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Abstract—This paper presents (i) a parallel, platform-
independent variant of Borůvka’s algorithm, an efficient Min-
imum Spanning Tree (MST) solver, and (ii) a comprehensive
comparison of MST-solver implementations, both on multi-core
CPU-chips and GPUs. The core of our variant is an effective
and explicit contraction of the graph. Our multi-core CPU
implementation scales linearly up to 8 threads, whereas the GPU
implementation performs considerably better than the optimal
number of threads running on the CPU. We also show that
our implementations outperform all other parallel MST-solver
implementations in (ii), for a broad set of publicly available road-
network graphs.

I. INTRODUCTION

The Minimum Spanning Tree (MST) of a graph is the set of
edges that connect every vertex contained in the original graph,
such that the total weight of the edges in the tree is minimized.
The problem crops up in several domains, although it plays
a more relevant role in Very Large Scale Integration (VLSI)
design and network routing [1]. The research on MSTs has
been active for several decades, period within numerous MST-
solvers and implementations have been proposed. In many ap-
plication domains, such as ad-hoc networks, MST-solvers are
often required, thereby demanding efficient implementations.

There are several MST-solvers, almost all of which are
variants inspired by three seminal contributions: Borůvka’s
algorithm, presented in 1926 [2], Kruskal’s algorithm, in
1956 [3] and Prim’s algorithm, a year later, in 1957 [4].
These algorithms have been implemented in several (parallel)
computing devices (e.g. Prim’s on FPGAs [5], a marriage
between Prim’s and Borůvka’s algorithms on multi-core CPU-
chips [6], and Borůvka’s on GPUs [7]).

Sequential implementations of Borůvka’s, Prim’s and
Kruskal’s algorithms are very competitive, and their perfor-
mance varies with the input graph and used data structures [8].
Until the late 90s, the investigation around these algorithms
revolved around implementation details to improve the per-
formance of the algorithms, and some were shown to greatly
influence the performance of the algorithms [1], [8]. From then
on, parallelizing these algorithms has become a central point
of research, as shown by the various efforts recorded in the
literature, which we overview in Section III.

In this context, Kruskal’s algorithm is the least attractive
candidate, due to its inherently sequential workflow. In con-
trast, Prim’s algorithm is more suited for parallelization but, it
either breaks down to operations with reduced parallelization

opportunities or ends up with overly complex parallel proce-
dures, which require heavy use of fine-grained synchroniza-
tion that substantially reduces the possible speedups [6], [9].
Borůvka’s algorithm, on the other hand, is naturally parallel,
thereby becoming the strongest candidate for parallelization.

Graphic Processing Units (GPUs) have been gripping in-
creasing attention due to their great potential for exploiting
parallelism in regular, data-parallel algorithms. For irregular
algorithms, such as those working on graphs, heavy hand-tuned
code is necessary to attain good performance levels (e.g. [10]).
Although GPUs are not tailored for irregular applications,
they have been used, with satisfactory results, to implement
graph algorithms where an operator is applied on every vertex,
since the underlying execution model makes it intuitive to
map a vertex per thread. This pattern is present in Borůvka’s
algorithm, since an operator (searching for the lightest edge)
is applied to all the vertices in every iteration.

The contribution of this paper is two-fold. First, we present
a parallel and platform independent variant of Borůvka’s
algorithm that attains high performance and good scalability
on multi-core CPU-chips and GPUs, in isolation. Second, we
present a comprehensive comparison of the implementations
of MST-solvers described in [11], [7], [12] and with the
framework described in [13], wherein we include the imple-
mentations of our variant, which outperforms all the others.

Our proposal of an efficient parallel variant is based on
specific design and implementation decisions, such as data
representation (Compressed Sparse Row [CSR] format) and
primitive selection that can be applied to enhance the perfor-
mance of the algorithm, since data locality and data coalescing
are improved on CPUs and GPUs, respectively. In particular,
we introduce a new, very effective approach to perform a
contraction of the graph (merging vertices into super-vertices).
Our contraction process includes a very effective construction
of the newly contracted graph, directly in the CSR format,
since the elements of the new graph are known upfront.
Moreover, our variant is platform-independent, i.e., it can be
implemented on both CPU-chips and GPUs (and even on
distributed systems, which we do not cover in this paper)
without any modification. To this day, all implementations
of Borůvka’s algorithm required specialized treatment for the
underlying architecture.

The rest of the paper is organized as follows. Section
II introduces Borůvka’s algorithm. Section III compiles the
related work that directly pertains to our variant. Section IV



a b c

d

e

f g

4 8

12
9

7
5

3

6
1

2
13

11

(a) Initial graph.

a b c d e f g

Connected Components

a b c

d

e

f g

4 8

12
9

7
5

3

6
1

2
13

11

a b

d

e

f

c

g

(b) Borůvka iteration 1.
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(c) Borůvka iteration 2.
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Fig. 1: Borůvka’s algorithm.

presents our algorithmic variant. Section V shows how our im-
plementations compare to their counterparts shown in Section
III. Section VI discusses and generalizes those results. Section
VII concludes the paper and presents future lines of research.

II. Borůvka’S ALGORITHM

In the 1920s, Borůvka was asked to find the most economic
solution to construct an electrical power grid. The proposed
algorithm, described in [2], first initializes each vertex as
a connected component with a single element. A connected
component is a subset of the graph, where any two vertices are
connected to each other by a path, and no vertex is connected
to a vertex of another component. Afterwards, the algorithm
selects, for each component, the shortest edge that connects it
to another component. The components that were connected
by this selected edge are joined together, thus joining two
components into a new one. This process is repeated until all
the vertices are joined within the same, single component. The
union of the edges selected at each iteration form the MST. A
graphical description of the algorithm is shown in Figure 1.

Efficient implementations can be obtained using a disjoint-
set structure. A disjoint-set allows to keep track of different
elements (vertices) across non-overlapping subsets (connected
components). Alternatively, the end-point vertices of each
selected edge can be contracted into a single super-vertex,
explicitly removing all the edges that connect vertices inside
the same super-vertex. If multiple edges connect the same
super-vertices, only the lightest is kept. With this strategy,
edges that can never be part of the MST are quickly excluded.
However, the average edge degree of each super-vertex can
grow quickly if duplicated edges are not filtered out.

III. RELATED WORK

The state of the art of both sequential and parallel im-
plementations of MST-solvers is quite extensive and com-
prehensive literature compilations of the existent algorithms

can be found in [1], [14]. In this section, we overview the
literature that pertains directly to our work. Comparisons with
distributed memory implementations (such as from the Parallel
Boost Graph Library1) are out of the scope of this paper.

A. SMP systems and multi-core CPU-chips

The first parallel Borůvka implementation for shared mem-
ory Symmetric Multiprocessing (SMP) systems was presented
in [6]. The authors implemented a variant of Borůvka’s al-
gorithm that contracts the graph at each iteration. They also
presented a new data structure, the flexible adjacency list,
which, when compared to the adjacency list, is more suited
for graph contraction on the CPU. Furthermore, a new parallel
implementation is presented as a combination of Prim’s and
Borůvka’s algorithms. This algorithm grows multiple instances
of Prim’s algorithm from different starting vertices. When one
Prim instance encounters another, it restarts from a different
vertex. When all the vertices have been visited, the algorithm
performs one iteration of Borůvka’s and restarts with multiple
instances of Prim’s algorithm. A very conservative lock-free
mechanism is employed to handle possible conflicts, thus
incurring additional, excessive overhead. In contrast, our im-
plementation is composed of kernels that are either embarrass-
ingly parallel or implementable with minimal synchronization.

The same authors presented in [11] an algorithmic variant
of Borůvka’s algorithm that uses colors to denote super-
vertices, from here on referred to as Cong2005. There are
two implementations of this variant, one with platform-specific
assembly instructions, which we cannot use for comparisons
purposes, and one with pThread mutexes, whose performance
is shown in Section V. Our implementation both more generic
than Cong2005, since no machine-specific assembly instruc-
tions are used, and more efficient for every tested case.

The Galois framework, presented in [13], is a system that
automatically executes serial code on CPU-chips, in parallel.
This framework includes a set of benchmarks, one of which
being Borůvka’s algorithm. Executing any of the available
benchmarks involves the use of the underlying framework,
which is complex. As shown in Section V, our CPU implemen-
tation outperforms Galois both in sequential (with 1 thread)
and in parallel (from 2 to 40 threads) executions.

B. GPUs

The first parallel implementation of an MST-solver on
GPUs was described in [7], which we refer to as Harish2009.
Using CUDA, the authors implemented a parallel variant
of Borůvka’s algorithm. To distinguish super-vertices, colors
are used and cycles are explicitly removed. Speedups were
obtained in comparison to a CPU version presented in the
paper. Our GPU implementation is significantly faster than
Harish2009, achieving speedups between 2x and 26x, and our
CPU implementation outperforms this implementation with 4
threads or more, as shown in Section V.

Also published in 2009, [10] describes a GPU implemen-
tation of Borůvka that resorts to explicit graph contraction,
instead of colors, creating super-vertices at each iteration.
The authors reported speedups in comparison to Harish2009,

1http://www.boost.org/



using parallel primitives from CUDA Data Parallel Primitives
Library2. While this implementation outperforms Harish2009,
it has some limitations: it packs vertex ids and weights into
32 bits, reserving 22 to 24 bits (configurable, at compile time)
for vertex ids, and 8 to 10 for edge weights, which limits the
number of vertices and edge weights of input graphs. As a
result, the user has to change the weights of the edges on the
graph, both if the graph is large or has high edge weights.
Our implementation, on the other hand, does not depend on
such parameters. We do not include this implementation in our
comparative analysis, in Section V, as these restrictions limit
the comparisons against all the other implementations.

In 2011, two other implementations were published [15],
[9]. [15] focuses on the memory usage on the GPU, proposing
an algorithmic variant of Kruskal’s that splits the edges by
weight into partitions such that the maximum edge weight of
a given partition is less than or equal to the minimum edge
weight of any subsequent partition. The algorithm considers
lighter edges before the heavier ones by processing one par-
tition at a time, which results in a smaller memory footprint
on the GPU. Unfortunately, we did not have access to this
implementation. Moreover, their most efficient implementation
also employs a bit-packing mechanism similar to [10], as
such, it would not have been included in our comparison
benchmarks, for the same reason we described previously.

Another GPU implementation of a parallel variant of
Prim’s algorithm was presented in [9]. The two inner loops, i.e.
finding the minimum edge and updating the candidate set, were
parallelized with data-parallel primitives. The authors reported
limited speedups with respect to a CPU implementation pro-
vided by the Boost Graph Library (BGL1). However, we were
not able to obtain this implementation, and the most recent
version of BGL (1.56.0) did not seem to deliver the correct
results. The same algorithm was implemented on embedded
systems and FPGAs in 2013 [5], but comparisons with these
specialized devices are out of the scope of this paper.

In 2013, a similar implementation to Harish2009 was
presented [12], from here on referred to as Nasre2013. The
authors obtained no speedup in comparison with Galois.

C. Wrap up

While reviewing the literature, it stood out that there is
a clear trade-off between the effort put in implementing the
algorithms and the performance that is ultimately delivered. In
order to boost performance, several implementations introduce
parameters that somehow limit the usability of the application,
making them tailored to specific graph types (e.g. reserved bits
in [10], [15]). Up until the late 90s, the focus of optimization
of these algorithms had been on graph representation and
the usage of intermediate data structures such as heaps and
disjoint-sets. Afterwards, the focus shifted to parallelization
for SMP systems and, shortly after, to GPUs and multi-core
CPU-chips.

In this paper, we present a parallel variant of Borůvka’s al-
gorithm and efficient implementations of the proposed variant
for multi-core CPU-chips and GPUs. We show that our im-
plementations outperform the state of the art implementations

2http://cudpp.github.io/
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Fig. 2: CSR representation of the example graph in Figure1.

described in Cong2005, Harish2009, Galois and Nasre2013.
As a result, there is not, to the best of our knowledge, any
disclosed implementation that outperforms ours.

IV. A PARALLEL VARIANT OF Borůvka’S ALGORITHM

In this section, we present our variant of Borůvka’s al-
gorithm, addressing the key issues to a platform-independent
variant: the graph representation and contraction in the CSR
format.

A. Graph representation

The choice of the data structure for representing the graph
is very relevant for the performance of the implementation. The
most common representation in the literature is the adjacency
list and the adjacency matrix. [6] introduces an extension to the
adjacency list representation specifically for Borůvka’s graph
contraction algorithm: each index can point to multiple lists
of incident edges, making it much easier to merge vertice’s
edges. However, this representation is not suited for GPUs.

The CSR format is a compromise between adjacency list
and adjacency matrix. It is often seen in the literature as the
representation used in GPU implementations of graph algo-
rithms. In this format, the graph is represented by four arrays:

• destination - an array of size |E|, which maps each
edge to its destination;

• weight - an array of size |E|, which maps each edge
to its weight;

• first edge - an array of size |V |, which maps each
vertex to its first edge;

• outdegree - an array of size |V |, which maps each
vertex to the number of outgoing edges it has.

To represent undirected graphs, all edges are duplicated to
cover both directions. Figure 2 shows the CSR representation
of the example graph shown in Figure 1.

When the graph structure might change, the use of the
adjacency lists is more adequate, as CSR does not offer an easy
way to alter the graph structure. This comes at a performance
cost, since adjacency lists are usually implemented using
linked-lists, while CSR is a more cache friendly approach.
However, in Section IV-B, we show that our variant allows
each contracted graph to be built, from the ground up, in the
CSR format. This is possible because the numbers of vertices,
edges and neighbors for each vertex of the contracted graph
are known upfront. It is possible to derive outdegree from
first edge. However, the outdegree array is required to
build the graph in each contraction step.



Algorithm 1 Parallel Borůvka variant

Input: Undirected, connected and weighted graph G(V,E)
1: while number of vertices > 1 do
2: Find minimum edge per vertex
3: Remove mirrored edges
4: Initialize colors
5: while not converged do
6: Propagate colors
7: Create new vertex ids
8: Count new edges
9: Assign edge segments to new vertices

10: Insert new edges

ab ba cg de ef fe gc

a b c d e f gvertex
vertex_minedge

(a) Find minimum edge per vertex.

− ba − de − fe gc

a b c d e f gvertex
vertex_minedge

(b) Remove mirrored edges.
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(f) Inserting edges and contracted graph.

Fig. 3: Progress of the algorithm after applying each kernel on
the initial state of the example graph.

B. Algorithmic variant

Our algorithmic variant comprises a series of simple ker-
nels, as shown in Algorithm 13. All kernels, with exception of
the two kernels that can be implemented with an exclusive
prefix sum, are applied to each vertex as an operator, and
each vertex can be processed independently of all others,
only requiring a barrier synchronization between kernels. This
sequence of kernels is repeated until one super-vertex remains:

3Assume w.l.o.g. that the graph is connected.

1) Find minimum edge per vertex: the algorithm starts off
by selecting the minimum weight edge for each vertex. When
the vertex has multiple edges with the same minimum weight,
the edge with the smallest destination vertex id is selected. The
selected edge id is stored in an array called vertex_minedge.
Figure 3a shows the selected edges for each vertex of the
example graph in the initial state (Figure 1a).

We do not resort to a segmented parallel reduction for
this, as we would not be able to directly select the edge with
the smallest destination vertex id, and additional computation
would be required to remove cycles. Instead, only mirrored
edges need to be removed.

2) Remove mirrored edges: mirrored edges are removed if
the successor of a vertex successor is the vertex itself. When
a mirrored edge is found, the edge is removed once from the
vertex_minedge array, maintaining the edge by its endpoint
with the largest vertex id. For instance, in Figure 3b, one of
the mirrored edges is the pair eg and ge, since g > e, the
edge eg, selected by vertex e, is removed while the edge ge,
selected by vertex g, is maintained. The edges that remain in
the vertex_minedge array are marked to be part of the MST.

3) Initialize and propagate colors: in order to contract
the graph, connected components must be identified. Each
connected component will be a super-vertex in the contracted
graph. To this end, each vertex is initialized with the same
color as their successor’s id. If a vertex has no successor,
because the edge has been removed in step 2), its successor is
set to himself. The successors are then propagated by setting
the successor of a vertex to its successor’s successor. This
process is repeated until it converges. Consider the newly
created component by the vertices d, e and f , in Figure 3c:
e sets its successor to himself since it has no selected edge,
while d and f selected the edges de and fe, respectively, set
their successor both to e. In this particular case, no propagation
takes place as the successors converge immediately.

Steps 4) and 5) compose the core of our algorithmic variant,
showing our approach to build the newly contracted graph in
a very effective manner.

4) Create new vertex ids: after converging, any vertex
successor that is the vertex itself will be the representative
vertex for its component and is marked with 1 in a flag array.
All other vertices are marked with 0. An exclusive prefix sum
is then computed on the flag array, assigning new vertex ids
for the contracted graph. In Figure 3d, a, c and e are the
representative vertices. After computing the prefix sum, these
vertices are assigned the new vertex ids 0, 1 and 2, respectively.

By using a prefix sum we ensure that the new vertex ids
are in order with respect to the old vertex ids, i.e., the smallest
vertex id in the old graph will be part of the component
whose representative is assigned the smallest new vertex id.
Furthermore, this maintains any proximity between a vertex id
and the id of its neighbors, all of which improve locality.

5) Count, assign, and insert new edges: to build edge
arrays for the contracted graph, it is first necessary to identify
how many edges each super-vertex will have, in order to assign
new edge ids to the super-vertices. This is achieved using a
simple kernel that counts the number of edges that cross the
component for each vertex, and adds it to outdegree array



CPU GPU

#Devices 2 1
Manufacturer Intel NVIDIA

Model E5-2670 v2 K20m
Launch date Q3’13 Q1’13
µArch Ivy Bridge Kepler
#Cores 10 2496

Clock frequency 2500 MHz 706 MHz
L1 Cache 32 KB IC + 32 KB DC 16/32/48 KB/SM
L2 Cache shared 256 KB/core 1.25 MB
L3 Cache shared 25 MB/chip n/a
Memory 64 GB 5 GB

TABLE I: System characteristics.

of its corresponding super-vertex. Since multiple vertices may
belong to the same super-vertex, an atomic function for the
operations on the outdegree array has to be used.

We then compute an exclusive prefix sum on the
outdegree array, assigning segments of edge ids to each
super-vertex. The prefix sum ensures that the segments of the
edge ids are assigned with accordance to the super-vertex id,
i.e., the smallest edge ids are assigned to the smallest super-
vertex id. This creates the new first edge array.

Once the edge ids are assigned to the super-vertices, all
edges that cross components are added to the contracted graph.
We first make a copy of the first edge array, which is
going to be used to keep track of the current position to
insert the new edge, since multiple vertices can belong to the
same super-vertex. When a thread wants to add a new edge,
it performs an atomic increment on this array, on the position
of the super-vertex id. The old value, that is returned by the
atomic function, is used as the id for the edge that is added.
We discard intra-component edges by comparing the colors of
the two end-points of each edge. However, we do not remove
duplicate edges between pairs of super-vertices, as the benefit
of doing this does not outweigh the incurred computational
cost. Figure 3e shows the number of neighbors for each super-
vertex. E.g. a(0) has four: ad, ae, be and bc. Even though the
first three connect the same super-vertices, they are still added.

Figure 3f shows the newly contracted graph, at the end of
the iteration. The graph is built with low overhead, but with all
the benefits of being able to use an array based data structure
in the whole algorithm.

V. RESULTS

All tests were carried out on a dual-socket NUMA system,
specified in Table I. The CPU codes were compiled with
g++ 4.8.2, and GPU code with nvcc 5.5, both with -O3
flag. We performed a series of empirical benchmarks of
our implementations, against Cong2005, Harish2009, Galois
and Nasre2013. The execution times reported for the GPU
implementations include the time to transfer the input graph to
device memory (the time to transfer the MST back to the host
is not included, since it is negligible). To improve the accuracy
of our measurements, we used the k-best measurement scheme
with 5 measurements, k = 3 and a 5% tolerance, i.e., 5 tests
are performed and the 3 best results, that are within the 5%
tolerance of one another, are selected. The best of the 3 is then
used in our results.

No. Name Description #nodes #edges

1 NY New York City 264.346 733.846
2 BAY San Francisco Bay Area 321.270 800.172
3 COL Colorado 435.666 1.057.066
4 FLA Florida 1.070.376 2.712.798
5 NW Northwest USA 1.207.945 2.840.208
6 NE Northeast USA 1.524.453 3.897.636
7 CAL California and Nevada 1.890.815 4.657.742
8 LKS Great Lakes 2.758.119 6.885.658
9 E Eastern USA 3.598.623 8.778.114
10 W Western USA 6.262.104 15.248.146
11 PT Full Portugal 9.196.206 20.127.796
12 CTR Central USA 14.081.816 34.292.496
13 USA Full USA 23.947.347 58.333.344

TABLE II: Road-network graphs used in benchmarks.

In our implementations, we follow a topological approach,
having each thread operate on one vertex, for the GPU, and a
set of vertices for each thread (one at a time), on the CPU. The
GPU blocks are configured to use 1024 threads, organized in
a single dimension, and enough blocks are configured to cover
all the vertices of the graph. We resort to ModernGPU4 1.1
(MGPU) for the parallel primitives. Furthermore, we extended
our implementation with the usage of texture memory for a
small performance boost, wherein we store the four arrays
that represent the graph at a given iteration. The new graph
that is being contracted on each iteration remains stored in
global memory. For our CPU implementation, we resorted to
OpenMP, assigning chunks of vertices to each thread. For the
use of parallel primitives, we resorted to Intel TBB 4.2, since
OpenMP does not have have an exclusive prefix sum primitive.

As for test graphs, we used the USA road-network graphs
from the 9th DIMACS challenge5, and the OpenStreetMap’s6

Portuguese road-network, provided by Geofabrik7, as de-
scribed in Table II.

Figure 4 shows the execution time of all the selected GPU
and CPU implementations (with 1 and 10 threads) for the
set of input graphs. For Cong2005, we were only able to
compute the graphs 1 to 6, since executions for the remaining
graphs did not terminate in a timely manner, apparently due
to a live-lock in the color propagation procedure. As shown in
the figure, our CPU implementation outperforms both single-
threaded Cong2005 and Galois for all input graphs, running
with a single thread. Both our CPU implementation, with
10 threads, and our GPU implementation, outperform all
the other implementations. The CPU implementation attains
speedups of between 1.35x and 12.71x, with respect to the
fastest of the implementations under comparison, and the
slowest, respectively, among all the used graphs. The GPU
implementation attains speedups from 1.34x to 26.43x. Our
results back up the superiority of our implementations, which
is a direct consequence of the suitability of our algorithmic
variant for parallel architectures.

Figure 5 shows the scalability of the CPU implementations
for three particular representative input graphs (NE, PT and
USA), and compares them with GPU implementations. Fig-
ure 5a shows the results for the NE graph, the largest graph

4http://www.moderngpu.com
5http://www.dis.uniroma1.it/ challenge9/
6http://www.openstreetmap.org/
7http://download.geofabrik.de/europe/portugal.html
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Fig. 5: Scalability for 3 road-network graphs.
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for which we were able to execute all implementations and
combinations of threads. Figure 5b shows the results for the
PT graph, wherein Harish2009 performs particularly bad, and
worse than CPU implementations running with a single thread.
For this particular case, we profiled each kernel in Harish2009
and concluded that the color propagation is inefficient on this
particular graph. We believe that this is due to the structure
of the PT graph, since the number of neighbors of each graph
vertex varies considerably. Figure 5c shows the results for the
largest graph in our data set. In all cases, the CPU versions
outperform Harish2009 and Nasre2013 GPU implementations
with relatively few threads. Another remark has to be made for
Cong2005, whose execution time was very inconsistent. This is
can be attributed to the non-determinism of the implementation
and the use of mutex locks. Nevertheless, it showed to be
competitive, when computing the MST of the NE graph.

Table III summarizes the speedup and efficiency attained
by our CPU and GPU implementations, with respect to our
CPU implementation running with a single thread for the
same representative input graphs (NE, PT and USA). The
CPU implementation does not scale for the NE graph, since
the graph does not entail enough work for all the spawned
threads. For the largest graph, USA, linear and almost linear
speedups are achieved for up to 8 threads. There is neither
benefit in using the second CPU-chip nor hyper-threading,
which we attribute to load imbalance. The load imbalance in
our application is originated by the scheduling at the vertex
level, instead of scheduling at the edge level. This might lead
to load imbalance since vertices with more edges take longer
to be processed, even if the number of vertexes assigned to
each thread is balanced. We used guided scheduling in our
application, which only corrects this problem partially.

We took a deeper look at this problem. Figure 6a shows
the average percentage of load imbalance, in terms of edges
processed per thread, for each iteration of the kernel described
in IV-B1, for different numbers of threads (2-40), when
executing on the USA graph. Although we show all the 11
iterations of the algorithm, it should be noted that the first 7 are
considerably more relevant than the others, since they represent
a much larger chunk of the total execution time (>80%).
We also plotted a threshold line at 5%, which we consider
the threshold for significant impact from load imbalance on
performance. As shown in the figure, the average imbalance
increases with the number of threads, thereby hurting scala-
bility. Although scheduling at the edge level would help to
mitigate load imbalance, it would substantially increase the
complexity of our algorithmic variant. In particular, we would
need to resort to a large amount of synchronization and atomic
operations, or a primitive for segmented reductions, whose
possible implementations are very inefficient, together with a
kernel to remove cycles.

We investigated further ways of improving the scalability
of our CPU implementation. In particular, we experimented
several combinations of thread affinity setups, even though
none has shown to perform better than the others. In fact, we
believe that there is no optimal thread affinity setup because
the edges that are read by one of the threads, are never read
by all the others.

Input Graph
NE PT USA

Threads S E S E S E
2 1.47x 74% 1.73x 86% 1.80x 90%
4 2.67x 67% 3.18x 79% 3.47x 87%
6 3.56x 59% 4.42x 74% 4.67x 78%
8 4.28x 54% 5.51x 69% 6.06x 76%
10 4.88x 49% 6.40x 64% 7.01x 70%
20 5.56x 28% 8.75x 44% 9.79x 49%
40 2.13x 5% 6.56x 16% 10.26x 26%

GPU 7.32x 16.21x 15.85x

TABLE III: Speedup (S) and Efficiency (E) for 3 graphs with
respect to our CPU implementation with a single thread.

Using PAPI [16], we measured the L3 cache miss rate8

for each iteration of the main loop described in Algorithm 1,
for different numbers of threads (1-40) on the USA graph. As
shown in Figure 6b, for the single-threaded execution, the L3
cache miss rate starts to drop drastically at iteration number
4, and remains very low after iteration 7, where very few
RAM accesses have to be made. The algorithm works on two
different graphs (the current graph, and the new contracted
graph that is built and used in the next iteration) at every
iteration. This shows that one of these graphs fits in L3 cache
at iteration number 6, and both graphs fit in L3 cache after
iteration number 7. However, this behavior is not seen when
running with multiple threads, which is an evidence of cache
trashing, something that limits both the performance and the
scalability of the application. We believe that this is something
very difficult to avoid, since it has much more to do with
the algorithm than the implementations. Surprisingly, it also
happens that, in some cases, the miss rate is lower with larger
number of threads (e.g. 2 threads vs 40 threads). This is
connected to the load imbalance that originates during the
execution of the application: cache contention is reduced, as
many threads terminate before others.

VI. DISCUSSION

Current implementations of MST-solvers have some draw-
backs: they are too complex, address a limited set of input
graphs (as seen in the early sections), or when generic, are
considerably less efficient than the average efficient implemen-
tation (e.g. Harish2009, Nasre2013). In our comparisons, we
also showed that GPU implementations of Borůvka’s algorithm
are usually more efficient than CPU implementations, and that
the implementations we propose outperform all other tested
implementations, using the same algorithm for both multi-core
CPU and CUDA implementations.

A. Use of primitives

Another important angle of discussion, regarding imple-
mentations of MST-solvers, is that some are described as a
stack of parallel primitives (e.g. [10]). However, the use of
many parallel primitives is a problem, due to two different
aspects. First, they add complexity to the code, also because
layout conversion procedures are necessary to pile primitives
up, in a single workflow. Second, they limit portability, since
many GPU parallel primitives are either unavailable or ineffi-
cient on other platforms. The solution for this is to present an

8We used the PAPI_L2_TCM and PAPI_L3_TCM counters.



abstract algorithmic variant that can be efficiently implemented
on different platforms, possibly using primitives but without
the need to resort to them, as we do in this paper.

In our variant, the two kernels that resort to a parallel
prefix sum (create new vertex ids and assign edge segments to
new vertices), were previously implemented as a simple kernel
using atomics. The relative elapsed time of these kernels was
negligible but we noticed that our implementations of these
kernels were impairing data locality and causing uncoalesced
global memory accesses on the CPU and GPU, respectively.
When replaced with parallel primitives, the speedup of these
kernels was negligible, but major speedups were attained for
all other kernels.

B. Topology- vs data-driven

Two different approaches are normally followed to im-
plement operator based algorithms (such as Borůvka’s): a
topology-driven approach (all nodes are active) or a data-driven
approach (some nodes are active, kept in a work-list) [17].
With Borůvka’s coloring approach, vertices that do not have
edges crossing super-vertices will be inactive in a data-driven
approach, a problem that increases with the density of the
graph. A topology-driven approach on multi-core CPU-chips
may lead to load imbalance for sparse graphs, while on GPUs
may result in inefficient use of SMs. Although this approach
configures the GPU kernel with enough blocks to cover all
graph vertices, as the algorithm progresses each block will
have less work. On the other hand, a topology-driven approach,
with Borůvka’s graph contraction, leads to a more efficient
implementation, since graph contraction keeps all nodes active
at each iteration, and explicitly reduces the graph size, thereby
reducing the memory footprint and improving spatial locality.

C. Analysis of conducted benchmarks

Our benchmarks also enable us to draw a number of con-
clusions. For starters, some implementations behaved differ-
ently from expected in a couple, particular cases. For instance,
Harish2009 performed worse on a graph with a broad spectrum
of vertex degrees. Also, the performance of Cong2005 was
very irregular, even when considering the same input graph
computed multiple times.

Regarding the scalability of CPU implementations of
Borůvka’s algorithms, our implementation, Cong2005 and Ga-
lois scaled poorly after 8 or 10 threads on our benchmarking
machine, or with small graphs (under 2 million vertices). As
we showed in Section V, scalability is hurt by load imbalance,
a problem that is not easy to fix, and cache misses, that are
due to the irregular memory access pattern of the algorithm,
as it is usually the case in graph algorithms.

VII. CONCLUSION AND OUTLOOK

This paper presents (i) a parallel algorithmic variant of
Borůvka’s algorithm and its assessment on multi-core CPU-
chips and GPUs (implementations are publicly available 9) and
(ii) a first-hand comprehensive empirical comparison of several
disclosed state of the art CPU and GPU implementations
of MST-solvers. The benchmarks that we carried out, with

9https://github.com/beatgodes/BoruvkaUMinho

public domain graphs, showed that our CPU implementation
outperformed all disclosed parallel CPU implementations, and
our GPU implementation outperformed all disclosed MST-
solver implementations.

The literature review showed that implementations of MST-
solvers are limited in the number and type of graphs that
they can work on, and generic implementations are usually
inefficient. We fill this gap by presenting implementations that
are not only very efficient, as they can also solve every type
of graph without the need to adjust parameters.

In the future, we will merge our applications into an hetero-
geneous CPU+GPU implementation. We also plan to extend
our approach to dense graphs, and modify our implementation,
if needed, in order to maintain high performance levels.
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