
A survey on fake entities as a method
to detect and monitor malicious activity

Sampsa Rauti and Ville Leppänen
Department of Information Technology

University of Turku, Finland
Emails: {sjprau, ville.leppanen}@utu.fi

Abstract—This paper surveys research concentrating on fake
entities as a method to detect and monitor malware. A fake
entity is a digital entity (such as a file) no one except a malicious
attacker should access. When the entity is accessed, the defender
immediately knows there is unwanted activity in the system and
can start to monitor it. We discuss both faking different entities
on one machine and in a network using virtual groups of fake
hosts.

I. INTRODUCTION

Deception is an emerging and promising method to achieve
software security, as has been clearly shown with honeypots
[26]. Malware can be detected by placing fake resources within
a computer or a network and its malicious activities can
be monitored. The bogus resources are designed to seem as
valuable as normal ones and the system waits malware to use
these fake resources. A resource can be anything from a simple
fake file to a bogus network service. More generally, we can
talk about fake entities; for example, the attacker can also be
fooled by setting up information on nonexistent people.

Stoll described the use of deceptive techniques to improve
computer security already in 1989 [28]. Since then, the use of
several different fake entities has been suggested in research.
It is currently widely agreed that traditional security solutions
are not enough to defend against sophisticated attackers [7].
This highlights the need for novel approaches.

The main contribution of this paper is to present a novel
survey on how several different fake entities – from small en-
tities residing on one machine to the large entities representing
computer networks – could be used in order to detect, observe,
or prevent these advanced attacks.

II. DECEPTION AND FAKE ENTITIES

A. Deception in computer systems

Current technology is not keeping pace with sophisticated
threats like malicious insiders and advanced persistent threats
(APT) [32]. As the traditional countermeasures have proven
to be ineffective against advanced attackers in many cases, we
need new mechanisms to defend the targeted systems. One
way to prevent the adversary from reaching his or her goals
is to use deception, that is, to employ mechanisms providing
false cues that are given to the attacker.

Conventional security approaches often work directly
against the adversary’s actions in order to prevent them.
Deception, in turn, manipulates the attacker’s thinking with

a goal of making him or her act in a way that benefits the
defender. Being fundamentally different from traditional secu-
rity approaches, deception is able compensate for conventional
security’s weaknesses. Combining the two is therefore likely
to be advantageous from a security point of view.

Yuill [37] states that computer deception consists of
”planned actions taken to mislead attackers and to thereby
cause them to take (or not take) specific actions that aid
computer security defenses”. Computer deception defined this
way has several important properties and implications:

• Increase the security proactively. Introducing fake entities
makes everything more difficult for a malicious program
because it can no longer trust the deceptive environment.
Also, it is not necessary to know the exact mechanisms
the attacker uses, because the goal is not preventing
malware from infiltrating the system. The attacker just
needs to be confused with fake entities.

• Monitor and analyze the attacker’s actions. It is naturally
interesting to see what the attacker does in the system.
This has been the goal of honeypots and intrusion detec-
tion systems for a long time. Many approaches we see in
this paper just raise an alarm on suspicious activity, but it
is also interesting to log the attacker behavior and learn
from it.

• Manipulate the attacker’s actions. Analyzing the at-
tacker’s actions and manipulating the environment per-
ceived by a piece of malware leads to the possibility to
manipulate its actions [3].

• Waste the attacker’s resources. A great thing about many
deceptive approaches is that they waste attacker’s re-
sources. For example, analyzing a fake reply from a
server requires computational resources.

• Mitigate the adverse effects and spreading of malware.
In a deceptive environment, changes made by malware
may not have any effect and they can often be rolled
back. It cannot reliably assess the changes it has caused
in the system. Malware can also be lead to believe it has
successfully spread while in reality this is not the case.

B. Fake entities

A fake entity can be anything we want the attackers to
interact with. It can be a file, a database entry, or a password
stored anywhere in the system. Fake entities come in many
shapes and sizes: they can vary from a very small fallacious



Fake entity Type Example
File Content A false business plan
File section Content A hyperlink in a file

leading to bogus web page
Database Content A database full of false

information on employees
Database record Content A fake patient in hospital’s

information system
Data in memory Content A false SSN in memory as

plain text
File system System data
Metadata System data False file creation time
User account System configuration
Registry entry System configuration A registry entry for some

specific application
OS interface System configuration A fake system call interface
Credentials Personal data A fake password
Person Personal data Fake people on

a web page
Reply Feedback/content A fake HTTP reply with

a bogus web page
Error Feedback
Service System A fake HTTP server
OS System A faked packet having

characteristics of a specific
OS’s TCP/IP stack

Host Network topology A fake server storing
an organization’s data

Network Network topology Virtual fake intranet
Internet Network topology

Table 1. List of fake entities covered in this study.

piece of data to entire fake internet. Table 1 shows a list of
fake entity categories that will be discussed more closely in
this paper.

Fake entities have no authorized uses, interacting with them
is always suspicious. Therefore they allow the defender to
easily monitor malware. As an example, a fake file containing
a fictitious business plan can be planted into the system. This
entity has no real value and no authorized use. If an attacker
tries to access this file, someone is most likely breaching
organization’s or user’s privacy. When this happens, an alert
will be generated. Therefore – in its most elementary forms –
the fake entity approach is simple, no complicated algorithms
or rules are needed. Generally, fake entities are far simpler
and inexpensive than many other technologies. The fake entity
approach is also one of the few existing methods to detect zero
day exploits.

It is worth noting that here we do not actually concentrate
on honeypot systems representing a single computer. This is
because there are already several surveys on these kinds of
honeypots [10]. Instead, our focus is on fake entities that can
be seen as the elements that honeypot systems are made of.
On the other hand, we also focus on entities larger than one
computer such as fake networks.

III. FAKE RESOURCES ON ONE MACHINE

Fake files

Bowen et al. automatically create decoys that are stored
on a file system in order to entice a malicious user [9]. The
decoy documents contain several different fake credentials that
trigger an alert when used. The systems also keeps track of

when and where a particular decoy was opened. Yuill et al.
propose using bogus files as baits in order to detect malicious
file accesses in [36].

Many of fake file approaches are just simple traps to detect
and catch the attacker [34]. However, some approaches also
aim at deceiving the adversary by introducing interesting fake
content in the files.

Fake directories and file systems

If we can create fake files, it is only natural to generalize
this idea and create fake directories and fake file systems [23].
Naturally, the files and file systems have to look interesting to
the attacker.

The files shown in the directory listing do not always need
to exist at all. We can give the adversary a fake error message
with some generic excuse and inform the defender about the
fact that suspicious activity is going on in the system.

Passwords and credentials

Juels and Rivest [16] aim to improve the security of hashed
passwords by maintenance of additional honeywords, false
passwords associated with each user’s account. An attacker
who succeeds in inverting the contents of password file cannot
tell if a certain word is a real password or a honeyword. When
the attacker attempts to use a honeyword, an alarm is set off.

Similarly, invalid information about e.g. user accounts [3]
and credit cards [17] can also be stored in files. This kinds of
little pieces of false information and sometimes also bigger
entities such as honeyfiles are called honeytokens [26]. A
honeytoken has to be enticing, something the hacker considers
as valuable information.

Fake entities in databases

Honeytokens can also be used in databases. Much like
fallacious pieces of data in files, honey tokens in databases
are seen as traps that no one should normally touch [20].

Honey tokens can be effortlessly deployed in order to
protect a wide variety of different database systems. It is
deemed to be particularly useful when trying to detect privacy
violations by employees inside the organization [20].

Memory

Honeytokens can also be placed into the memory [38].
Memory-scraping malware often looks for private information
that is usually encrypted but is temporarily held in memory
as plain text. Honey tokens are crafted so that they bear
resemblance to the data malware is looking for. When a honey
token is accessed in memory, an alert can be raised.

Fake metadata

In addition to the actual content (e.g. data in a file or
database), metadata is also used by adversaries. This means
we should lie about it as well. For instance, we can associate
false creation and modification times with files and database
entries to deceive the adversary. Unlike the actual content (like
a convincing file containing business plans), this information
is usually quite easy to create automatically.



As a practical example, Spafford [25] proposes a tool that
takes a file and makes it seem really large with the help of the
Unix sparse file structure. In reality, the file can be only few
thousand bytes long on disk and it can be read in a normal
fashion, but a copy program thinks the file size is several
gigabytes in length. When the adversary tries to copy them
off-site, this results to long copying that will take forever to
complete. Meanwhile, it is possible to trace the adversary as
the network connection stays open.

Fake registry keys and configurations

When a computer program is installed into a Windows
machine, the program will also register in the Windows
registry. Hoglund and Bracken suggest creating a fake registry
key in the registry [13]. The idea is that this key is a substitute
for the key a malicious program will later try to create when it
installs. The piece of malware cannot create the key because it
already exist and fails to function correctly. The same idea can
be used with configuration files; a file can be created before
malware creates it.

Honey patches

Araujo et al. [5], [6] propose transforming software security
patches into honey-patches – patches that provide security
equivalent to normal patches but rid attackers of ability to
see whether their attacks have succeeded or failed. When
an attempt to exploit a vulnerability is detected, the honey-
patch redirects the adversary to an unpatched decoy. The
attack is allowed to succeed against this decoy. Information
on attacker’s activities can then be collected.

Operating system interfaces

Besides memory, another way to lay a trap for malware on
operating system level is the idea of changing the mapping of
the system call numbers in the system. All trusted executables
are modified to use these new system call numbers, but
malicious program that does not know the new mapping still
tries to use the original system call numbers and can be
monitored.

We have presented a proof-of-concept implementation for
this kind of dual-interface [18]. The very same idea of ”fake
original interfaces” could also be be applied in many different
contexts – such as important operating system libraries (by
renaming the functions, but leaving the original functions there
in order to entrap malware) [19] and command shells (alter
the command set of the the command shell, but leave original
commands as a trap for the adversary) [29].

False errors

It is not always necessary to have a fake resource or return
any real content to deceive the adversary. We can simply
give a false reply to the attacker when he or she requests
a resource [3]. There are many ways to deny the attacker’s
request by pretending some kind of error has happened [23].
The system can pretend the command given by the attacker has
a syntax error. It can also claim that the requested resource is

unavailable or that the command the attacker used was wrong
for this resource. The adversary can also be given so much
extraneous information or made wait so long that he or she
gives up.

Of course, creating too many fake errors might raise the
attacker’s suspicions. Conversely, we could lie to the attacker
that the action has succeeded even though this is not the case.

Systems combining many fake entities

In practice, many systems combine several of the fake
entities we have discussed here. In what follows, we will
present some examples of solutions involving various fake
entities.

Wang et al. [33] present a multilayer deception system
that aims to fool an attacker with several bogus entities.
This includes honey files with regular honey activity. Network
connections are also represented as honey servers and bogus
network activity. These fake entities are integrated into a
complete system.

Anagnotakis et al. [4] proposed shadow honeypots that are
real applications but have some honeypot code integrated in
them. Incoming requests are executed as usual but embedded
honeypot functionality observes the request to decide whether
they are malicious. Any actions performed by a malicious
attacker are then rolled back.

Finally, it is interesting to note that because the attackers
today generally aim to avoid honeypots, it is actually possible
to keep many attackers away from a system by making the
system pretend it is a honeypot [22]. These kinds of systems
are called fake honeypots.

IV. BOGUS NETWORKS AND FAKE ENTITIES IN A
NETWORK

Fake networks

Simulating networks and the services hosts provide for
others in a network has also received attention. Alberdi et
al. [1] present a solution that deceives bots in a botnet. It
is a redirection kit that redirects any outgoing attacks – e.g.
the messages bots send to each other to coordinate attacks –
to other honeypots so that malicious attacks to real servers
through honeypots are prevented. The bot owners will still
think that the bots communicate with computers outside the
network even though they are in fact sending messages to a
honeypot in the same network.

Handling the outbound connections initiated by the attacker
is not an easy problem. In other words, how do we present a
convincing fake network or fake internet to the adversary. The
attacker might notice that the connection is being faked if the
reply is not what he or she expects.

Honeyd is a tool used to create a fake internet topology
[14]. This small open source daemon creates a group of virtual
hosts that appear to run on unallocated addresses of a network.
The personality of the hosts can be configured so that they
appear to be running specific operating systems. Arbitrary
services can be run on the created hosts. A single host can



also use multiple network addresses. Similarly to Honeyd, the
Honeynet Project also enables building virtual honeynets [15].

Net-Chaff [37] impersonates computers at the unused ad-
dresses of a network. The goal is to detect and stop the
attacker’s port scans. When the tool detects a scan, it prevents
malware’s access to the network using the routers in the
intranet.

For most approaches using fake entities in a network, the
aim seems to be to monitor the adversary’s activities and
defend the network against threats. By doing this, the potential
attackers are lured away from critical systems.

Operating systems

Operating systems are important potential fake resources.
As mentioned before, Honeyd can impersonate different op-
erating systems. Honeyd can imitate the appearance of over
1,000 operating systems and their variants [35]. It uses knowl-
edge from an extensive database in order to mimic fingerprints
of a wide variety of operating systems. Every operating system
has a unique TCP/IP stack fingerprint, and each stack has a
different response [30]. When these fingerprints are simulated,
the attacker can be fooled.

Deceptive services

Traditional computer deception, such as honeypots, often
fool the adversary by creating fake copies of production
systems and trying to lure adversaries to them. However, it is
also possible to deceptively change replies of a public-facing
service (e.g. a HTTP server) without actually having any fake
resources in the system. Deceptiver [2] applies deception to
resources either by creating a new deceptive response on the
fly or by modifying the response (possibly containing system’s
resources) on the fly before it is sent to the attacker. A proof-
of-concept has been implemented for an Apache web server.

Fake services can be set up in several virtual hosts. For
instance, the pieces of malware often need to communicate
via DNS, HTTP and SMTP [27]. In many cases, emulating
only part of the protocol is enough for malware to function
normally. It is also worth noting that we often do not know
beforehand what protocol a malicious program is going to
use, or a custom protocol written by malware author can be
employed. In these cases, we can simply simulate a generic
protocol (by for example listening on a TCP port and sending
a reply to each received packet) and try to draw out as much
conversation from the malicious party as we can.

Honey people

Information on nonexistent people, honey people, can be
set up for instance in a social network [31], [33]. These fake
persons are created to appear realistic and have connections
with other people inside and outside their organization. Fake
email addresses can also be created for these people [21].
Interaction with these fake persons is then monitored and an
alarm can be set off when they are contacted.

V. CHALLENGES

Fake entities are a simple and inexpensive method to detect
and study malware, but we have already seen there are some
challenges with this approach. Naturally, fake entities require
some space and can also have some effects to the performance
of the system. Still, these effects are not usually significant.

There is also a problem of false positives when an employee
unintentionally opens a honey file. No one else except the
attacker should interact with it in order to avoid false posi-
tives. However, there are many cases (e.g. for privacy-critical
databases) where even insiders are not allowed to access some
entities, and fake entities are a good method to detect this kind
of data breaches.

The main problem with fake entities is arguably creating
them. Naturally, creating data content that appears genuine
and is difficult to distinguish from real entities is one of
the main challenges when doing this. Bercovitch et al. [8]
present HoneyGen, a method for automatic generation of fake
entities. It extrapolates the characteristics of real data items.
Still, creating large files or email messages with convincing
contents automatically is obviously difficult. On the other
hand, convincing fake files created by humans would require
lots of work.

We have also seen – in context of fake networks and fake
internet – that granting malware uncontrolled access to the
Internet is not a good idea [39]. There is always a danger
of malicious network traffic and self-spreading worms. We
have already seen some solutions to this problem presented
in literature. Moreover, we believe the convincing exchange
of messages between malware and fake entities (such as fake
services) should be further studied. This would better convince
malware that it is indeed communicating with a genuine
entity and elicit more interesting activity from the malicious
programs.

VI. CONCLUSIONS AND FUTURE WORK

We have seen that there are many interesting ideas on fake
entities in the literature. A fake entity is a very simple and
flexible concept that can be applied to many assets in computer
systems and networks. Fake entities are also inexpensive, easy
to deploy and lightweight compared to many other security
approaches.

Still, in our view, the answer to the question ”what should
we do after malware is detected” is often incomplete or wrong.
In future work, we plan to study ”record and play” approaches
where we deceptively interact with malware by using earlier
genuine interaction in some service as a basis [12]. This poses
a problem of data creation: we have to create convincing fake
data to fool the malware. If this is created based on the genuine
data (which would be preferable, of course), we have to be
careful so that we do not disclose anything secret or important
to the attacker. Still, it would be enticing to further study how
machine learning approaches could be used to create the data
used by fake entities.

In practice, it would be interesting to build a proof-of-
concept implementation of our framework and test it. Exper-



iments could be performed on some relatively simple service
to demonstrate the feasibility of deceiving a malicious piece
of code while exchanging messages with it with the goal
of keeping the fake communication convincing as long as
possible so that we can learn more and more about the
attacker’s malicious actions.

As mentioned previously, we believe several operating sys-
tem interfaces also have lots of potential as fake entities. The
idea of changing the system call numbers, library functions or
shell language command sets and leaving the ”fake original
interface” as a decoy for malware could be developed further.

As malware keeps increasing at a staggering pace and
advanced persistent threats and insider attacks pose a serious
challenge, novel approaches are needed. We believe fake
entities have lots of potential and room for further development
in this field of research.

ACKNOWLEDGMENT

The authors gratefully acknowledge Tekes – the Finnish
Funding Agency for Innovation, DIMECC Oy and Cyber Trust
research program for their support.

REFERENCES

[1] Alberdi, I., Philippe, E., Vincent, O., Nicomette, K.M. Shark: Spy
Honeypot with Advanced Redirection Kit, Proceedings of the IEEE
Workshop on Monitoring, Attack Detection and Mitigation. IEEE, 2007.

[2] Almeshekah, M.H. Using Deception to Enhance Security: A Taxonomy,
Model, and Novel Uses. Dissertation. Purdue University, 2015.

[3] Almeshekah, M.H., Spafford, E.G. Planning and Integrating Deception
into Computer Security Defenses, Proceedings of the 2014 workshop on
New Security Paradigms Workshop, pp. 127–138. ACM, 2014.

[4] Anagnostakis, K.G., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos,
E., Keromytis, A.D. Detecting Targeted Attacks Using Shadow Honey-
pots, Proceedings of the Conference on USENIX Security Symposium,
pp. 9–23. The USENIX Association, 2005.

[5] Araujo, F., Hamlen, K. W., Biedermann, S., Katzenbeisser, S. From
patches to honey-patches: Lightweight attacker misdirection, deception,
and disinformation. In Proc. ACM Conf. Computer and Communications
Security (CCS), pp. 942–953. ACM, 2014.

[6] Araujo, F., Shapouri, M., Pandey, S., Hamlen, K. Experiences with honey-
patching in active cyber security education. In 8th Workshop on Cyber
Security Experimentation and Test (CSET 15), 2015.

[7] Bejtlich, R. The Practice of Network Security Monitoring: Understanding
Incident Detection and Response. No Starch Press, 2013.

[8] Bercovitch, M., Renford, M., Hasson, L., Shabtai, A., Rokach, L., Elovici,
Y. HoneyGen: An Automated Honeytokens Generator. IEEE International
Conference on In Intelligence and Security Informatics (ISI), pp. 131–
136. IEEE, 2011.

[9] Bowen, B., Hershkop, S., Keromytis A.D., Stolfo S.J. Baiting Inside At-
tackers Using Decoy Documents. Security and Privacy in Communication
Networks. Volume 19 of the series Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering,
pp. 51–70. Springer, 2009.

[10] Bringer, M.L., Chelmecki C.A., Fujinoki, H. A Survey: Recent Advances
and Future Trends in Honeypot Research. International Journal of Com-
puter Network and Information Security, Volume 4, Issue 10, pp. 63–75.
MECS, 2012.

[11] Cheswick, W.R. An evening with Berferd, in which a cracker is lured,
endured, and studied. In Proceedings of the USENIX. The USENIX
Association, 1992.

[12] Cui, W., Paxson, V., Weaver, N., Katz, R.H. Protocol-independent
adaptive replay of application dialog. Proceedings of the 13th Annual
Network and Distributed System Security Symposium, 2006.

[13] Hoglund, M.G., Bracken S.M. Inoculator and antibody for computer
security. Patent US 20120110673 A1.

[14] Honeyd homepage. http://www.honeyd.org
[15] Honeynet homepage. http://www.honeynet.org

[16] Juels, A., Rivest, R.L. Honeywords: Making passwordcracking de-
tectable. In Proceedings of ACM CCS, pp. 145–160, 2013.

[17] Kambow, N., Passi, L.K. Honeypots: The Need of Network Security.
International Journal of Computer Science and Information Technologies,
Volume 5, Issue 5, 2014.

[18] Lauren, S., Rauti, S. Leppänen, V. An Interface Diversified Honeypot
for Malware Analysis. Accepted to MeSSa 2016.

[19] Lauren, S., Mäki, P., Rauti, S., Hosseinzadeh, S., Hyrynsalmi, S.,
Leppänen. V. Symbol Diversification of Linux Binaries. In Proceedings
of World Congress on Internet Security (WorldCIS-2014). IEEE, 2014.

[20] Rietta, F.S. Application layer intrusion detection for SQL injection. In:
Annual Southeast Regional Conference, Melbourne, Florida, pp. 531–536.
ACM, New York (2006).

[21] Rowe, N.C. Deception in defence of computer systems from cyber-
attack. In: Colarik, A., Janczewski L. (Eds.): Cyber War and Cyber
Terrorism, pp. 97-104. The Idea Group, 2007.

[22] Rowe, N.C., Duong B. T., Custy, E. J. Fake Honeypots: A Defensive
Tactic for Cyberspace. IEEE Information Assurance Workshop, pp. 223–
230. IEEE, 2006.

[23] Rowe, N.C. A model of deception during cyber-attacks on information
systems. First Symposium on Multi-Agent Security and Survivability, pp.
21–30. IEEE, 2004.

[24] Small, S., Mason, J., Monrose, F., Provos, M., Stubblefield, A. To
Catch a Predator: A Natural Language Approach for Eliciting Malicious
Payloads. USENIX Security Symposium, 171–184. The USENIX Asso-
ciation, 2008.

[25] Spafford, E. More than passive defense.
https://www.cerias.purdue.edu/site/blog/post/more than passive
defense/

[26] Spitzner, L.: Honeypots: Tracking Hackers, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, 2002.

[27] Stewart, J. Behavioural malware analysis using Sandnets. Computer
Fraud and Security, Volume 2006, Issue 12, pp. 4-–6. Elsevier, 2006.

[28] Stoll, C.P. The Cuckoo’s Egg: Tracing a Spy trough the Maze of
Computer Espionage. Doubleday, 1989.

[29] Uitto, J., Rauti, S., Mäkelä, J.-M., Leppänen, V. Preventing Malicious
Attacks by Diversifying Linux Shell Commands. In Proceedings of
the 14th Symposium on Programming Languages and Software Tools
(SPLST’15). CEUR Workshop Proceedings 1525. CEUR, 2015.

[30] Valli, C. Honeyd - a fingerprint artifice. Paper presented at the 1st
Australian Computer, Information and Network Forensics Conference,
Scarborough, Western Australia, 2003.

[31] Virvilis, N., Serrano, O. Changing the game: The art of deceiving
sophisticated attackers. In Proceedings of the 6th International Conference
on Cyber Conflict (CYCON-014), pp. 87–97. IEEE, 2014.

[32] Virvilis, N., Gritzalis, D. The Big Four – What we did wrong in
Advanced Persistent Threat detection? In Eighth International Conference
on Availability, Reliability and Security (ARES), pp. 248–254. IEEE,
2013.

[33] Wang, W., Bickford, J, Murynets, I., Subbaraman, R., Forte, A., Sin-
garaju, G. Catching a wily hacker: A Multilayer Deception System.
Proceedings of 35th IEEE Safnoff Symposium, pp. 1–6. IEEE, 2012.

[34] Whitham, B. Canary Files: Generating Fake Files to Detect Critical
Data Loss from Complex Computer Networks. Presented at the Second
International Conference on Cyber Security, Cyber Peacefare and Digital
Forensic (CyberSec2013), 2013.

[35] Willis, N. Weekend Project: Use Honeyd on Linux to Fool Attack-
ers. The Linux Foundation, 2011. https://www.linux.com/learn/weekend-
project-use-honeyd-linux-fool-attackers

[36] Yuill, Y., Zappe, M., Denning, D., Feer, F. Honeyfiles: deceptive
files for intrusion detection, in Information Assurance Workshop, 2004.
Proceedings from the Fifth Annual IEEE SMC, pp. 116–122. IEEE, 2004.

[37] Yuill, J. Defensive Computer-Security Deception Operations: Processes,
Principles and Techniques. Dissertation. Computer Science, North Car-
olina State University, 2006.

[38] Zeltser, L. Detecting memory-scraping malware. Patent US
20150381655 A1.

[39] Zhang, F., Zhou, S., Qin, Z., Liu, J. Honeypot: a supplemented active
defense system for network security. Proceedings of the Fourth Interna-
tional Conference on Parallel and Distributed Computing, Applications
and Technologies (PDCAT’2003), pp. 231–235. IEEE, 2003.


	Introduction
	Deception and fake entities
	Deception in computer systems
	Fake entities

	Fake resources on one machine
	Bogus networks and fake entities in a network
	Challenges
	Conclusions and future work
	References

