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Abstract—In Internet of Things (IoT), sensors, actuators and
smart devices are connected to the Internet. Application providers
combine this connectivity with novel scenarios involving cloud
computing. Some require in depth analysis of the interaction
between IoT devices and clouds. Research focuses on questions
like how to govern such large cohort of devices (i.e., often
over tens of thousands). Distributed systems simulators help
in such analysis, but they are problematic to apply in this
newly emerging domain. Most simulators are either too detailed
(e.g., need extensive knowledge on networking), or not extensible
enough to support the new scenarios. This paper introduces our
attempt to show how a state of the art simulator could model
generic IoT sensors. We show the fundamental properties of IoT
entities represented in the simulator. Based on these properties,
we present an XML based, declarative modelling language aiming
at: (i) describing the behaviour of sensors and their relation
to clouds, and (i7) allowing rapid prototyping of simulations.
Finally, we validate the applicability of our IoT extensions in
five scenarios in the field of weather forecasting.

I. INTRODUCTION

Internet of Things (IoT) is a rapidly emerging concept where
sensors, actuators and smart devices are often connected to
cloud systems. Clouds are used in scenarios in which data
from a large set of sensors is processed and often fed back to
actuators or smart devices. As the number of devices with
connected sensors and actuators are reaching new heights
every day, the way they are integrated to the cloud computing
ecosystem is also rapidly changing. As a result, IoT systems
integrators often need new experimental techniques — e.g.,
simulators — which allow them to understand the behaviour
of systems of previously unprecedented scale.

Recently, a wide range of IoT oriented simulators have
risen [1], [2], [3]. Regrettably, these simulators are frequently
limiting their use cases (e.g., big data processing). Also, often
they are focused on very specific sensors, or sensor behaviour.
Finally, these simulators are rarely scaling to match the number
of devices foreseen in IoT systems of tomorrow.

In this paper, we lay the foundations for flexible and
scalable modelling of IoT sensors through our extensions to
the DISSECT-CF simulator [4]. We introduce an XML based
representation for simple IoT sensor models to allow the
description of basic sensor characteristics (e.g., data amount
and production frequency). Building on this representation, we
show how large scale simulations could be constructed and
how various experiments could be done by altering sensor
networks organisation or sensor data distribution. Lastly, we

reveal the extension points to the currently designed system.
Albeit, scaling the simulation over several nodes is a relevant
topic to meet the demands of the newest IoT scenarios, this
topic is out of scope here as it was discussed before by [5].
One of the earliest users of connected sensors are from
the field of weather forecasting. The findings of the paper
are evaluated through five weather forecasting scenarios: we
used the public data available on the sensors operated by
the crowdsourced meteorological service of Hungary called
Idokep.hu'. Using the extended DISSECT-CF, we set up an
extensive network of simulated sensors (with over 400 devices
encompassing over 3000 individual sensors) and evaluated
data collection and analysis techniques, as if they would be
executed in a state of the art infrastructure as a service system.
The structure of the paper is the following. First, in Sec-
tion II, we continue with the discussion of the state of the
art. Next, in Section III, we discuss the extensions applied to
the DISSECT-CF simulator. Later, Section IV discusses our
weather forecasting case study and evaluates our extensions
with a real life case. Finally, Section V concludes our work.

II. RELATED WORK

There are many simulators available to examine distributed
and specifically cloud systems. Nevertheless, there are some
more specific IoT simulators closer to our approach. Han et
al. [2] have designed DPWSim, which is a simulation toolkit
to support the development of service-oriented and event-
driven IoT applications with secure web service capabilities.
Its aim is to support the OASIS standard Devices Profile for
Web Services (DPWS). SimloT [1] is derived from the SimIC
simulation framework [6]. It introduces several techniques to
simulate the communication between an IoT sensor and the
cloud, but it is limited to compute activity modeling.

Moschakis and Karatza [7] introduce several simulation
concepts for [oT systems. First, they show how the interfacing
between the various cloud providers and IoT systems could be
modeled (even including workload models) in a simulation.
Unfortunately, they mainly discuss the behavior of cloud
systems that support the processing of data originated from
the IoT system. Silva et al. [8] deal with the dynamic nature
of IoT systems, they investigate fault behaviors and introduce
a fault model for such systems. Although faults are important,

Thttp://idokep.hu
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the scalability of the introduced fault behaviors and concepts
are insufficient for large scale systems.

Khan et al. [9] introduce a novel infrastructure coordination
technique that supports the use of larger scale IoT systems.
They build on CloudSim [10] and provide customizations that
are tailored for their specific home automation scenarios and
therefore limit the applicability of their extensions. Zeng et al.
[3] proposed IOTSim that supports and enables simulation of
big data processing in IoT systems limiting themselves to the
MapReduce model. They also presented a real case study that
validates the effectiveness of their simulator.

In the field of resource abstraction for IoT, efforts aimed at
the description and implementation of languages and frame-
works for efficient representation, annotation and processing
of sensed data. The integration of IoT and clouds has been
envisioned e.g. by Botta et al. [11]. They argue that system
designers and operations managers face challenges to realize
IoT cloud systems, due to the complexity and diversity of
their requirements in terms of IoT resources consumption,
customization and runtime governance. We build on these
results and target our contribution at IoT Cloud simulations.

III. OUR PROPOSED MODEL FOR IOT SENSORS

We aim at supporting the simulation of thousands (or more)
devices participating in previously unforeseen/existing IoT
scenarios that have not been examined before in more detail
(e.g., in terms of scalability, energy efficiency or management
costs). As this aim requires a high performance resource shar-
ing mechanism, we have chosen to extend the DISSECT-CF
[4] simulator, because its unified resource sharing foundation.

DISSECT-CF is a compact open source” simulator focusing
on the internals of IaaS systems. Figure 1 presents its architec-
ture. There are five subsystems (encircled with dashed lines)
implemented, each responsible for a particular functionality:
(1) event system — the primary time reference; (ii) unified
resource sharing — models low-level resource bottlenecks; (iii)
energy modeling — for the analysis of energy-usage patterns
of resources (e.g., NICs, CPUs) or their aggregations; (iv)
infrastructure simulation — for physical/virtual machines and

2available from: https://github.com/kecskemeti/dissect-cf

networking; and (v) infrastructure management — provides a
cloud like API and cloud level scheduling.

Our extension takes into account the following IoT com-
ponents: sensors, actuators and central computing services.
Sensors are essential parts of IoT systems, and usually they are
passive entities. Their performance is limited by their network
gateway’s (i.e., the device which polls for the measurements
and sends them away) connectivity and maximum update
frequency. Actuators are entities also limited by their network
connectivity and reaction time (e.g., how long does it take
to actually perform an actuation action). They also have the
unique feature that allow changing the location of non-cloud
entities. Finally, central computing services provide the large-
scale background processing and storage capabilities needed
for the IoT scenarios. According to recent advances in IoT,
these services are expected to be used only if unavoidable.

Based on these generic plans we performed the extension of
the DISSECT-CF simulator towards IoT. To derive the sensor
models for the extension, we started by modelling a real-world
IoT system. As one of the earliest examples of sensor networks
are from the field of meteorology and weather forecasting, we
choose to model the crowdsourced meteorological service of
Hungary called Idokep.hu. It has been established in 2004,
and it is one of the most popular websites on meteorology
in Hungary. Since 2008 weather information can be viewed
on Croatia and even on Germany. Detailed information of
its system architecture and operation can also be found on
the website: more than 400 stations send sensor data to their
system (including temperature, humidity, barometric pressure,
rainfall and wind properties), and the actual weather conditions
are refreshed every 10 minutes. They also provide forecasts
up to a week. They also produce and sell sensor stations
capable to extend their sensor network and improve their
weather predictions. These can be bought and installed at
buyer specific locations. We followed a bottom-up approach
to add IoT functionalities to the simulator, and implemented
a weather forecasting scenario using public data available on
sensors and their behaviour at http://www.idokep.hu.

Figure 2 depicts how data stored about each station in an
IoT system. This description is useful to set up predefined
stations from files. The tasksize attribute of Application
(responsible for executing the scenario) defines the amount of
data (in bytes) to be gathered in a cloud storage (sent by the
stations) before their processing in a VM.

Stations have unique identifiers (i.e., a name) represent-
ing a weather station. We can specify their lifetime with the
tag t ime by defining their starttime and stoptime. The
cardinality of the supervised sensor set is set via snumber.
Alongside the set cardinality, one can also specify the average
data size produced by one of the sensors in the set. To set
up more stations with the same properties, one can use the
count option in the name tag. Data generation frequency
(freq) could be set for the sensor set (in miliseconds).
The station’s caching mechanism is influenced with the tag
ratio. This defines the amount of data to be kept at the
local storage relative to the average dataset produced by the



<Application tasksize=’250000">

<Station>
<name count=’1’>Szeged</name>
<freg>60000</freqg>
<snumber size=’200’>10</snumber>
<time starttime=’500’ stoptime=’1000">

1000 </time>

<maxinbw>100</maxinbw>
<maxoutbw>100</maxoutbw>
<storagebw>100</storagebw>
<torepo>sztakilpdsceph</torepo>
<storage>60000</storage>
<ratio>1l</ratio>

</Station>

</Application>

Fig. 2. XML-based description of IoT systems

sensors at each data generation event. If the unsent data in
the local storage (which is defined in storage) overreaches
the caching limit, the station is modelled to send the cached
items to the cloud’s storage (identified with its network node id
specified in the torepo tag). The local storage is also keeping
a log of previously sent data until its capacity is exceeded. The
station’s network connectivity to the outside world is specified
by the tags maxinbw and maxoutbw, while the network
capacity of the cloud storage is specified in storagebw.
In the next section we introduce and evaluate our extensions
with a weather forecasting scenario which is derived from the
publicly observable real-world operation of Idokep.hu.

IV. IMPLEMENTATION AND VALIDATION

During our implementation and evaluation, where applica-
ble, we used publicly available information to populate our
experiments. Unfortunately, some details are unpublished (e.g.
sensor data sizes, data-processing times), for those, we have
provided estimates and listed them below.

In the website of Idokep.hu, we learnt that currently the
service operates with 487 stations. Each of them has sensors
at most monitoring the following environmental properties:
(7) timestamp; (i¢) air and dew point temperature (in °C);
(#4¢) humidity (%); (iv) barometic pressure (hPa); (v) rainfall
(mm/hour and mm/day); (vi) wind speed (km/h); (vii) wind
direction; (viii) and UV-B level.

Concerning the size of such sensor data, we expect them to
be save in a structured text file (eg., CSV). Stored this way,
we can estimate that approximately 50 bytes (e.g., based on
the website of the Murdoch University Weather Station®) are
produced if each sensor produces data in every measurement.

In the extension the C1oud class can be used to specify and
set up a cloud environment. This class uses DISSECT-CF’s
XML based cloud loader to set up a cloud environment to be
used for storing and processing data from stations. This class
should also be used to define Virtual Appliances modeling the
application binaries doing the in cloud processing.

3http://wwwmet.murdoch.edu.au/downloads

The scenarios to be examined through simulations should
be defined by the Application class. Users are expected
to implement custom IoT Cloud use cases here by examining
various management and processing algorithms of sensor data
in VMs of a specific cloud environment. The VmCollector
class can be used to manage such VMs, and its VmSearch ()
method can be used to check if there is a free VM available
in the cloud to be utilized for a certain task. If this is not
the case, the generateAndAdd () method can be used to
deploy a new one.

Next, we detail the steps of the behaviour of our
Application implementation which was used for all eval-
uation scenarios later. Step 1: Set up the cloud using an XML
description. As we expect meteorological scenarios will often
use private clouds, we used the model of our local private
infrastructure (the LPDS Cloud of MTA SZTAKI, Hungary).
Step 2: Set up the 487 stations (using a scenario specific
XML description) with the previously listed 8 sensors per
station. Step 3: Start the Application to deploy an initial
VM (generateAndAddVM ()) for processing and to start
the metering process in all stations (startStation()).
Step 4: The stations then monitor (Metering () ), save and
send (startCommunicate ()) sensor data (to the cloud
storage) according to their XML definition. Step 5: A daemon
service checks regularly if the cloud repository received a
scenario specific amount of data (see the tasksize attribute
in Figure 2). If there so, then the Application generates
tasks which will finish processing within a predefined amount
of time. Step 6: Next, for each generated task, a free VM is
searched (by VvmSearch ()). If a VM is found, the task and
the relevant data is sent to it for processing. Step 7: In case
there are no free VMs found, the daemon initiates a new VM
deployment and holds back the not yet mapped tasks. Step
8: If at the end of the task assignment phase, there are still
free VMs, they are all decommissioned (by turnoffVvM())
except the last one (allowing the next rounds to start with an
already available VM). Note this behaviour could be turned
on/off at will. Step 9: The Application returns to Step 5.

A. Evaluation with Five Scenarios

In this sub-section, we reveal five scenarios targeting ques-
tions likely to be investigated with the help of extended
DISSECT-CF *. Namely, our scenarios mainly focus on how
resource utilization and management patterns alter based on
changing sensor behaviour (e.g., how different sensor data
sizes and varying number of stations and sensors affect the
operation of the simulated IoT system). Note, the scope of
these scenarios is solely focused on the validation of our
proposed IoT extensions and thus the scenarios are mostly
underdeveloped in terms of how a weather service would
behave internally.

Before getting into the details, we clarify the common
behaviour patterns, we used during all of the scenarios below.

4The scenarios are available at https://github.com/andrasmarkus/dissect-cf/
tree/andrasmarkus- patch- 1/experiments
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First of all, to limit simulation runtime, all of our experiments
limited the station lifetimes to a single day. The start-up
period of the stations were selected randomly between 0
and 20 minutes. The task creator daemon service of our
Application implementation spawned tasks after the cloud
storage received more than 250 kBs of metering data (see
the tasksize of Figure 2). This step ensured the estimated
processing time of 5 minutes/task. VMs were started for each
250 kB data set. The cloud storage was completely run empty
by the daemon: the last spawned task was started with less than
250 kBs to process — scaling down its execution time. Finally,
we disabled the dynamic VM decommissioning feature of the
application (see step 8 in Section IV).

In scenario N°1 (SC1), we varied the amount of data
produced by the sensors: we set 50, 100 and 200 bytes for
our cases (allowing overheads for storage, network, different
data formats and secure encoding etc.). We simulated the 487
stations of the weather service. For the first case with 50 bytes
of sensor data we measured 256 MBs of produced data in total,
while in the second case of 100 bytes we measured 513 MBs,
and in the third of 200 bytes we measured 1.02 GBs (showing
linear scaling up). In the 3 cases we needed 6, 10 and 20
VMs to process all tasks respectively. The number of tasks
generated by the stations can be seen in Figure 3, while the
creation of tasks over time is depicted in Figure 4.

In scenario N°2 (SC2), we examined the effects of varying
sensor numbers and varying sensor data sizes per stations to
mimic real world systems better. Therefore, we defined a fixed
case using 744 stations having 7 sensors each, producing 100
bytes of sensor data per measurement, and a random case, in
which we had the 744 stations with randomly sized sensor set
(ranging between 6-8) and sensor data size (50, 100 or 200
bytes/sensor). The initial build-up of the tasks can be seen in
Figure 4, while the total number of generated tasks were 2150
in SC2. We experienced minimal differences between the two
cases, and the random case resulted in slightly more tasks.

In scenario N°3 (SC3), we examined random sensor data
generation frequencies. We set up 600 stations, and defined
cases for two static frequencies (1 and 5 minutes), and a third
case, in which we randomly set the sensing frequency between
1 and 5. In real life, the varying weather conditions may call
for (or result in) such changes. In both cases, the sensors
generated our previously estimated 50 bytes. The generated
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data in total: 316 MBs for 1 minute frequency, 63 MBs for 5
minute frequency, and 143 MBs for the randomly selected
frequencies. The first case required the highest number of
VMs to process the sensed data, but the randomly modified
sensing frequency resulted in the highest number of tasks. The
total tasks generated are 1455, and the build-up of the tasks
compated to the previous scenarios are shown in Figure 4.

In the three scenarios executed so far the main applica-
tion, responsible for processing the sensor data in the cloud,
checked the repository for new transfers in every minute. In
some cases we experienced that only small amount of data
has arrived within this interval (i.e. task creation frequency).
Therefore in scenario N°4, we examined what happens if we
widen this interval to 5 minutes. We executed three cases here
with 200, 487 and 600 stations. The results can be seen in
Figure 5. In Figure 6, we can read the number of VMs required
for processing the tasks in the actual case. The first case has
the highest difference in terms of task numbers: data coming
from sensors of 200 stations needed more than 1400 tasks
with 1 minute interval, while less than 600 with 5 minutes
interval. It is also interesting that with 600 stations almost the
same amount of tasks were generated, but with the 5 minutes
interval we needed more VMs to process them.

As we model a crowdsourced service, we expect to see a
more dynamic behaviour regarding stations. In the previous
cases we used static number of stations per experiment,
while in our final scenario, N°5, we ensured station numbers
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dynamically change. Such changes may occur due to station or
sensor failures, or even by sensor replacement. In this scenario
we performed these changes by specific hours of the day: from
0-5 am we started 200 stations, from 6-8 am we operated 500
stations, from 9 am to 15 pm we scaled them down to 300,
then from 16-18 up to 500, finally the last round from 19-24
pm we set it back to 200. In this experiment we also wanted
to examine the effects of VM decommissioning, therefore we
executed two different cases, one with and one without turning
off unused VMs. In both cases we set the tasksize attribute
to 10 kB (instead of the usual 250kB). The results can be seen
in Figure 7. We can see that without turning off the unused
VMs from 6 pm we kept more than 20 VMs alive (resulting
in more overprovisioning), while in the other case the number
of running VMs dynamically changed to the one required by
the number of tasks to be processed.

As a summary, in this section, we presented five scenarios
focusing on various properties of IoT systems. We have shown
that with our extended simulator, we can investigate the
behaviour of these systems and contribute to the development
of better solutions in this research field.

V. CONCLUSIONS

Distributed systems simulators are not generic enough to
be applied in newly emerging domains, such as IoT Cloud
systems. Most systems are either too detailed, or not extensible
to support the to be modelled devices. Therefore in this paper
we introduced a method to show how generic IoT sensors

could be modelled in a state of the art cloud simulator. We
showed how the fundamental properties of IoT entities can
be represented in the simulator, and proposed an XML based,
declarative modelling language to describe the behaviour of
various sensors. We also validated our extensions in the
simulator by executing 5 different scenarios of simulated IoT
systems provisioning a meteorological service.

Our future work will address investigations on non-
frequency based sensor data production to allow more influ-
ence on when and what kind of data is produced by a particular
sensor. Also, an initial model on actuators will be proposed.
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