
Transparent execution of task-based parallel applications in Docker with COMP
Superscalar

Victor Anton∗, Cristián Ramón-Cortés∗, Jorge Ejarque∗, and Rosa M. Badia∗†
∗Barcelona Supercomputing Center (BSC), Barcelona, Spain

†Artificial Intelligence Research Institute - Spanish National Research Council (IIIA-CSIC), Barcelona, Spain
{victor.anton, cristian.ramonco, jorge.ejarque, rosa.m.badia}@bsc.es

Abstract—This paper presents a framework to easily build
and execute parallel applications in container-based distributed
computing platforms in a user transparent way. The proposed
framework is a combination of the COMP Superscalar and
Docker. We have built a prototype in order to evaluate how it
performs by evaluating the overhead in the building, deploy-
ment and execution phases. We have observed an important
gain compared with cloud environments during the building
and deployment phases. In contrast, we have detected an extra
overhead during the execution, which is mainly due to the
multi-host Docker networking.

Keywords-Cloud Computing, Linux Containers, Distributed
Systems, Parallel Programming Models.

I. INTRODUCTION

Cloud Computing [1] has emerged as a computing
paradigm where a large amount of computing capacity is
offered on demand and only paying for what you use. This
paradigm relies on virtualization technologies which offer
isolated and portable computing environments called Virtual
Machines (VMs) to perform the users’ computations. Be-
yond the multiple advantages offered by these technologies
and the overhead introduced during operation, the main
drawback of these technologies in terms of usability is the
management of VM images. The image creation process can
take minutes for experienced developers, but it can be a
complex and tedious work for scientist or developers without
a strong background on these technologies.

To deal with these issues, a new trend in the Cloud
Computing research has recently appeared. It proposes to
substitute VMs managed by hypervisors with containers
managed by engines such as Docker [2], which provide
a more efficient layer-based mechanism that simplifies the
image creation and provides a fast deployment mechanism.
Benefiting from this new technology, the main contribution
of this paper is to go a step further by integrating container
engines with programming model runtimes, such as COMP
Superscalar (COMPSs) [3] in order to provide an easy
framework to create parallel applications and transparently
deploy and execute applications in these container-based
distributed platforms. From COMPSs, developers can ben-
efit from straightforward programming model to parallelize
applications from sequential codes and decoupling the appli-

cation from the underlying computing infrastructure. Once
the application is implemented, the COMPSs framework
will automatically create the container images, deploy the
required containers and execute the application distributing
the computating tasks in the deployed containers.

The paper is distributed as follows: Section II describes
related work, Section III presents the integration of COMPSs
with Docker, Section IV presents the validation of the
integration, and finally, Section V concludes the paper and
gives some guidelines for future work.

II. RELATED WORK

Current Cloud providers and software stacks already pro-
vide basic services for image management and contextu-
alization, which allow users to manually import, snapshot
or create their VM images and configure the networking
and security. However, as introduced in previous sections,
this manual image modification can be a tedious work for
complex applications. Therefore, recent research work has
been focused on automating this process by adding new
tools or services on top of the mentioned basic services.
CloudInit [4] is one of the most used tools to automate the
VM image creation. It consists of a package installed in
the base image taht can be configured with a set of scripts
which will be executed during the VM boot time. CloudInit
is usually combined with DevOps tools like Puppet or
Chef, where a manifest or a receipt is deployed instead of
executing the configuration scripts (e.g. [5] or [6]). However,
these solutions have a drawback, customizing the image at
deployment time (installing a set of packages downloading
files, etc.) can take some minutes. It can be assumable in
the first deployment but not for adaptation where new VMs
must be deployed in seconds. To solve this issue some
services like [7] have been proposed to perform offline
image modifications, in order to reduce the installation and
configurations performed at deployment time.

In the case of containers, Docker already includes similar
features to easily customize container images by defining
a parent image and the required customization in a single
file (Dockerfile). Due to the layered-based image system,
parent and customized images can be reused and extended
by applications achieving better deployment times. Cloud

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE 
must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works



Providers, management stacks and workflow engines have
stared to integrate container in their systems(e.g [8] or
[9]). In our case, we propose integrating container engines
with COMPSs to easily parallelize a sequential application
and transparently deploy and execute applications in these
container-based distributed platforms.

III. TRANSPARENT APPLICATION EXECUTION

A. COMPSs and Docker Overview

COMPSs is a task-based programming model which aims
to ease the development of parallel applications for dis-
tributed infrastructures. It is based on the idea that, in order
to create parallel applications, the programmer does not need
to be aware of all the underlying computer infrastructure
details and does not need to deal with all the parallelism
difficulties. In order to do this, the programmer has to specify
which are the methods and functions that may be considered
tasks and the direction of the task parameters. Given this
sequential annotated implementation, the COMPSs runtime
instruments the code to detect the defined tasks and build
a task graph which includes the dependencies between
tasks, constituting the workflow of the application. Then,
it executes the application in parallel at task level managing
the resources, scheduling tasks and handling data locality
and tranfers. In addition, thanks to the abstracting layer that
COMPSs provides, the same application and source code
can be executed either in Clusters, Grids or Clouds.

Docker is an open platform for developing, shipping, and
running applications. It provides a way to run applications
securely isolated in a container. The difference between
Docker and usual VMs is that Docker does not need the
extra load of a hypervisor to run the containers and it uses
an efficient read-only layered image system achieving lighter
deployments. To improve Docker experience, several ser-
vices and tools have been created. The relevant ones for this
paper are: Docker-Swarm, Docker-Compose and Dockerhub.
The first one, Docker-Swarm, is a cluster management tool
for Docker. It merges a pool of Docker hosts enabling the
deployment of containers in the different hosts with the same
Docker API giving the impression to the user that it has a
single, virtual Docker host. Docker-swarm is in charge of
transparently scheduling containers on resources and manag-
ing the inter-host networking and storage. Docker-Compose
is a tool to easily define complex applications which require
to deploy multiple Docker containers.Finally, Dockerhub is
a cloud-based image registry service that enables users to
store and share their applications as docker images.

B. COMPSs integration with Docker

Figure 1 provides an overview of the integration of
COMPSs with Docker. From the user point of view, the
only difference between running the application in the local
machine or in the Docker infrastructure is the submission
command. In a normal COMPSs application execution, users

Figure 1. Integration of COMPSs with Docker

have to invoke the runcompss command followed by the
application main class and arguments. This command loads
the COMPSs runtime and starts the application execution.
In the case that users want to run the application with
Docker, they have to invoke the runcompss docker com-
mand, similarly to the runcompss case, but adding some
extra arguments to specify the Docker-Swarm manager IP
address and port and how many containers must be deployed
as computing resources. This command creates a docker
application with the original COMPSs application, deploys
it in the Docker infrastructure and executes the application.
The runcompss docker execution process is composed of
two steps: the creation of Docker image for the application
and the application execution in the container engines. The
first step is done only once for each application, and the
second step runs every time an application is executed.

In the first step, the script installs the application on top
of the COMPSs base image and uploads it to Dockerhub
so it can be easily shared between the cluster nodes. This
COMPSs base image is a public Docker image located at
Dockerhub which already contains a ready to the COMPSs
runtime installed with all the required dependencies. Once
the application image is created, the new layer created on
top of the COMPSs base image is uploaded to Dockerhub.
In this way, the different COMPSs applications deployed in
docker will share the same COMPSs base layer. Therefore,
deploying a new COMPSs application will only require to
download the new application layer, which reduces the data
to download from Dockerhub.

The second step is the deployment and execution of the
COMPSs application in Docker containers. In this step, the
script defines a Docker-Compose application by defining a
master container, which will execute the main application
and a set of worker containers which will start the COMPSs
worker runtime to execute the parallel tasks. Despite the
containers execute different parts of the application, both
type of containers deploy the created application image.
Once the application is defined, it uses Docker-Compose
to deploy the containers and an overlay network in the
docker cluster managed by Docker-Swarm. The application



execution starts once all the containers are deployed. In
the case of the worker containers, they just wait for the
master messages, and in the case of the master container, it
executes the application as a normal COMPSs application
configured to spawn the computing tasks in the deployed
worker containers. When the application is finished, results
are copied back to the user’s machine and all containers are
shut down and removed.

IV. EXPERIMENTATION

We have run a set of experiments to evaluate the in-
tegration of COMPSs with Docker with respect to the
operation in the bare metal or a traditional Cloud. All the
experiments have been done using the Chameleon Cloud in-
frastructure [10] which provide a configurable experimental
environment for large-scale cloud research. On top of this
infrastructure, we have set up three different environments:
Bare-metal, Docker-Cluster and KVM-Openstack. The first
scenario consists of a set of Bare-metal flavored nodes where
we directly run COMPSs applications. The second scenario
consists of a Docker Swarm cluster built on top of the
same Bare-metal nodes, where each bare-metal node hosts a
Docker Engine that will deploy the COMPSs applications’
containers. Finally, the third scenario consists on an Open-
Stack managed Cloud with the same nodes virtualized with
KVM. Each scenario uses up to 9 bare-metal nodes with 2 x
Intel Xeon CPU E5-2670 v3 with 12 cores each and 128GB
of RAM. When running a COMPSs application, one node,
container or VM will run as a master, which manages the
application execution, and the rest will run as workers. In
all the cases, nodes, containers and VMs are defined to use
the whole compute node (24 VCPUs and 128 GB of RAM)
and deploy the same image (Ubuntu-14.04 with COMPSs
1.4).

The experimentation performed consists on the deploy-
ment and execution of two benchmark applications in the
different environments. The first application consists of a
blocked multiplication of two big matrices. They have been
divided in 256 square blocks (16 x 16), each of them
containing 220 elements. It is quite I/O intensive because data
dependencies between tasks require to transfer the different
matrix blocks through the network as well as some disk
utilization. In contrast, the second experiment is an em-
barrassingly parallel application without data dependencies
which simply performs in parallel a series of trigonometric
computations without exchanging any data. In this case the
I/O utilization is mainly used by the messages exchanged
by COMPSs to run the parallel computations.

In the case of the deployment evaluation, we have mea-
sured the time to perform the application deployments at
the differnt environments and situations (when images are
in the infrastructure, or not, etc.). For this experiment, we
have not considered the bare metal since the computing
nodes are already set-up and the installation of COMPSs

and the applications must be done manually in all the nodes.
Measurements for the rest of scenarios are summarized in
Table I. In the case of Cloud, the process of customizing
the VMs (deploy a with the VM base image, install the
application and obtain a VM snapshot) takes around 100
seconds. Then, the VM deployment phase takes between 30
seconds, when the node has cached the image, or 98 seconds
if image must be copied to the node. So, the total creation
and deployment time in the case of a Cloud can take from
33 seconds up to 208 seconds. A similar issue happens with
Docker, due to the layered image management, the creation
and deployment time can take between 5 seconds, when
all the layers are in the cluster, to 99.67 seconds, when no
layers are available in the system. So, the Docker version
significantly improves the deployment.

For both applications, we have measured the execution
time using different number of nodes at the different envi-
ronments. Measurements for the Embarrassingly Parallel and
Matrix Multiplication benchmarks are depicted in Figure 2.
In the case of the Embarrassingly Parallel, all platforms
almost achieve the same performance (overheads are around
5%). This is because the overhead introduced by Docker
and KVM in terms of CPU and memory management is
relatively small. The difference is basically due to the multi-
host networking used by the runtime to send the messages to
remotely execute tasks in the workers. The default overlay
network of Docker is performing worse than the bridge
network of KVM. In the Matrix Multiplication case, we
can see that Docker and bare-metal are performing similarly
in this case of a single node, and KVM is performing a
bit slower than Bare-metal (around 10%). This is because
KVM has more overhead when managing disk I/O than
Docker. However, when we increase the distribution of
the computation (2,4,8 nodes), the multi-host networking
overhead increases and becomes the most important source
of overhead.

V. CONCLUSION

In this paper, we have presented a method to integrate
Container engines with parallel programming models, such
as COMP superscalar (COMPSs), in order to create a
framework to easily develop parallel applications and trans-
parently deploy and execute applications in container-based
distributed computing platforms. This integration consist on
transparently converting COMPSs applications into Docker
applications and execute them in Docker engines. It is
is mainly focused on creating a Docker image with the
COMPSs application and defining a Docker-Compose ap-
plication which automatically deploys and executes the re-
quired containers to execute the application. This integration
brings several benefits for developers. COMPSs provides
a straightforward methodology to parallelize applications
from sequential codes, while Docker provides an efficient
packaging an deployment tools to distribute applications.



KVM-OpenStack Docker

Phase Action Time Action Time
w/o Image Image Cached w/o Images w Ubuntu w COMPSs w App.

Build
Base VM deployment 33.58 s. N/A Image Creation 73.87 s. 68.88 s. 15.48 s. N/A

App. Installation 15.45 s. N/A Image upload 8.66 s. N/AImage Snapshot 60.36 s. N/A

Deployment VM deployment 83.68 s. 18.18 s. Image Download 12.39 s. N/A
VM boot 15.09 s. Container deployment 4.75 s.

Total 208.16 s. 33.27 s. 99.67 s. 94.68 s. 41.28 s. 4.75 s.

Table I
APPLICATION DEPLOYMENT

(a) Matrix Multiplication (With Data dependencies) (b) Embarrassingly Parallel (No data dependencies)

Figure 2. Execution Overhead and Scalability

Besides, we have run a set of experiments to investigate
how this integration performs in terms of deployment and
execution time. The results have been compared with other
alternatives (bare-metal and KVM/OpenStack cloud). In
terms of deployment, we have seen a significant gain com-
pared with VM deployment. In terms of execution, we have
seen that the system performs similarly than bare-metal or
KVM for applications without or small data dependencies.
However, the drawback of Docker containers appears with
the usage of multi-host networking is important enough. In
this situation, Docker has a larger overhead than KVM.

As future work, we are going to evaluate experimental
alternatives for Docker multi-host networking in order to
test if COMPSs with Docker can perform better than KVM
in all situations. Moreover, we are going to extend our work
to support other container engines such as Kubernetes, as
well as container services provided by major vendors.

ACKNOWLEDGMENT

This work is partly supported by the Spanish Government
through contracts SEV-2015-0493, TIN2015-65316-P, by the
Generalitat de Catalunya under contracts 2014-SGR-1051
and 2014-SGR-1272, and by the European Union under
grants 676556 (MuG Project) and 690116 (EUBra-BIGSEA
Project). Results presented in this paper were obtained using
the Chameleon testbed supported by the NSF.

REFERENCES

[1] M. Armbrust et al., “Above the clouds: A berkeley view of
cloud computing,” EECS Department, University of Califor-
nia, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[2] D. Merkel, “Docker: lightweight linux containers for consis-
tent development and deployment,” Linux Journal, vol. 2014,
no. 239, p. 2, 2014.

[3] R. M. Badia et al., “Comp superscalar, an interoperable pro-
gramming framework,” SoftwareX, vol. 3, pp. 32–36, 2015.

[4] “Cloud-init ,” Web page at https://launchpad.net/cloud-init,
(Date of last access: 15th September, 2016).

[5] D. Armstrong et al., “Contextualization: dynamic configura-
tion of virtual machines,” Journal of Cloud Computing, vol. 4,
no. 1, p. 1, 2015.

[6] D. Bruneo et al., “Cloudwave: Where adaptive cloud manage-
ment meets devops,” in 2014 IEEE Symposium on Computers
and Communications (ISCC). IEEE, 2014, pp. 1–6.

[7] J. Ejarque et al., “Service construction tools for easy cloud
deployment,” in 7th IBERIAN Grid Infrastructure Conference
Proceedings, p. 119.

[8] “Nova-Docker driver for OpenStack ,” Web page at
https://github.com/openstack/nova-docker, (Date of last ac-
cess: 15th September, 2016).



[9] C. Zheng and D. Thain, “Integrating containers into work-
flows: A case study using makeflow, work queue, and docker,”
in Proceedings of the 8th International Workshop on Virtual-
ization Technologies in Distributed Computing. ACM, 2015,
pp. 31–38.

[10] “Chameleon Cloud Project,” Web page at
https://www.chameleoncloud.org, (Date of last access:
15th September, 2016).


