
Distributed Differentially Private Stochastic Gradient

Descent: An Empirical Study

István Hegedűs and Márk Jelasity

University of Szeged, MTA-SZTE Research Group on AI, Szeged, Hungary

Email: {ihegedus,jelasity}@inf.u-szeged.hu

Abstract—In fault-prone large-scale distributed environments
stochastic gradient descent (SGD) is a popular approach to
implement machine learning algorithms. Data privacy is a key
concern in such environments, which is often addressed within
the framework of differential privacy. The output quality of
differentially private SGD implementations as a function of
design choices has not yet been thoroughly evaluated. In this
study, we examine this problem experimentally. We assume that
every data record is stored by an independent node, which is a
typical setup in networks of mobile devices or Internet of things
(IoT) applications. In this model we identify a set of possible
distributed differentially private SGD implementations. In these
implementations all the sensitive computations are strictly local,
and any public information is protected by differentially private
mechanisms. This means that personal information can leak
only if the corresponding node is directly compromised. We
then perform a set of experiments to evaluate these implementa-
tions over several machine learning problems with both logistic
regression and support vector machine (SVM) loss functions.
Depending on the parameter setting and the choice of the
algorithm, the performance of the noise-free algorithm can be
closely approximated by differentially private variants.

Keywords—distributed differential privacy, stochastic gradient
descent, machine learning

I. INTRODUCTION

In the era of smart appliances and the Internet of Things,
distributed data processing and data mining are gradually
becoming evermore important. One reason is that distributed
computing allows better scalability compared to cloud-based
solutions by exploiting local resources and networks, as pro-
posed e.g. by Cisco in its ongoing fog computing initiative [1].
Another reason is the increasing need for privacy as the
personal data collected and stored by ubiquitous personal
computing devices such as smart meters, sensors, or mobile
devices, is becoming richer and richer.

Here, we are concerned with the scenario in which each
networked device stores only a small amount of data (typically
collected locally), while there are many participating devices in
the network. This model covers a wide range of applications in-
cluding smart metering [2], collaborative mobile platforms [3]
and Internet of Things platforms [4].

We focus on stochastic gradient descent (SGD) as our
learning algorithm of choice. SGD visits all data records in

In: Proc. PDP 2016, pp 566–573, http://dx.doi.org/10.1109/PDP.2016.19. c©
2016 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

a random order and updates a model approximation based
on each record using the local gradient at that record. In
general, SGD is a preferable method in large scale data
mining [5] due to its scalability and simplicity. In our edge
computing scenario the simplicity of SGD is a very important
advantage: all the sensitive computations can be made strictly
local to network nodes, as we will show later. In addition, no
aggregation, synchronization, or central collection of data is
necessary. While it is possible to achieve significant speedup
using a number of techniques that require such aggregation
and synchronization operators [6], in this paper we focus on
“vanilla” SGD that—as we will show—serves as a worst case
in terms of the level of accuracy that can be achieved using a
given amount of information leakage. The practicality of SGD
in the system model above (without privacy preservation) was
demonstrated earlier [7].

The problem we tackle is to provide a practical evaluation
of the quality (prediction accuracy) of SGD as a function of
several important design choices we identify. We work within
the framework of differential privacy [8], where information
leakage can be explicitly bounded by adding appropriately
engineered noise to the output. Without differentially pri-
vate mechanisms, even if all the computations are performed
securely, the privacy of data is still not guaranteed as the
output of any secure computation might leak information about
individual data records indirectly.

The differential privacy of model fitting via optimization,
and in particular SGD was investigated earlier in a number
of publications. Generic frameworks, such as PINQ [9] and
GUPT [10], have been proposed that do not readily lend
themselves to secure distributed implementations. Chaudhuri
et al. propose a method based on adding noise to the end
result only, or perturbing the objective function itself [11],
[12]. This approach does not allow for an obvious secure
distributed implementation either. The method that we build on
was proposed by Song et al. [13]. There, instead of perturbing
the objective function, each update during the iterative gradient
descent procedure is made differentially private. This allows
for fully local gradient updates where the resulting gradient
and the updated model can be made public. This prevents any
uncontrolled data leakage as long as the personal computing
device is not compromised.

Our contribution is a thorough assessment of the practical-
ity of differentially private SGD in fully distributed environ-
ments where each node has one data record only. In particular,

1) we propose several variants of possible differentially
private SGD implementations and

2) we evaluate these algorithms over several databases
and parameter settings using the loss functions of lo-
gistic regression and support vector machines (SVM).

II. BACKGROUND

A. Stochastic Gradient Descent

The problem of classification is an important part of ma-
chine learning. Given a data set D = {(x1, y1), . . . , (xn, yn)}
of n observations, where an object or an example is represented
by a pair of a feature vector x ∈ Rd and the corresponding
class label y ∈ C, where d is the dimension of the problem
and C is the domain of class labels. In the case of binary
classification the number of possible class labels is two (e.g.
C = {0, 1}). The problem of classification is often expressed
as finding the parameters w of a function fw : Rd → C that
can correctly classify as many examples in D as possible, as
well as outside D (this latter property is called generalization).
In other words, we are looking for a

w = argmin
w

J(w) =
1

n

n∑

i=1

ℓ(fw(xi), yi) +
λ

2
‖w‖2, (1)

where the ℓ() is a loss function and (λ/2)‖w‖2 is the regular-
ization term with parameter λ. Function fw is called the model
of the data set. The regularization term helps the model to
avoid overfitting the data set, thus helping generalization. The
labeled data set is often split into two non-overlapping subsets:
a training set for optimizing the parameters w of the model,
and a test set for measuring the generalization performance of
the optimized model.

Gradient descent (GD) is an iterative method that can
find the optimum of a convex function. It is often used for
optimizing the above objective function. The parameter vector
w is iteratively updated using the derivative of the objective
function that is computed on the whole training set

wt+1 = wt − ηt(
∂J

∂w
)

= wt − ηt(λw +
1

n

n∑

i=1

∇ℓ(fw(xi), yi)),
(2)

where ηt is the learning rate at time t that scales the size of
the gradient step.

Stochastic gradient descent (SGD) is similar, only it visits
each example one-by-one instead of working with the entire
database. It computes the gradient based on only one training
sample in an iteration instead of the whole training set. For
index i the update rule becomes

wt+1 = wt − ηt(λw +∇ℓ(fw(xi), yi)). (3)

SGD is more preferable on very large training sets, or
in distributed applications. It has two restrictions regarding
the learning rate, namely we have to have

∑
t η

2
t < ∞

and
∑

t ηt = ∞. These are necessary conditions for conver-
gence [6].

The two suitable and widely used optimization algorithms
we focus on are Logistic Regression [14] and the linear Pegasos
SVM [15]. Both have an associated loss function that we
can use along with SGD to train the corresponding model.

Algorithm 1 Gossip Learning Framework

1: (x, y)← local training example
2: currentModel ← initModel()
3: loop
4: wait(∆)
5: p← selectPeer()
6: send currentModel to p
7: end loop

8: procedure ONRECEIVEMODEL(m)
9: m.updateModel(x, y)

10: currentModel ← m
11: end procedure

In the case of logistic regression the optimization problem is
expressed as a maximization problem, since it is more natural
to think of it as maximizing the logarithm of the likelihood

w = argmax
w

1

n

n∑

i=1

lnP (yi|xi, w)−
λ

2
‖w‖2, (4)

where yi ∈ {0, 1}, P (0|xi, w) = (1 + exp(wTx))−1 and
P (1|xi, w) = 1− P (0|xi, w).

Pegasos SVM is a linear SVM solver method, which looks
for the hyperplane that maximizes the margin between the
instances of different classes

w = argmin
w

1

n

n∑

i=1

max(0, 1− yiw
Txi) +

λ

2
‖w‖2, (5)

where we now have yi ∈ {−1, 1}.

Although we have only discussed binary classification,
we will experiment with the more general multi-class algo-
rithms, where we have instances from K different classes
(C = {0, 1, . . . ,K − 1}). A popular approach is to learn K
distinct binary classifiers [16], one for each class. In particular,
for the SVM approach we optimize K hyperplanes at the
same time [17]. Similarly, when using logistic regression
the objective function can be readily generalized to multiple
classes [16].

B. Distributed Machine Learning

In our system model we are given a network of a large
number of computational units (e.g. PCs, smart phones, tablets,
wearable units, or smart meters). The members of this network
can communicate with each other by message passing. A
node in this network can send a message to another node
whose address is known locally. We assume that every node
in this network has only one training example (but we can
benefit from having more local data). The set of these isolated
examples form our machine learning database. We would like
to learn a model over these instances in a fully distributed
manner while also preserving privacy.

The Gossip Learning Framework [7] is a possible way to
learn models in this fully distributed environment. The basic
idea is that in the network many models perform random walks
and are updated at every node using the local example. In
more detail, every node executes Algorithm 1. A node in the
network first initializes a local model, then iteratively sends

its local model to a randomly selected node in the network.
The address of the randomly selected node is provided by a
peer sampling service (e.g. the NewsCast [18] protocol). When
a node receives a model, it updates it by its locally stored
training example using the SGD update rule, and then stores
the updated model as its local model. Using this protocol the
models stored by the nodes will converge to the same global
optimum.

Our study is inspired by gossip learning in the sense that
we focus on SGD algorithms that are implemented through
a random walk of the evolving model over the network. We
will assume that this random walk itself is secure. Ideas for
achieving secure random walks were outlined, for example,
in [19]. Here, we focus on privacy. In order to achieve privacy,
we will apply a differentially private variant of the local update
step, as explained below.

C. Differentially Private SGD

Differential privacy [8] is concerned with the leakage of
personal information due to publishing the results of a given
query over a database. Even if performed securely, the result
of a query can leak information about individual records, for
example, the maximum of a set of values is an individual
record in itself. Differential privacy is achieved if noise is
added to the query result in such a way that the following
definition is satisfied.

Definition 1 (Differential Privacy): A randomized query
F : D 7→ R

d is ǫ-differentially private iff

∀x : e−ǫ ≤
P (F (D) = x)

P (F (D′) = x)
≤ eǫ (6)

for all pairs of databases D and D′ that differ in at most one
record, where D is the set of possible databases.

That is, if we change one element in the database, the same
output should be expected with a probability close to that over
the original database. This way, one record never “matters too
much” thereby limiting the information leakage as a result of
the query.

A randomized query typically means adding noise to an
otherwise deterministic query. This added noise is designed
specifically for a given query and parameter ǫ such that
the definition of ǫ−differential privacy is satisfied. In more
detail, to generate the additive noise we need to pick a noise
distribution and the right distribution parameters. A common
approach to take is to first determine the so-called sensitivity
of the query [8], [20]:

Definition 2 (Global Sensitivity): The global L1-
sensitivity ZF of F is given by

ZF = max
D,D′ differ in one record

‖F (D)− F (D′)‖1, (7)

where ‖ · ‖1 is the L1 norm.

The definition can be generalized by replacing the L1 norm
with a different norm. The usual norms to apply are the L1

norm and the L2 norm. In the case of applying the L1 norm,
the following noise distribution can be used: we need to add
to all the dimensions of the output independent noise drawn
from Laplace(0, Z/ǫ) (where Z is the global sensitivity of the

query), which will result in ǫ−differential privacy. For the L2

norm, the noise vector should have a uniform random direction
and a length drawn at random from Laplace(0, Z/ǫ). Based on
the theoretical results described in [20], noise can be generated
for any other norms.

Now, for one SGD update (as defined in Equation (3))
the private query we need to compute is the gradient
∇ℓ(fw(xi), yi). If we can guarantee that this gradient is
bounded, the sensitivity is given directly. We can then add
the appropriate noise Nt to the gradient and perform the
differentially private local update

wt+1 = wt − ηt(λwt +∇ℓ(fw(xi), yi) +Nt). (8)

We are then free to publish wt+1 and send it to the next node.

For running SGD we need multiple queries, because we
need the gradients based on many learning examples multiple
times. Having seen how one can protect a single update,
let us mention two useful concepts from differential privacy:
sequential and parallel composition of queries [21].

In a sequential composition we are given a series of queries
Fi, i = 1, . . . , k. It can be proven that if all of these queries
are ǫ-differentially private then the entire sequence of these k
queries will be k ·ǫ-differentially private. Note that the queries
can depend on the results of the previous queries.

However, in the special case where the k queries are
executed over pairwise disjoint subsets Di, i = 1, . . . , k, a
case we call parallel composition, then the entire sequence of
queries will remain ǫ-differentially private. Most importantly,
in the case of SGD we have parallel composition, since updates
are typically performed on a disjoint subset, in our case on a
single record. Of course the same record can be visited many
times, and these updates will compose sequentially.

In general, we can think of each example having a privacy
budget of ǫ, which is spent when the given example is visited
but which is not affected otherwise. This way, when each
example has spent its privacy budget of ǫ, the entire SGD
algorithm over the entire database spent only ǫ as well due to
parallel composition.

III. ALGORITHM AND ANALYSIS

Based on the previous discussion, from now on we focus
on SGD, assuming that there is a distributed implementation
based on a random walk over the network. To implement
such a random walk one needs to rely on several middleware
services such as peer sampling, as discussed in Section II. Here
we treat random walk as an abstract service and will study
experimentally a number of variants. Our only assumption
about the implementation of the service is that the random
walk itself is secure and it can potentially jump to any node in
the network despite any technical hurdles such as NAT boxes.

The network nodes hold one training example (x, y) and
they calculate the local gradient for a given model w and time
t locally, and they also add the appropriate noise term Nt to
achieve differential privacy according to Equation (8). They
are free to publish the resulting wt+1 and to send it to the
next node. The parameter ǫ of differential privacy is a globally
known constant.

A. Privacy Budget

Parameter ǫ is often called the privacy budget, because
owning to the different compositional properties of series
of queries one can, for example, decide to run one query
with parameter ǫ or two sequentially composing queries with
parameter ǫ/2, or several parallel queries with parameter ǫ. All
of these options result in an overall ǫ-differential privacy. Now,
let us elaborate on the management of the privacy budget for
SGD.

As mentioned in Section II, every training example (i.e.,
every node) in effect has its own ǫ budget for the updates.
This budget can be used in a number of different ways. One
can, for instance, set a finite number of k allowed updates and
use ǫ/k for each one. This means multiplying the magnitude
of the noise term by k for each update. In the experimental
evaluation we study this parameter looking at the cases of
k = 1 and k = 5. We can also follow a different approach
and divide ǫ into an infinite number of parts by using ǫ/2t for
update t. This way noise increases exponentially, but we can
execute as many updates as we wish using the same example.
Note, however, that SGD will not converge in this case due to
the exponentially increasing noise, so this approach is practical
only for a small finite number of rounds.

The above implies a deeper result: it is not possible to run
SGD until convergence with differential privacy because we
either compute only a finite number of updates (and SGD needs
an unlimited number of updates for theoretical convergence)
or the signal-to-noise ratio will tend to zero in the update rule,
which also prevents convergence. So the best we can achieve in
theory is an approximation based on a relatively small number
of updates per sample. For a large number of samples, however,
this may be sufficient as our experiments will demonstrate.

Let us point out a major difference between our differ-
entially private SGD implementation and gossip learning. In
our SGD implementation there is only one random walk in the
entire network, while in gossip learning there are many parallel
walks. However, if there are many walks in parallel, they
all “burn” the privacy budget so each walk will be assigned
a smaller number of updates inversely proportional to the
number of walks. It is therefore essential to run only one walk.
However, the state of the walk is public, so it is possible to
continuously broadcast the latest model wt in the network if
needed. The broadcast can be implemented in a distributed
way (e.g. via gossip), or via publishing the latest update on
a server. With public key cryptography the broadcast can be
implemented securely as well.

As a last point connected to using the budget, let us
consider the exact method of peer sampling used by our
random walk. If we use uniform sampling with replacement
then the walk will take useless steps when it visits a training
example that has no more budget left. To be precise, the
probability that a node is not visited at all during the first
n updates in a network of size n is exp(−1) according to the
Poisson distribution, which is a considerably large probability.
Depending on the budget management option, this results in
wasted bandwidth and time. This shows that the ideal random
walk should use sampling without replacement, that is, it
should follow a permutation of the network, and when all
nodes have been visited, it should start a new permutation

until the privacy budget has been spent.

B. Sensitivity Analysis

In our study, we focus on logistic regression and Pegasos
SVM with gradients in Equations (9) and (10), respectively.

∂J

∂w
= x(y−P (1|x,w)) = x(y−

ew
Tx

1 + ewT x
) y ∈ {0, 1} (9)

∂J

∂w
= δ(ywTx < 1)yx, y ∈ {−1, 1} (10)

In both cases the gradient is a linear function of x and
its length is not larger than that of x. This immediately gives
us the sensitivity of 2 · maxx ‖x‖. It is more convenient to
normalize the training examples so that maxx ‖x‖ = 1, in
which case the sensitivity is 2. From now on, without loss of
generality, we assume the examples are normalized this way. It
is possible to achieve maxx ‖x‖ = 1 through several different
normalization methods. We will discuss these in the description
of our experiments. Note that we need to protect only the
gradient since the update rule in Equation 8 can be computed
using public information as long as (∇ℓ(fw(xi), yi) +Nt) is
known.

C. Notes on Privacy and Security

It is very important to stress that any uncorrupted node is
protected by this scheme regardless of fabricated input or the
security of the random walk in general. In other words, even
if the random walk is compromised and a given uncorrupted
node gets arbitrary input and gets queried an arbitrary number
of times, the node will be protected by ǫ-differential privacy.

Here, we focus on privacy only. Based on the comment
above, this is indeed an independent problem as we can
guarantee the privacy of uncompromised nodes regardless of
the security of any other components of the implementation.
Nevertheless, security is still necessary in a complete system as
without it the global output can be corrupted and vandalized.
In particular, the random walk needs to be secure to maintain
an unbiased sampling of the learning examples. In addition,
an adequate protection is needed against vandalism, when
adversaries or faulty nodes inject arbitrary information into the
system. However, again, the privacy of local data is completely
in the hands of the local node, independently of the outside
world.

IV. EXPERIMENTS

Here, we present the experimental evaluation of our private
gradient methods on realistic, real-life machine learning data
sets. The goals of these experiments are twofold. First, we
demonstrate the practical applicability of differential privacy
in general under the system assumptions we presented earlier.
This includes the speed of convergence and the quality of
the end result. Second, we wish to explore several design
options and offer practical advice on how to parameterize the
differentially private mechanism we propose.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000

A
cc

u
ra

cy

SGD Updates

LogReg on MNIST database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000

A
cc

u
ra

cy

SGD Updates

LogReg on Segmentaion database

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
cc

u
ra

cy

SGD Updates

LogReg on Spambase database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000

A
cc

u
ra

cy

SGD Updates

SVM on MNIST database

SGD
DP-SGD L2 lc. wor
DP-SGD L2 lc. wr
DP-SGD L2 gl. wor
DP-SGD L2 gl. wr
DP-SGD L1 lc. wor
DP-SGD L1 lc. wr
DP-SGD L1 gl. wor
DP-SGD L1 gl. wr

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5000 10000 15000 20000

A
cc

u
ra

cy

SGD Updates

SVM on Segmentaion database

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
cc

u
ra

cy

SGD Updates

SVM on Spambase database

Fig. 1. Algorithm DP-SGD-1 with different vector norm (L1 vs. L2), normalization (local vs. global), and sampling (with or without replacement) with privacy
budget ǫ = 1. The x-axis spans a number of updates 10 times the size of the data set.

A. Algorithm Variants

Our algorithm variants are based on the algorithms de-
scribed in Section III. We now give the parameter settings
we used exactly, and we introduce the notations for these
settings. In all cases we run SGD with the differentially private
SGD update rule in Equation (8). The learning rate was set to

ηt = t−
1

2 and λ = 10−4. We will refer to this algorithm as
DP-SGD.

The privacy budget we used was set to ǫ = 1 unless
otherwise stated. We also experimented with ǫ = 0.1 to
illustrate a stricter privacy requirement. As of using this
budget, we study the three methods presented in Section III.
The first is the method where, for all the examples, we use up
the entire budget ǫ in a single update. We refer to this variant
as DP-SGD-1. The remaining two variants are referred to as
DP-SGD-5 and DP-SGD-∞, respectively. These correspond to
the cases when we allow 5 updates using each example, all of
which use up a budget of ǫ/5, and when we allow any number
of updates with update t using a budget of ǫ/2t.

The sampling of the next step of the random walk (that is,
the next sample to update with) was selected independently at
random in each step with or without replacement. In the case
of sampling without replacement, when the samples run out,
we start the sampling with the full set again.

As of selecting the vector norm in the definition of global
sensitivity, we experiment with the L2 norm and the L1 norm.
This defines the noise distribution, that is, the distribution of
Nt in Equation (8), as described in Section II-C.

Finally, as a baseline, we also present the performance of
SGD without the noise term Nt. We will refer to this variant
simply as SGD.

TABLE I. THE MAIN PROPERTIES OF THE DATA SETS

MNIST Segmentation Spambase

Training set size 60 000 2310 4140

Test set size 10 000 210 461

Number of features 784 19 57

Number of classes 10 7 2

Class-label distribution uniform uniform 6:4

Regarding specific algorithms needed to implement SGD,
we include logistic regression and the Pegasos algorithm (see
Equations (9) and (10)). Depending on the data set at hand,
we used the multi-class variants of these algorithms. We will
refer to these algorithms as LogReg and SVM.

B. Data Sets and Preprocessing

We selected our databases from different machine learning
domains with different properties. Our first data set, called
MNIST [22], contains gray level images of handwritten digits
(from 0 to 9) of size 28×28. In the Image Segmentation data
set the goal is to assign the pixels to one of the 7 hand-labeled
segments, based on a set of high-level features. Finally, in the
Spambase data set the task is to detect spam e-mails, again,
based on a set of high level features such as the frequencies
of suspicious words, etc. The last two data sets are part of the
UCI machine learning repository [23]. The main properties of
these data sets are summarized in Table I.

We performed the following preprocessing steps on the
data sets. In all cases we first normalized the features one-
by-one by linearly transforming them into the [0,1] interval,
based on the maximum and minimum value of the given
feature in the training data set. Next we performed one of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000

A
cc

u
ra

cy

SGD Updates

LogReg on MNIST database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000

A
cc

u
ra

cy

SGD Updates

LogReg on Segmentaion database

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
cc

u
ra

cy

SGD Updates

LogReg on Spambase database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000

A
cc

u
ra

cy

SGD Updates

SVM on MNIST database

SGD
DP-SGD L2 lc. wor
DP-SGD L2 lc. wr
DP-SGD L2 gl. wor
DP-SGD L2 gl. wr
DP-SGD L1 lc. wor
DP-SGD L1 lc. wr
DP-SGD L1 gl. wor
DP-SGD L1 gl. wr

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5000 10000 15000 20000

A
cc

u
ra

cy

SGD Updates

SVM on Segmentaion database

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
cc

u
ra

cy

SGD Updates

SVM on Spambase database

Fig. 2. Algorithm DP-SGD-5 with different vector norm (L1 vs. L2), normalization (local vs. global), and sampling (with or without replacement) with privacy
budget ǫ = 1. The x-axis spans a number of updates 10 times the size of the data set.

the two following normalization steps. As the first option, we
projected every feature vector to the unit ball by normalizing
their length to 1. Here, length is understood in terms of the
L2 norm or the L1 norm, depending on the noise distribution
in use. We call this type of normalization local normalization.
In this case, the topological structure is somewhat distorted,
but the signal-to-noise ratio is maximized as the amount of
noise to be added is independent of the individual examples.
As the other option, we tested global normalization, where
the normalization coefficient was globally determined based
on the vectors of maximal length. This way, only the lengths
of the examples of maximal length become 1, the other vectors
will become shorter than 1 and the topological structure of
the data set is preserved. But, in this case, the signal-to-noise
ratio might become very low for short vectors. Again, length is
understood in terms of the L2 norm or the L1 norm, depending
on the noise distribution in use.

C. Discussion

In order to measure the performance of the algorithms we
computed their classification accuracy, namely the fraction of
correctly classified instances:

Accuracy =
1

n

n∑

i=1

δ(yi = fw(xi)), (11)

where n is the number of test examples. We measured accuracy
in regular intervals after a given number of updates. We then
plotted the average of 20 independent measurements (where
the various measurements differ due to the randomness of
sampling the data).

The outcome of the experiments is shown in three sets
of plots in Figures 1, 2 and 3 for the three different algo-
rithms DP-SGD-1, DP-SGD-5 and DP-SGD-∞, respectively.

From them, we can draw several interesting conclusions.
First, applying the L2 norm is clearly superior in all sets of
experiments, independently of how the other parameters are
set. The explanation might be that under the L2 norm the
added noise is much less likely to be “sparse”, that is, noise is
spread more evenly over the coordinates, which in turn causes
less disturbance for the gradient steps.

Another clear, and somewhat surprising observation is
that it is much better to apply local normalization on the
training samples in all the cases we examined. This is good
news because in our distributed setting local normalization
is obviously a local operation and so it is much cheaper to
implement than global normalization. The result is somewhat
surprising though, because global normalization preserves the
topological structure, whereas local normalization does not.
However, the relative noise on a given node might be very
large in the case of global normalization since many examples
will be shrunk to less than the maximal length. This might be
a more important factor than exact topological structure.

The effect of sampling the random walk (i.e., neighbor
selection) is more subtle. Looking at algorithms DP-SGD-1
and DP-SGD-5 one might think that there is no significant
difference between these sampling methods. However, in the
case of DP-SGD-∞ the difference becomes dramatic. After a
certain number of iterations sampling with replacement causes
a major drop in accuracy. The reason is that with this sampling
there will be many nodes that are visited much more often than
10 times (note that on average, each node is visited 10 times in
all runs, but with sampling with replacement there is variance
in the number of times a node is sampled). At the same time,
the privacy budget for step t is only ǫ/2t, which results in an
exponentially increasing amount of noise in each step. After
a point noise becomes so large that the signal-to-noise ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000

A
cc

u
ra

cy

SGD Updates

LogReg on MNIST database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000

A
cc

u
ra

cy

SGD Updates

LogReg on Segmentaion database

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
cc

u
ra

cy

SGD Updates

LogReg on Spambase database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000

A
cc

u
ra

cy

SGD Updates

SVM on MNIST database

SGD
DP-SGD L2 lc. wor
DP-SGD L2 lc. wr
DP-SGD L2 gl. wor
DP-SGD L2 gl. wr
DP-SGD L1 lc. wor
DP-SGD L1 lc. wr
DP-SGD L1 gl. wor
DP-SGD L1 gl. wr

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5000 10000 15000 20000

A
cc

u
ra

cy

SGD Updates

SVM on Segmentaion database

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
cc

u
ra

cy

SGD Updates

SVM on Spambase database

Fig. 3. Algorithm DP-SGD-∞ with different vector norm (L1 vs. L2), normalization (local vs. global), and sampling (with or without replacement) with
privacy budget ǫ = 1. The x-axis spans a number of updates 10 times the size of the data set.

tends to zero, at which point the accuracy starts to decrease.
This is also true for sampling without replacement, only in
that case the decrease in performance is observed only later
because all nodes are visited an equal number of times so there
are no outliers that inject large noise earlier.

The consequence of this last observation is that, although
DP-SGD-∞ does achieve the best performance in a number
of cases, it is less practical than the other options because one
needs to implement sampling without replacement—a non-
trivial task in fully distributed networks—and, more impor-
tantly, one needs to implement a stopping rule that detects
when the accuracy starts to decrease. These goals are not
impossible to accomplish, yet the other two algorithms can
reach a similar performance while being much simpler and
more robust.

Figure 4 illustrates the effect of the size of the privacy
budget on the algorithms. It also allows us to compare the
different algorithms directly under the best setting we found
in the previous experiments.

Clearly, a lower privacy budget reduces the accuracy of all
the algorithms, although to a different degree. Algorithm DP-
SGD-1 seems to be the most robust. This is because although
it performs only a single update step with a given node, at
least that step has relatively little noise. Also, the size of
the database plays an important role as well. With a small
database (small network) we can make fewer gradient updates
with reasonable noise. Indeed, with a database of infinite size
one could achieve perfect convergence with an arbitrary finite
amount of noise in each step as follows from the theory of
SGD and stochastic approximation in general [5].

V. CONCLUSIONS

We evaluated an approach to privacy preserving SGD for
distributed systems, where there are a large number of nodes,
each of which stores small amounts of personal data. Since
the privacy we achieve is just due to local operations, privacy
can be compromised only if a given node is controlled by an
adversary.

We argued that privacy can be maintained along with
close to optimal accuracy and no communication overhead
related to the unprotected distributed SGD algorithm. We
also demonstrated that several design choices, such as the
normalization of training data and the applied vector norm
within the differential privacy scheme have a surprisingly large
influence on the performance. We found that the L2 norm and
local normalization result in the best performance. In addition,
depending on the privacy budget available, we found that it is
advisable to use each example only a small number of times.

It should be mentioned that a better performance can be
achieved if there is more training data on each node. Here,
we focused on the worst case scenario where each node has
only one record. If there are more records locally, one can
rely on batch gradient descent, where the noise relative to the
average batch gradient is smaller, and where the gradient itself
carries less noise as well, so overall convergence will be more
favorable.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition of

the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New
York, NY, USA: ACM, 2012, pp. 13–16.

[2] A. Rial and G. Danezis, “Privacy-preserving smart metering,” in Pro-

ceedings of the 10th annual ACM workshop on Privacy in the electronic

society (WPES’11). New York, NY, USA: ACM, 2011, pp. 49–60.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000

A
cc

u
ra

cy

SGD Updates

LogReg on MNIST database

SGD
DP-SGD 1
DP-SGD ∞
DP-SGD 5
DP-SGD 1 ε=0.1
DP-SGD ∞ ε=0.1
DP-SGD 5 ε=0.1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000

A
cc

u
ra

cy

SGD Updates

LogReg on Segmentation database

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
cc

u
ra

cy

SGD Updates

LogReg on Spambase database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000

A
cc

u
ra

cy

SGD Updates

SVM on MNIST database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5000 10000 15000 20000

A
cc

u
ra

cy

SGD Updates

SVM on Segmentation database

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5000 10000 15000 20000 25000 30000 35000 40000

A
cc

u
ra

cy

SGD Updates

SVM on Spambase database

Fig. 4. The effect of the lower privacy budget ǫ = 0.1 (i.e., higher privacy requirements) with the L2 norm, local normalization, and uniform sampling without
replacement. Curves with ǫ = 1 are repeated for comparison.

[3] A. S. Pentland, “Society’s nervous system: Building effective govern-
ment, energy, and public health systems,” Computer, vol. 45, no. 1, pp.
31–38, January 2012.

[4] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. Yang, “Data mining for
internet of things: A survey,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 1, pp. 77–97, 2014.

[5] L. Bottou and Y. LeCun, “Large scale online learning,” in Advances

in Neural Information Processing Systems 16, S. Thrun, L. Saul, and
B. Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.

[6] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:

Tricks of the Trade, ser. LNCS, G. Montavon, G. B. Orr, and K.-R.
Müller, Eds. Springer Berlin Heidelberg, 2012, vol. 7700, pp. 421–
436.

[7] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning with linear
models on fully distributed data,” Concurrency and Computation:

Practice and Experience, vol. 25, no. 4, pp. 556–571, 2013.

[8] C. Dwork, “A firm foundation for private data analysis,” Commun. ACM,
vol. 54, no. 1, pp. 86–95, January 2011.

[9] A. Friedman and A. Schuster, “Data mining with differential privacy,”
in Proceedings of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD’10). New York, NY,
USA: ACM, 2010, pp. 493–502.

[10] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “Gupt:
privacy preserving data analysis made easy,” in Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data

(SIGMOD’12). New York, NY, USA: ACM, 2012, pp. 349–360.

[11] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regres-
sion,” in Advances in Neural Information Processing Systems 21,

(NIPS), D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds.
Curran Associates, Inc., 2008, pp. 289–296.

[12] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private
empirical risk minimization,” J. Mach. Learn. Res., vol. 12, pp. 1069–
1109, July 2011.

[13] S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic gradient descent
with differentially private updates,” in IEEE Global Conference on

Signal and Information Processing (GlobalSIP), December 2013, pp.
245–248.

[14] T. M. Mitchell, Machine Learning, 2nd ed., E. M. Munson, Ed. New
York: McGraw-Hill, 1997.

[15] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: primal
estimated sub-gradient solver for SVM,” Mathematical Programming B,
2010.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[17] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” J. Mach. Learn. Res., vol. 2,
pp. 265–292, March 2002.

[18] N. Tölgyesi and M. Jelasity, “Adaptive peer sampling with newscast,”
in Euro-Par 2009, ser. LNCS, H. Sips, D. Epema, and H.-X. Lin, Eds.,
vol. 5704. Springer-Verlag, 2009, pp. 523–534.

[19] K. Birman, M. Jelasity, R. Kleinberg, and E. Tremel, “Building a secure
and privacy-preserving smart grid,” ACM SIGOPS Operating Systems

Review, vol. 49, no. 1, pp. 131–136, January 2015.

[20] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of Cryptography, ser.
LNCS, S. Halevi and T. Rabin, Eds. Springer Berlin Heidelberg, 2006,
vol. 3876, pp. 265–284.

[21] F. D. McSherry, “Privacy integrated queries: An extensible platform
for privacy-preserving data analysis,” in Proceedings of the 2009

ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’09. New York, NY, USA: ACM, 2009, pp. 19–30.

[22] Y. Lecun, C. Cortes, and B. Christopher, J.C., “The MNIST database
of handwritten digits.”

[23] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml

	Introduction
	Background
	Stochastic Gradient Descent
	Distributed Machine Learning
	Differentially Private SGD

	Algorithm and Analysis
	Privacy Budget
	Sensitivity Analysis
	Notes on Privacy and Security

	Experiments
	Algorithm Variants
	Data Sets and Preprocessing
	Discussion

	Conclusions
	References

