661 1.491 1.369

RCM 0.213 0.249 0.295 1.942 1.942 1.932 1.480 1.5121 1.552 1.536 1.400 1.312

DRB 212.9 217.0 221.6 0.794 0.843 0.896 0.782 0.8642 0.938 1.059 1.068 1.111

GreedyAll 17.79 18.07 18.42 1.529 1.526 1.533 1.638 1.7147 1.765 1.407 1.319 1.215

GreedyMin 4.031 4.068 4.110 1.303 1.336 1.360 1.166 1.2162 1.259 0.892 0.787 0.683

GreedyAllC 17.53 18.08 18.94 0.569 0.611 0.647 0.609 0.6843 0.752 0.726 0.815 0.899

GreedyMinC 16.93 17.68 18.30 0.778 0.820 0.859 0.752 0.8148 0.886 0.892 0.973 1.028

Table 13. Mapping of meshes onto 3DTorus(8× 8× 8). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.049 0.058 0.075 2.052 2.013 2.000 1.307 1.331 1.337 1.571 1.447 1.392

RCM 0.115 0.131 0.154 1.638 1.637 1.641 1.317 1.395 1.502 1.485 1.378 1.360

DRB 115.8 118.5 121.2 0.931 0.972 1.049 0.859 0.943 1.039 1.057 1.028 1.045

GreedyAll 3.848 3.910 4.028 1.303 1.230 1.312 1.161 1.214 1.221 1.262 1.196 1.173

GreedyMin 0.656 0.670 0.684 1.209 1.217 1.240 1.002 1.049 1.073 0.903 0.797 0.726

GreedyAllC 3.882 4.050 4.178 0.751 0.757 0.767 0.683 0.719 0.711 0.755 0.806 0.913

GreedyMinC 3.897 4.125 4.463 0.840 0.842 0.858 0.727 0.761 0.790 0.739 0.743 0.783

14

Table 14. Mapping of meshes onto 2DTorus(16× 16).

Algo Qtgmmin Qt
gm
mean Qtgmmax QmCgm

min QmC
gm
mean QmCgm

max QmDgm
min QmD

gm
mean QmDgm

max QaDgm
min QaD

gm
mean QaDgm

max

Initialg 1.0361 0.9916 0.8434 0.9987 0.9964 0.9968 1.0042 1.0032 0.9917 0.9844 1.0209 1.0812

Initialn 0.9799 0.9805 0.8702 1.6731 1.6923 1.7122 2.5803 2.7067 2.8812 1.5955 1.5739 1.5854

Randomg 1.0016 1.0165 0.9776 1.0019 1.0014 1.0027 1.0179 1.0257 1.0847 1.0188 1.0256 1.0516

Randomn 1.0269 1.0453 1.0364 1.9834 2.0339 2.0892 2.6819 2.7297 2.9002 3.8130 4.0997 4.3485

RCMg 1.0212 1.0093 1.1226 1.0140 1.0005 1.0014 1.0219 1.0256 0.9761 1.0133 1.0188 1.0131

RCMn 1.1623 1.1217 1.1519 2.0952 2.1371 2.1744 2.7086 2.7540 2.7208 3.7498 4.0711 4.3358

DRBg 1.0058 0.9997 0.9919 1.0062 1.0070 1.0161 1.0041 1.0061 1.0642 1.0238 1.0044 1.0358

DRBn 0.9996 1.0072 1.0058 1.9550 2.0459 1.9538 2.8690 2.9701 3.1304 2.5652 3.1615 3.8322

GreedyMing 1.0065 1.0013 1.0038 1.0162 0.9976 1.0011 0.9978 0.9865 0.9606 1.0100 1.0115 1.0202

GreedyMinn 1.0185 1.0110 1.0252 1.5790 1.5512 1.5467 2.4673 2.5399 2.5795 1.6415 1.6700 1.7920

GreedyAllCg 1.0063 1.0052 1.0014 0.9941 0.9996 0.9941 1.0085 0.9930 0.9828 1.0682 1.0244 0.9929

greedyAllCn 1.1169 1.1379 1.1481 2.0367 1.9924 1.9810 2.8488 3.0034 3.0069 2.0127 2.3230 2.9728

GreedyMinCg 1.0059 1.0101 1.0793 0.9915 0.9928 0.9991 0.9775 0.9935 1.0491 1.0182 1.0197 1.0345

GreedyMinCn 1.1779 1.1475 1.1270 1.7459 1.7276 1.6917 2.4912 2.6535 2.7047 1.7459 2.4074 3.3671

Table 15. Mapping of complex networks onto 2DGrid(16× 16). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.028 0.032 0.042 1.593 1.597 1.597 0.987 0.925 0.943 3.737 3.831 3.361

RCM 0.101 0.120 0.155 1.362 1.419 1.457 0.968 0.956 1.032 2.783 3.267 3.411

DRB 124.8 138.4 154.8 0.937 0.957 0.989 0.762 0.750 0.778 1.012 1.154 1.562

GreedyAll 5.176 5.337 5.610 1.078 1.098 1.104 1.096 0.975 0.925 1.365 1.625 1.630

GreedyMin 0.245 0.256 0.230 1.043 1.045 1.038 1.003 0.929 0.897 0.774 0.627 0.453

GreedyAllC 5.622 5.837 6.173 0.799 0.813 0.827 0.798 0.738 0.730 0.847 1.197 1.461

GreedyMinC 5.243 5.488 5.836 0.849 0.854 0.856 0.711 0.674 0.669 0.554 0.548 0.557

Table 16. Mapping of complex networks onto 2DGrid(32× 32). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.094 0.112 0.145 1.849 1.836 1.817 0.820 0.812 0.858 5.086 5.603 5.046

RCM 0.412 0.504 0.641 1.510 1.575 1.623 0.824 0.871 0.951 3.840 4.773 4.528

DRB 415.0 445.1 484.8 0.881 0.911 0.948 0.617 0.636 0.685 0.951 1.207 1.477

GreedyAll 72.81 75.82 79.82 1.152 1.150 1.143 0.914 0.875 0.872 1.992 2.448 2.514

GreedyMin 3.307 4.141 4.316 1.047 1.050 1.046 0.867 0.849 0.858 0.681 0.584 0.437

GreedyAllC 96.07 99.59 103.2 0.720 0.728 0.730 0.650 0.631 0.642 0.784 0.804 0.830

GreedyMinC 85.73 88.87 92.26 0.802 0.843 0.873 0.642 0.668 0.715 2.900 3.304 2.860

Table 17. Mapping of complex networks onto 3DGrid(8× 8× 8). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.049 0.057 0.074 1.539 1.527 1.519 0.878 0.850 0.884 3.459 3.872 3.479

RCM 0.209 0.258 0.335 1.381 1.410 1.437 0.889 0.880 0.900 2.686 3.307 3.177

DRB 254.0 275.0 230.0 0.935 0.952 0.967 0.751 0.757 0.751 0.911 1.197 1.504

GreedyAll 20,78 21.49 22.47 1.108 1.104 1.112 1.134 1.083 1.035 1.412 1.538 1.548

GreedyMin 0.882 0.905 0.927 1.097 1.100 1.100 0.930 0.883 0.879 0.937 0.856 0.658

GreedyAllC 25.42 26.63 28.10 0.791 0.793 0.802 0.849 0.804 0.794 0.988 1.008 0.978

GreedyMinC 23.38 24.43 25.65 0.857 0.886 0.907 0.811 0.791 0.804 3.522 4.509 4.087

15

Table 18. Mapping of complex networks onto 2DTorus(32× 32). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.093 0.110 0.138 1.748 1.733 1.720 0.627 0.644 0.691 4.906 5.019 4.675

RCM 0.420 0.513 0.650 1.524 1.577 1.618 0.723 0.762 0.824 3.820 4.422 4.475

DRB 412.5 442.1 480.1 0.925 0.946 0.958 0.697 0.764 0.826 0.942 1.318 1.971

GreedyAll 74.24 75.93 78.76 1.171 1.181 1.200 0.989 0.973 0.993 1.750 2.176 2.493

GreedyMin 4.428 4.475 4.532 1.115 1.116 1.107 0.941 0.958 0.993 0.785 0.710 0.557

GreedyAllC 96.29 99.57 103.6 0.770 0.769 0.764 0.749 0.755 0.771 0.578 0.522 0.439

GreedyMinC 86.33 89.39 93.14 0.837 0.838 0.839 0.735 0.760 0.797 2.732 3.256 3.034

Table 19. Mapping of complex networks onto 3DTorus(8× 8× 8). Times tgmmin, tgmmean and tgmmax are in milliseconds.

Algo tgmmin tgmmean tgmmax QmCgm
min QmC

gm
mean QmC

gm
max QmD

gm
min QmD

gm
mean QmD

gm
max QaD

gm
min QaD

gm
mean QaD

gm
max

Random 0.050 0.058 0.072 1.479 1.474 1.469 0.762 0.753 0.773 3.029 3.498 3.251

RCM 0.211 259.9 342.2 1.383 1.404 1.419 0.813 0.831 0.910 2.558 3.255 3.130

DRB 257.3 279.1 302.5 0.995 1.014 1.028 0.893 0.925 0.994 1.003 1.418 1.804

GreedyAll 20.72 21.36 22.59 1.114 1.118 1.127 1.187 1.139 1.089 1.184 1.380 1.477

GreedyMin 0.841 0.866 0.886 1.100 1.099 1.095 0.956 0.945 0.945 0.893 0.816 0.634

GreedyAllC 25.48 26.71 28.15 0.852 0.847 0.839 0.974 0.958 0.943 0.660 0.620 0.519

GreedyMinC 23.57 24.56 25.74 0.875 0.873 0.870 0.971 0.968 0.988 1.215 1.618 1.582

Table 20. Mapping of complex networks onto 2DTorus(16× 16).

Algo Qtgmmin Qt
gm
mean Qtgmmax QmCgm

min QmC
gm
mean QmCgm

max QmDgm
min QmD

gm
mean QmDgm

max QaDgm
min QaD

gm
mean QaDgm

max

Initialg 0.9714 1.0045 1.0365 1.0369 1.0357 1.0463 0.9555 0.9859 1.0147 1.2189 1.2921 1.3684

Initialn 1.0000 0.9888 1.0098 8.7294 8.9164 9.0664 3.2390 3.0742 2.9958 3.2217 2.9771 2.5263

Randomg 1.0197 1.0232 1.0457 0.9888 0.9887 0.9873 1.0984 1.1191 1.1202 0.9969 1.0419 1.1427

Randomn 1.0153 1.0125 1.1086 7.6895 7.7816 7.8792 2.8851 2.9030 2.8530 1.8989 1.7575 1.5831

RCMg 1.1057 1.0787 0.9371 0.9843 0.9860 0.9910 1.1042 1.1155 1.1473 0.9775 1.0073 1.1084

RCMn 0.9755 0.9936 0.8855 7.2693 7.3256 7.5483 3.1131 3.3055 3.2221 1.5371 1.5224 1.6418

DRBg 1.0430 1.0454 1.0633 1.0021 1.0092 1.0118 1.0575 1.0732 1.1035 0.9560 1.0777 1.1059

DRBn 0.4275 0.4097 0.3889 8.0650 8.1325 8.4128 3.2878 3.5476 3.5615 2.1035 2.0679 1.6679

GreedyMing 1.0334 1.0333 1.0187 1.0192 1.0181 1.0180 1.0293 1.0652 1.1093 1.1002 1.1122 1.1105

GreedyMinn 0.6853 0.6817 0.6872 8.3516 8.4982 8.7077 3.4357 3.4170 3.3840 2.5083 2.4816 2.3758

GreedyAllCg 1.0608 1.0673 1.0932 1.0340 1.0304 1.0287 0.9963 1.0285 1.0338 1.1039 1.1171 1.1198

greedyAllCn 0.3670 0.3733 0.3912 8.1861 8.3093 8.4513 4.1153 4.1375 4.1129 2.4514 2.3375 2.3238

GreedyMinCg 1.0827 1.0731 0.9870 1.0304 1.0283 1.0335 1.0148 1.0280 1.0331 1.0229 1.0711 1.1837

GreedyMinCn 0.3723 0.3708 0.3484 8.1740 8.3004 8.4825 3.7402 3.7732 3.7904 2.0304 1.7733 1.6501

16

