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Abstract—The cloud is an eco-system in which virtual machine
instances are starting and terminating asynchronously on user
demand or automatically when the load is rapidly increased or
decreased. Although this dynamical environment allows to rent
computing or storage resources cheaper rather than buying them,
still it does not guarantee the stable execution during a period of
time as the traditional physical environment. This is emphasised
even more for workflows execution, since they consist of many
data and control dependencies, which cause the makespan to be
instable when a workflow is being executed in different periods
of time in cloud. In this paper we analyse several parameters of
workflow and the cloud environment that are expected to impact
the workflow execution instability and investigate the correlation
between them. The cloud parameters include the number of
instances and their type, as well as the correlation with the
efficient or inefficient execution of workflow parallel sections. We
conduct a series of experiments, repeating each experiment by 30
test cases in order to evaluate instability for different cloud and
workflow parameters. The results show a neglectfully correlation
between each pair of parameters, as well as the tasks and file
transfers within the workflow. Oppose to the expectations, the
distribution of the makespan per experiment does not always
comply with the normal distribution, which is also not correlated
to a particular cloud or workflow parameter.

Index Terms—Cloud, makespan, performance modeling, work-
flow.

I. INTRODUCTION

Nowadays, companies’ spending budgets are more dis-
tributed to management and automation software, rather than
for the hardware. Almost all companies have already virtu-
alised their data centers with some open source cloud frame-
work, or have migrated their services in some of many public
clouds. Besides that the Cloud became a platform for many
applications and services, it is a promising platform even for
scientific applications and workflows’ execution [1].

Still, many challenges exist that could impact the decisions
whether to migrate the computing to the Cloud. Although
many researchers reported that the Cloud will reduce the costs
for IT infrastructure, still its performance instability could
change ones’ minds [2]. Since the cost is directly connected
with the time period that resources are leased, it can be neither
estimated nor predicted.

The cloud performance instability is emphasised not only
for the scientific applications that require massive data and
computation over it, but even more for workflows executions,
because they consist of many tasks that have control and

data dependencies between them. A cloud virtual machine
instance can provide a totally different and even unexpected
performance in two different periods of time [3]. Many in-
stances are straggling and thus providing some bottlenecks,
while some others could fail, which additionally will make
the performance instable. Predicting and modeling the cloud
performance instability is important as the users can analyse
the processes as close as possible to real environments.

Although many cloud simulators exist, which can simulate
the execution of huge and complex workflows in seconds [4],
still most of them provide a static simulation, that is, the same
output is provided for the same input. The static simulation
cannot predict the dynamism of the real cloud, where the
makespan, and thus the cost, will be always different, due to
its i) pay-as-you-go pricing model, ii) dynamics in starting and
deployment time of instances [5] and iii) cloud performance
fluctuation [6]. Neglecting this performance instability can
later lead to wrong conclusions and decisions. Additionally,
knowing the correlation of cloud environment parameters on
one side, and workflow parameters on the other side, one can
reduce the number of experiments in the Cloud for correlated
parameters.For example, if the cloud performance instability
does not depend on which type of virtual machine instance will
be used, then one can do experiments with only one instance
type, probably with the cheapest type in order to reduce the
overall cost of the experiments.

This paper analyses the performance instability when a
workflow is being executed in the cloud. We investigate if
there exist a correlation between the performance instability
and some cloud environment parameter, such as the number
of instances and their type that are used for execution of a
workflow, or with some workflow parameters, such as the
size of parallel section. Also, we examine various workflow
parameters that could lead to efficient or inefficient workflow
execution. Our analysis shows that only when a workflow is
executed sequentially, that is, with only one small instance
with one virtual CPU core, all other experiments do not
have any correlation with the environmental and workflow
parameters. Additionally, greater correlation exist for task
runtimes, rather than the file transfers.

The paper is organised in several sections that are described
below. Section II presents the related works in the workflow
execution and cloud performance instability. In Section III, we
analyse which parameters cause the makespan instability when
a workflow is executed in cloud. The testing methodology is
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described in Section IV, while the results of the experiments
and evaluation of the parameters’ correlation are presented in
Section V. Finally, we conclude our paper and present the
plans for future work in Section VI.

II. RELATED WORK

This section presents several examples that can be found
in the literature, where researchers reported how instable
performance the Cloud provides, when an application or a
workflow is executed in different time periods.

Dejun et al. [7] reported that there is a high deviation
of performance in Amazon EC2 for a VM of the same
instance type during two different time periods. Additionally
to this, Jackson et al. [8] have determined that the performance
instability is caused by the different underlying hardware
within the cloud, although the instances are declared of the
same type.

Another performance instability is a long-term behavior of
the Cloud, which was detected by Schad et al. [9] for Amazon
EC2. That is, the behavior of Amazon EC2 is changed from
one time period to another. They also reported an instability
that is correlated to the CPU type of an instance and it
depends also on the time period during a day and in which
day of the week the experiments are conducted. Still, there
are some cases where the Cloud provides a period of constant
performance, as reported by Iosup et al. [10]. Still, this stability
depends on the application type.

The performance instability is more ephasised for the work-
flows, as they contain dependencies between tasks. Dynamic
schedules are more prone to the instability than static ones
and can reduce the workflow makespan [11].

The cloud dynamic and instable environment can be sim-
ulated in order to predict or determine some limits of its
behavior. Several tools are found where the cloud performance
instability is simulated, even for workflow execution, such as
WorkflowSim [12], which is an extension of Cloudsim [13] by
introducing several parameters that are specific for workflows.
The DynamicCloudSim simulator [14], which is an extension
of CloudSim [13], introduces several additional parameters to
simulate the cloud performance instability. Google’s GloudSim
[15] also simulates some dynamism in cloud, but only in hori-
zontal or vertical resizing the instances, while the performance
of the same instance is constant during a time period.

III. WHAT CAUSES WORKFLOW MAKESPAN INSTABILITY?

This section will elaborate the parameters that provide the
makespan instability when a workflow is being executed in a
dynamic cloud environment. Two main groups of issues can
be classified: i) the cloud environment impact on the workflow
execution, and ii) the workflow itself with its data and control
dependencies and various task types.

A. Cloud (environmental) parameters

The virtualisation layer of the Cloud is the most important
factor that impacts the performance instability. This additional
layer cannot guarantee the same performance provided by

the computing resources, memory and I/O virtual to physical
translations.

The virtualisation causes the performance instability indi-
rectly through the virtual machine instances, as well. Some of
them are straggling or failing, or instability can be achieved
due to the usage of carious resource overcommitment (over-
subscription) techniques. Additionally, the multi-tenancy is
another important factor. The number of active instances on
the physical server and the total number of instances that are
started in the whole cloud, as well as their utilisation over
the time can impact on the instance straggling and failing. All
these instances share the same underlying hardware resources,
which sometimes can cause bottlenecks.

Cloud underlying hardware resources are heterogeneous,
which additionally can cause performance instability. Virtual
machine instances of the same type that are started in different
time periods will probably be deployed on heterogeneous
physical servers, and thus will provide different performance.

Instance types can cause additionally performance insta-
bility because horizontal or vertical scaling provides various
performance for different types of applications or tasks. That
is, the same amount of resources that will cost the same,
sometimes provide slowdown, but in other cases can provide
even superlinear speedup [16].

B. Workflow parameters

Workflows are consisted of tasks and connections (file
transfers) between them. Some tasks are dependent and cannot
be executed in parallel. A small delay in starting time of a task,
can change the workflow scheduling, which will increase or
decrease the file transfers by changing the virtual machine
instance where some task will be executed. Therefore, the
workflow type, and data and control dependencies are also a
very important issue that impacts the performance instability
additionally to the instability caused by the cloud’s parameters.

C. A combination of cloud and workflow parameters

Also, a combination of cloud and workflow parameters can
provide efficient or inefficient execution of workflow tasks,
which can cause the additional performance instability. For
example, if there is a parallel section with 20 tasks, using 10
instances should be more efficient than 13, since the execution
time will be the same, or at least similar, while the cost is much
greater for the latter case, which is more inefficient.

Tasks’ interference appears when at least two tasks are
executed concurrently in the same instance, which also impacts
the performance. Additionally, execution of 10 tasks in 10
small instances, each with one CPU, and in five medium
instances, each with two CPUs, will have different behavior.

IV. TESTING METHODOLOGY

This section explains the testing environment, test data, test
cases and the experiments in order to make them reproducible.
Our goal is to investigate the cloud and workflow parameters,
as well as their correlation impact the workflow execution
instability.
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TABLE I
INSTANCE TYPES OF OUR PRIVATE OPENSTACK CLOUD

Type VCPUs RAM HDD
small 1 2 GB 20 GB

medium 2 4 GB 40 GB

· · ·

· · ·

Fig. 1. An example of the WIEN2k workflow

A. Testing environment

We have created a realistic cloud testing environment to
evaluate the cloud instability of workflow executions. A private
cloud with a total of 40 CPU cores of Intel(R) Xeon(R) CPU
E5-2680 v2 with 2GHz based on Openstack cloud framework
is used. Two instance types are used, small and medium, as
specified in Table I, each with CentOS 6.3 operating system.

Askalon [17] is used to execute the workflows in cloud and
to monitor and measure the execution of a workflow tasks.

In order to check as much parameters as possible that
could impact on the workflow makespan’s instability, we have
chosen the WIEN2k workflow, which consists of two parallel
sections (T2 and T4) with a single task before and after
them for synchronisation (T1, T3, T5), as presented in Fig. 1.
The number of tasks n within the parallel sections could
be changed and is defined by an input parameter. The total
number l of all tasks is given with l = 2 · n + 3. We choose
two different parameters, n1 = 13 and n2 = 44 in order
to investigate if the number of instances and the size of the
parallel sections are correlated with the makespan, that is, if
there is a correlation when the number of instances is a divisor
of the number of the tasks in parallel sections.

Although WIEN2k is a simple workflow, still, it offers
various characteristics to be investigated, which could impact
the performance instability.

B. Experiments and test cases

We created a total of 13 experiments. Twelve of them are
defined by changing the workflow parameter (parallel sections
size, 13 and 44), instance type (small or medium) and the
number of instances (up to four). The 13th experiment is
defined when WIEN2k/13 workflow is executed with only one
small instance type. Table II describes each experiment along
with its abbreviation.

When both WIEN2k/13 and WIEN2k/44 workflows are
executed with three instances, then the executions are less

TABLE II
EXPERIMENTS’ DESCRIPTION

# Abbreviation Workflow Instance type Instances
1 13S1 WIEN2k/13 Small 1
2 13S2 WIEN2k/13 Small 2
3 13S3 WIEN2k/13 Small 3
4 13S4 WIEN2k/13 Small 4
5 13M2 WIEN2k/13 Medium 2
6 13M3 WIEN2k/13 Medium 3
7 13M4 WIEN2k/13 Medium 4
8 44S2 WIEN2k/44 Small 2
9 44S3 WIEN2k/44 Small 3

10 44S4 WIEN2k/44 Small 4
11 44M2 WIEN2k/44 Medium 2
12 44M3 WIEN2k/44 Medium 3
13 44M4 WIEN2k/44 Medium 4

i1 i2 i1 i2
. . .

i1 i2

balanced execution

i1 i2 i1 i2
. . .

i1 i2

unbalanced execution

Fig. 2. Balanced and unbalanced execution of a parallel section

efficient because some instances are not utilised at the end
of the parallel sections, while the experiments with both even
number of tasks and instances utilise the instances better, as
presented in Fig. 2.

Instances of medium type can execute up to two workflow
tasks concurrently if they are independent. Oppose to them,
instances of small type execute the tasks sequentially, which
could cause more or longer file transfers between the instances
because small instances could be deployed on various phisical
cloud server nodes. In the experiments with only one small
instance, the file transfers between instances are minimised
because all file transfers are always within the same instance.

Each experiment is repeated 30 times (test cases) in order
to investigate the workflow makespan instability in the cloud.

C. Test data

Several parameters that can impact the workflow makespan
and thus make it unstable are measured. For each task we
measure the time spent for files transfer and task’s runtime.

We are using the Pearson’s correlation coefficient in or-
der to quantify the correlation between various parameters.
the tasks execution correlation between two consecutive test
cases within an experiment and the correlation of experiments
makespans between each two experiments. We expect that
the correlation between similar experiments (with only one
different parameter) are more correlated compared to others.

V. EVALUATION

This section presents the results of the experiments and
analyses the makespan correlation with the environment and
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workflow parameters. We present how much the consecu-
tive tasks runtime and file transfers are correlated with the
makespan for each experiment and how much the experiments
are correlated among each other.

A. Makespan instability analysis

The results of mean makespan deviation’s for all test cases
of each experiment are presented in Fig. 3. We observe that
although most of the test cases’ makespans are within the
interval of Mean ± 5%, some test cases provide up to 15%
greater or up to 8.9% lower makespans than the corresponding
experiment’s mean value.

For better analysis, Table III presents the makespan’s mean
values and their relative standard deviations. We observe that
the relative standard deviation for most experiments with
WIEN2k/13 is 0.03 which is slightly greater than 0.02 that
is the relative standard deviation for most of the experiments
with WIEN2k/13. Apart of this, we cannot determine any
correlation with some cloud or workflow parameters.

Although several researchers and simulators use normal
distribution for cloud behavior, even for workflows, we ap-
plied the Kolmogorov-Smirnov (KS) test to determine if the
makespan distribution within an experiment complies with
the normal distribution. Fig. 4 presents the p-values of the
KS test. We observe very discrepant p-values, that is, some
experiments, such as all WIEN2k/44 with small instances,
13S3 and 44M2, have p-values between [0.55, 0.93] and are
complying with the normal distribution, while others have
much smaller p-value of up to 0.2. Just to note that the
experiment 44M3 has p = 0. We can conclude that we cannot
observe some correlation between the experiments.

B. Makespan’s cross correlation between experiments

Further on, we analyse the cross correlation between each
pair of experiments in order to determine if there is some
parameter that impacts constantly on the makespan instability.
We calculate the Pearson correlation coefficients, which are
presented in Table IV. However, we cannot observe some cor-
relation of makespan and some cloud or workflow parameter
since the cross correlations cannot be classified for instance
type or number, or the workflow parameter. Additionally, all
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Fig. 4. p-values of the KS test for each experiments’ makespan arrays

cross correlations are in the range of [−0.45, 0.41], which
shows that there is no correlation between any two experiments
and we cannot conclude which parameter impact is correlated
with a workflow’s makespan.

C. Tasks’ runtime vs file transfer correlation

The workflow makespan consists of time spent for file
transfers between tasks and task runtimes. Further on, we
analyse if there is a correlation between these parameters and
the makespan for all experiments.

Fig. 5 presents the average value of each pair’s consecutive
test cases correlations. We observe almost a total correla-
tion between two consecutive workflow executions for tasks’
runtimes, which are in the range of [0.97, 1], while there is
smaller correlation for file transfers counterparts, which are in
the range of [0.71, 0.91]. Still, the correlation for file transfer
is enough to conclude that the file transfers for all tasks in
a workflow are correlated in each two consecutive workflow
executions.

Correlation for sequential execution in the experiment 13S1
shows much greater correlation of 0.95, which is expected
because there is only one small instance and all file transfers
are minimised within it. Slightly smaller average correlation is
achieved for the experiment 13S4, which we believe is because
of various placing of instances on physical servers. This should
not be caused by the hyperthreading because the task runtimes
have the similar correlation with other experiments.

D. Tasks’ cross correlation

The results of the previous subsection showed that the
executions of each two consecutive test cases (the whole
workflows) are correlated. Since the workflow has different
task types (tasks for synchronisation and tasks in parallel
sections), now we analyse which task type is correlated with
the whole workflow makespan.

Table V presents the mean values and relative standard
deviation of task runtimes vs makespan cross correlation
coefficient. Sequential experiment 13S1 also shows an av-
erage correlation of 0.52, which is much greater than other
experiments, which is expected, but still not enough to say
that the tasks’ runtimes are correlated with the makespan.
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TABLE III
MAKESPANS’ MEAN VALUES AND THEIR RELATIVE STANDARD DEVIATIONS FOR EACH EXPERIMENT

13S2 13S3 13S4 13M2 13M3 13M4 44S2 44S3 44S4 44M2 44M3 44M4
Mean makespan 213.29 182.72 172.32 160.37 159.74 161.73 503.48 408.66 371.26 358.39 337.54 326.68

Relative deviation 0.06 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.05 0.02

TABLE IV
CROSS CORRELATION OF EACH EXPERIMENT’S MAKESPANS

13S2 13S3 13S4 13M2 13M3 13M4 44S2 44S3 44S4 44M2 44M3 44M4
13S2 1 -0.246 -0.122 0.011 -0.157 -0.274 0.232 -0.005 0.135 0.001 0.136 -0.127
13S3 -0.246 1 -0.001 -0.173 -0.076 0.396 -0.091 -0.148 0.011 -0.017 0.113 -0.320
13S4 -0.122 -0.001 1 -0.186 0.132 0.199 -0.142 0.250 0.114 -0.177 -0.225 0.011
13M2 0.011 -0.173 -0.186 1 0.221 -0.168 0.090 0.020 -0.403 0.205 0.411 -0.104
13M3 -0.157 -0.076 0.132 0.221 1 -0.123 -0.142 -0.208 -0.431 0.021 0.318 0.131
13M4 -0.274 0.396 0.199 -0.168 -0.123 1 -0.102 0.075 -0.046 -0.097 -0.035 0.034
44S2 0.232 -0.091 -0.142 0.090 -0.142 -0.102 1 -0.171 0.108 -0.192 0.279 -0.237
44S3 -0.005 -0.148 0.250 0.020 -0.208 0.075 -0.171 1 0.103 0.041 -0.209 0.083
44S4 0.135 0.011 0.114 -0.403 -0.431 -0.046 0.108 0.103 1 -0.218 -0.453 -0.032
44M2 0.001 -0.017 -0.177 0.205 0.021 -0.097 -0.192 0.041 -0.218 1 0.147 0.211
44M3 0.136 0.113 -0.225 0.411 0.318 -0.035 0.279 -0.209 -0.453 0.147 1 0.026
44M4 -0.127 -0.320 0.011 -0.104 0.131 0.034 -0.237 0.083 -0.032 0.211 0.026 1

TABLE V
MEAN AND RELATIVE STANDARD DEVIATION OF TASKS’ RUNTIMES AND WORKFLOW MAKESPAN CORRELATIONS FOR EACH EXPERIMENT

13S1 13S2 13S3 13S4 13M2 13M3 13M4 44S2 44S3 44S4 44M2 44M3 44M4
Mean of runtime-makespan corr. 0.52 0.16 0.14 0.11 0.12 0.07 0.13 0.45 0.14 0.10 0.15 0.11 0.14

Relative stdandard deviation 0.34 0.57 0.57 0.88 0.78 0.95 0.74 0.27 0.78 0.85 0.72 0.82 0.73
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Fig. 5. Comparison of average correlation of each test case’ file transfer
times and task runtimes with the workflow makespan for each experiment
(environments)

All other experiments show much smaller average correlation,
while much greater compatriot relative standard deviation.

In order to check the correlation of task types and the
makespan, we calculate the average task runtime of the par-
allel sections in each test case of all experiments. Table VI
shows the Pearson’s correlation coefficient of mean values of
tasks’ runtimes per task group for each experiment. Again we
observe that there is a correlation for the sequential experiment
13S1 only. For all others, the Pearson’s correlation coefficient
of all task groups’ mean values are much smaller, which shows
that there is no correlation between each task and the workflow
makespan.

If we analyse by the task type, there is a slightly greater

TABLE VI
PEARSON CORRELATION COEFFICIENT OF MEAN VALUES OF TASKS’

RUNTIMES PER TASK GROUP FOR EACH EXPERIMENT

T1 AVG T2 T3 AVG T4 T5
13S1 0.56 0.78 0.15 0.71 0.47
13S2 -0.01 0.07 0.23 0.23 0.28
13S3 0.26 0.33 -0.08 -0.07 0.28
13S4 0.38 0.23 -0.14 0.19 0.10
13M2 -0.05 0.19 0.05 0.15 -0.30
13M3 0.22 0.10 0.26 0.04 -0.13
13M4 0.26 0.31 0.41 0.01 0.25
44S2 -0.14 0.39 -0.14 0.12 -0.11
44S3 0.16 0.17 0.03 0.21 0.11
44S4 -0.15 0.17 -0.14 -0.05 -0.23
44M2 0.35 0.43 0.17 -0.09 0.41
44M3 0.18 0.39 0.06 0.32 0.12
44M4 -0.01 0.37 -0.25 0.07 -0.09

correlation coefficient for the first parallel section (T2) for
most experiments, but still this is inconsiderable compared to
other tasks’ correlation coefficient.

VI. CONCLUSION

Many parameters, both from the cloud environment and
the workflow type itself, impact the makespan instability.
However, the results of our analysis did not show any direct
correlation between the instance type, number of instances
and parallel section size of the workflow with the workflows’
makespans, except for the sequential execution of a workflow
with only one small instance.

There is a huge correlation (almost one) between each
two consecutive workflow executions for the tasks runtimes.
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Although the file transfers are also correlated (around 0.8),
their correlation is smaller than the tasks runtimes. How-
ever, there is no correlation between neither the runtime
of consecutive executions of a task, nor the file transfers
with the whole makespan within the same experiment (cloud
environment). Also, we could not observe any correlation of
different task types within a workflow that will impact the
makespan instability, regardless if it is either a synchronisation
or a task of parallel section.

Several researchers [14], [18] used a normal distribution
for the workflow execution to simulate the cloud instability,
but we observed that it is not always the case. Additional
analysis should be conducted for dynamical simulation of
workflow execution in cloud that will simulate the totally
randomly cloud behavior, regardless of the environment’s and
the workflow’s parameters.

Although we used several cloud parameters and different
workflow parallel section parameters, we used only one work-
flow type - WIEN2k. For future work we plan to investigate
if there is any correlation for other realistic and synthetic
workflows. Also, all experiments were conducted in the private
OpenStack cloud, and we will analyse the correlation in some
public commercial cloud.
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