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Abstract

Recently, a higher dimensional Eisenstein-Jacobi (EJ) networks, EJ
(n)
α ,

has been proposed in [22], which is shown that they have better average
distance with more number of nodes than a single dimensional EJ net-
works. Some communication algorithms such as one-to-all and all-to-all
communications are well known and used in interconnection networks. In
one-to-all communication, a source node sends a message to every other
node in the network. Whereas, in all-to-all communication, every node
is considered as a source node and sends its message to every other node
in the network. In this paper, an improved one-to-all communication
algorithm in EJ

(n)
α networks is presented. The paper shows that the pro-

posed algorithm achieves a lower average number of steps to receiving the
broadcasted message. In addition, since the links are assumed to be half-
duplex, the all-to-all broadcasting algorithm is divided into three phases.
The simulation results are discussed and showed that the improved one-
to-all algorithm achieves better traffic performance than the well-known
one-to-all algorithm and has 2.7% less total number of senders.

Index terms— Parallel Computing, Interconnection Network, Eisenstein-
Jacobi Network, Broadcast, Traffic Distribution, One-to-All, All-to-All.

1 Introduction

Multiprocessors are categorized into two types. The first type is called dis-
tributed memory multiprocessors system where the communications between the
processors are performed over an interconnection network since every processor
has its own memory unit. The other type is called shared-memory multipro-
cessors system where the processors communicate through a common memory
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unit. Thus, the topology of interconnection networks plays critical roles in in
achieving high performance in distributed memory multiprocessors. There are
many popular interconnection networks such as Hypercubes [17, 18], General-
ized Hypercubes [8], Twisted Cubes [19], Cube Connected Cycle [25], k–ary
n–cube [9], and Torus [11].

One of the efficient interconnection networks called Eisentein-Jacobi net-
works, simply EJ, introduced in [16, 24]. EJ networks are symmetric and 6-
regular networks where each node in the network is connected to 6 neighbors.
They are based on EJ integers, which are used to implement error-free of radix-3
Fast Fourier Transform (FFT) algorithms and efficient algorithms for complex
multiplication [13]. EJ networks are known to be a generalization of hexagonal
networks developed in [10, 14, 23]. Thus, the applications on hexagonal net-
works can also be applied on EJ networks. As an extension, in [22] a higher
dimensional EJ network has been developed based on the cross products be-
tween the lower dimensional EJ networks. the next section describes the formal
definition of this network.

The design of efficient communication algorithms for parallel computing sys-
tems has been a hot topic. For instance, the problems related to image pro-
cessing and computer vision [2, 3, 4, 5, 6, 7, 27] are solved based on the imple-
mentation of parallel algorithms. Furthermore, some studies on one-to-all and
all-to-all broadcasting can be found in[15, 21, 26]. In one-to-all broadcasting,
a source node sends its message to every other node in the network. Whereas,
in all-to-all broadcasting, all nodes in the network send their messages to every
other node in the network. Some applications use these types of communica-
tions such as matrix transpose, matrix multiplication, some parallel database
join operations, etc.

In [22], the implementation of one-to-all broadcasting was semi-parallelized.
That is, each node forwards the received message to its neighbors on the same
dimension where the message was received. In this paper, the broadcasting
algorithms are studied and enhanced to be fully parallelized to achieve better
traffic distributions in higher dimensional EJ network.

The structure of the paper is as follows. In Section 2, the topological proper-
ties of EJ network are briefly described. The previous work related to this paper
is discussed in Section 3. Section 4 presents an improved one-to-all broadcast-
ing algorithm and used to implement the all-to-all broadcasting algorithm. In
Section 5, a comparative analysis between the previous and the proposed algo-
rithms is illustrated. Simulation results are illustrated and discussed in Section
6. Finally, the paper is concluded in Section 7.

2 Background

In this section, the important topological properties of Eisenstein-Jacobi net-
works are reviewed in subsection 2.1. Further, the design and the definition
of higher dimensional Eisenstein-Jacobi networks are summarized in subsection
2.2.
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2.1 Eisenstein-Jacobi Network (EJ
α
)

Based on the definitions mentioned in [16, 20], an EJ integer Z[ρ] is the subset
of complex numbers with real and imaginary parts denoted as Z[ρ] = {x+ yρ |
x, y ∈ Z} where ρ = (1 + i

√
3)/2, i =

√
−1, ρ2 = −1 + ρ, and Z = {0, 1, 2, . . .}.

EJα networks belong to a family of planer graphs, which can be represented as
graph EJα(V,E) generated by α = a+ bρ such that 0 ≤ a ≤ b where V = Z[ρ]α
is the node set and E = {(A,B) ∈ V × V | (A − B) ≡ ±1,±ρ,±ρ2 mod α} is
the link set represents the connections between the nodes.

An EJα network generated by α = a+ bρ 6= 0 is based on quotient rings of
EJ integers and it contains a total number of nodes equal to N(α) = a2+b2+ab,
called norm, which is the number of the elements in the residue class modulo
α [20]. EJα networks are 6-regular symmetric networks, i.e., each node in the
network has six neighbors. Each node in the network is labeled as x+yρ, which
represents the location of EJ integer on the grid. Two nodes A and B are
neighbors if (A−B) mod α is ±1, ±ρ, or ±ρ2. The diameter of the network is
known as the shortest distance between two most farthest nodes in the network
EJα.

The distance between any two nodes A and B in the network is defined as:

Dα(A,B) = min{|x|+ |y|+ |z| | (A−B)

≡ x+ yρ+ zρ2 (mod α)} (1)

Since EJα is node-symmetric the weight of node A, which is the distance of
this node from node 0, is defined as:

Wα(A) = min{|x|+ |y|+ |z| | (A)
≡ x+ yρ+ zρ2 (mod α)} (2)

Given a distance s, where s = 0, 1, 2, . . . ,M and M is the diameter of the
network defined below, the number of nodes at distance s in EJα is denoted as
WEJ(s) [16]. The following describes the distance distribution of the network.

WEJ(s) =







1 if s = 0
6s if 1 ≤ s < T
18(M − s) if T < s < M
2 if b ≡ a (mod 3)

and s = M
0 if s > M
N(α)−R if s = T

(3)

where T = (a+ b)/2, M = (a+2b)/3, R =
∑M

s=0,s6=T WEJ (s) and the diameter
of the network is at most M . The value of WEJ (T ) depends on whether T ,M
are integers; that is, it depends on the value of a − b (mod 6). The value of
WEJ(T ) can be found by subtracting the sum of the weights already listed from
the total number of nodes a2 + b2 + ab.

There are two types of links in EJα networks: regular and wraparound links.
The links that connect two nodes within the network grid are called regular links,
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whereas, the wraparound links connect the nodes located within the network
grid with the other node located out of the boundary of the network grid. In
other way, the wraparound links can be understood by using mod α operation
after adding ±1, ±ρ, or ±ρ2 to the nodes located at the boundary of the grid
to get their neighbors located out of the boundary of the grid. In addition, the
wraparound links can be easily seen by placing the EJα network at the origin
of a grid and consider it as a basic EJα network with its center node is 0. Then,
making tiles by copying the basic EJα network and placing its copies around it.

Figure 1 illustrates the EJα network generated by α = 3+4ρ where the solid
lines represent the regular links and the dotted lines represent the wraparound
links. Note that, in Example 2.1, we have removed the straight dotted lines from
node 3 to describe them as wrapped links. Also, we have kept the boundary
nodes of the tiles to represent the nodes located out of the boundary of the grid
and the rest nodes of the tiles are removed. The nodes in different tiles of the
network are represented in different gray colors.

Example 2.1. Consider the node 3 in Figure 1. The node 3 is connected to
node 3+ ρ through +ρ link, which its corresponding node within the basic grid
is −3ρ. That is, 3 + ρ mod α = −3ρ. Similarly, the +1 and −ρ2 links of node 3
connect the node 3 to nodes 4 and 3− ρ2, respectively. Note that, in respective
order, their corresponding nodes in the basic grid are 3ρ2 and −1 + 2ρ2.
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Figure 1: EJ3+4ρ with dotted lines as a wraparound links.

The network can be divided into six sectors. This division is useful in both
one-to-all and all-to-all broadcasting. Figure 2 shows an example of the six sec-
tors in EJ5+6ρ network where the black node is the center node of the network,
usually node 0. A node A = xρj−1 + yρj is in sector j for j = 1, 2, 3, 4, 5, and
6.
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Sector 2

Sector 5

Figure 2: The six sectors in EJ5+6ρ.

2.2 Higher Dimensional EJ Network EJ
(n)
α

The higher dimensional EJ
(n)
α network was proposed in [22]. It is shown that

the higher dimensional EJ
(n)
α network is formed based on the cross product

between the lower dimensional EJ networks as follows:

EJ (n)
α = EJα ⊗ EJ (n−1)

α

= EJα ⊗
n−1 times

︷ ︸︸ ︷

(EJα ⊗ · · · ⊗ EJα) (4)

where 0 6= α = a+ bρ ∈ Z[ρ] and n is the number of dimensions of EJ
(n)
α .

The cross product between two graphs is explained in [12] as follows. Let
G(V,E) be the resultant graph from the cross product between two graphs
G1 = (V1, E1) and G2 = (V2, E2). Then, G(V,E) can be written as G1 × G2

where V = {(u, v) | u ∈ V1, v ∈ V2} and E = {((u1, v1), (u2, v2))|((u1, u2) ∈ E1

and v1 = v2) or ((v1, v2) ∈ E2 and u1 = u2)}.
The total number of nodes in EJ

(n)
α is N(α)n, which is the total number

of nodes in a single dimensional EJ network power of n. A node in EJ
(n)
α is

denoted as a set of n-tuples with coordinates in EJα. That is, a node (xn+ynρ,
xn−1 + yn−1ρ, . . . , x1 + y1ρ) is located in the positions xn + ynρ on the first

layer (highest or nth-dimension) of EJ
(n)
α , xn−1 + yn−1ρ on the second layer of

EJ
(n)
α , and so on until x1 + y1ρ on the last layer (lowest or 1st-dimension) of

EJ
(n)
α . The degree of each node is 6n. EJ

(n)
α can be drawn by placing a copy of

EJ
(n−1)
α on each node of EJα. For example, Figure 3 illustrates EJ

(2)
2+3 where

the node (1−ρ2, 1+ρ) is filled with a black color with all of its edges connected
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to its neighbors and the neighbors of node (0,0) are obvious.

Figure 3: EJ
(2)
2+3ρ with nodes 0 and (1 − ρ2,1 + ρ) and their neighbors. The

black node is (1− ρ2,1 + ρ).

3 Previous Work

In this section, the known one-to-all broadcasting algorithm is reviewed. After

that, the one-to-all broadcasting algorithm for EJ
(n)
α is briefly described.

Before describing the algorithm, except the node 0+0i (simply 0), there are
two types of receiving nodes, the axis nodes xρp, for p = 0, 1, 2 and x is either
positive or negative integer; and the non-axis nodes, i.e., the rest of the nodes.
The one-to-all broadcasting [1, 23] in EJα can be performed in M steps based
on the spanning tree and the six sectors of EJα as described in Figure 2, where
the numbered links illustrates the steps of the broadcasting.

Consider the network EJα. The spanning tree of the network is constructed
during the broadcasting process as follows. In the first step, the root node of the
spanning tree, usually node 0, sends its message to the six sectors through all
neighbor nodes (1, ρ, ρ2, −1, −ρ, −ρ2), where each neighbor node is responsible
to distribute the message to its sector. From steps 2 to M the algorithm works
as follows. In each step, each node receives the message from its parent node
will forward the message to its children within its sector. That is, the axis nodes
forward the message to two neighbor nodes and the non-axis nodes forward the
message to one neighbor node, all located within the same sector.

For example, consider the network EJ3+4ρ. Based on the spanning tree
illustrated in Figure 4, in the first step, the node 0 sends a message to nodes
1, ρ, ρ2, −1, −ρ, and −ρ2 through the links numbered 1. The rest of the
broadcasting process is explained for sector 6 since all sectors perform the same
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steps of the algorithm. In the second step, the axis node 1 receives its message
from node 0 and then forwards the message to the axis node 2 and the non-axis
node 1 − ρ2 via the links numbered 2. Finally, in the third and last step, the
axis node 2 forwards its received message to its neighbor nodes 3 and 2 − ρ2

through the links numbered 3, whereas, the non-axis node 1 − ρ2 forwards the
received message to its neighbor node 1− 2ρ2 via the links numbered 3.
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Figure 4: One-to-all broadcast in EJ3+4ρ.

In [22], an iterative one-to-all broadcasting algorithm has been developed

for EJ
(n)
α based on the above described one-to-all broadcasting algorithm for

EJα. The one-to-all broadcasting in EJ
(n)
α is divided into n rounds such that

each round has M steps. For round 1, the M -steps of one-to-all are applied on
the nth dimension (first layer). When the round 1 is ended, each center node

in EJ
(n−1)
α has received the message. Then, the one-to-all is applied on the

(n− 1)th dimension in round 2. That is, each of EJ
(n−1)
α applies the one-to-all

broadcast. Repeating this process for n rounds from the highest layer to the
lowest layer makes all nodes receive the message. That is, for round i+1, where

i = 0, 1, . . . , n−1, the M -steps of one-to-all are applied on every EJ
(n−i)
α in the

(n− i)th dimension. Figures 5 and 6, in respective order, illustrate the first and

second rounds of the one-to-all broadcasting process in EJ
(2)
2+3ρ.

4 An Improved Broadcasting in EJ
(n)
α

This section proposes the improved one-to-all broadcasting algorithm. Further,
the proposed one-to-all algorithm is used in the implementation of all-to-all
broadcasting algorithm. For simplicity, the algorithms below are described for

the EJ
(n)
α networks where b = a+ 1. The same algorithms with little modifica-

tions could be used to perform the broadcasting on EJ
(n)
α such that 0 ≤ a ≤ b.
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Figure 5: First round of one-to-all broadcast in EJ
(2)
2+3ρ.
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Figure 6: Second round of one-to-all broadcast in EJ
(2)
2+3ρ.

4.1 One-to-All Broadcast

The previous and the proposed one-to-all algorithms have the same number of
rounds and steps, which is nM where M is the diameter of the network and n is
the number of dimensions. The advantage of the proposed one-to-all algorithms
over the previous one is that the proposed algorithms distribute the broadcast
traffic over the broadcast steps on a relatively more balanced manner. This
results in a lower average number of steps needed to receive the broadcasted
message.

Algorithms 1 and 2 describe the proposed one-to-all broadcasting algorithm

on EJ
(n)
a+bρ where b = a+ 1 and n > 0. Simply, the node 0 sends its message to
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all of its neighboring nodes in all dimensions. Then, as in the previous one-to-all
algorithm, each receiving node sends the received message to the neighboring
nodes in its sector. In addition, the receiving nodes send their message to all
of their neighboring nodes in all dimensions that are lower than the receiving
dimension.

For example, consider the network EJ
(2)
2+3ρ. The improved one-to-all broad-

casting works as follows. In step 1, as illustrates in Figure 7, the center node
(node 0) sends its message to all of its neighbors in all dimensions. That is,
the node 0 sends its message to nodes (0, 1), (0, ρ), (0, ρ2), (0, −1), (0, −ρ),
(0, −ρ2), (1, 0), (ρ, 0), (ρ2, 0), (−1, 0), (−ρ, 0), and (−ρ2, 0), i.e., the node
0 calls ONE-TO-ALL(n,1). After that, in steps 2 to nM , each receiving node
is responsible in propagating the message to its sector on the same dimension
and to the six sectors in all lower dimensions. It means that the receiving node
applies recursively the one-to-all on the lower dimensions while continuing in
sending the received message to the neighboring nodes in its sector on the same
dimension. The second step of the broadcasting is shown in Figure 8.

Algorithm 1 One-to-All Broadcast

1: procedure One-to-All(dimension, step)
2: Let n be the number of dimensions and M be the diameter of the network
3: Send via +ρ packet SECTOR(+ρ, +1, dimension,M−1,M−1, step+1)

⊲ S1

4: Send via +ρ2 packet SECTOR(+ρ2, +ρ, dimension, M − 1, M − 1,
step+ 1) ⊲ S2

5: Send via −1 packet SECTOR(−1, +ρ2, dimension, M − 1, M − 1,
step+ 1) ⊲ S3

6: Send via −ρ packet SECTOR(−ρ2, −1, dimension, M − 1, M − 1,
step+ 1) ⊲ S4

7: Send via −ρ2 packet SECTOR(−ρ2, −ρ, dimension, M − 1, M − 1,
step+ 1) ⊲ S5

8: Send via +1 packet SECTOR(+1, −ρ2, dimension, M − 1, M − 1,
step+ 1) ⊲ S6

9: if dimension > 1 then

10: ONE-TO-ALL(dimension− 1, step)

4.2 All-to-All Broadcast

The all-to-all broadcast performs the one-to-all broadcast in every node in the
network. That is, all nodes send their messages to all other nodes in the network.
Note that, all nodes cannot perform the one-to-all broadcast simulatneously
since no node in the network can send and receive at the same time using the
same link. Thus, the all-to-all communications is divided into three phases
in which each phase is responsible to propogate the message to two sectors.
Algorithms 3 and 4 describe the all-to-all broadcast.
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Algorithm 2 One-to-All Sector

1: procedure Sector(major, minor, dimension, x, y, step)
2: Let n be the number of dimensions and M be the diameter of the network
3: if step > nM then

4: return
5: if x > 0 then

6:

Send via minor packet SECTOR(
major, minor, dimension, x− 1, 0,
step+ 1)

7: if y > 0 then

8: Send via major packet SECTOR(
major, minor, dimension, x− 1, y − 1,
step+ 1)

9: if dimension > 1 then

10: ONE-TO-ALL(dimension− 1, step)

Algorithm 3 All-to-All Broadcast

1: procedure All-to-All(dimension, step, phase)
2: Let n be the number of dimensions and M be the diameter of the network
3: if phase = 1 then

4: Send via +1 packet SECTOR(
+1, −ρ2, dimension, M − 1, M − 1,
step+ 1, phase)

5: Send via +ρ packet SECTOR(
+ρ, +1, dimension, M − 1, M − 1,
step+ 1, phase)

6: if phase = 2 then

7: Send via +ρ2 packet SECTOR(
+ρ2, +ρ, dimension, M − 1, M − 1,
step+ 1, phase)

8: Send via −1 packet SECTOR(
−1, +ρ2, dimension, M − 1, M − 1,
step+ 1, phase)

9: if phase = 3 then

10: Send via −ρ packet SECTOR(
−ρ, −1, dimension, M − 1, M − 1,
step+ 1, phase)

11: Send via −ρ2 packet SECTOR(
−ρ2, −ρ, dimension, M − 1, M − 1,
step+ 1, phase)

12: if dimension > 1 then

13: ALL-TO-ALL(dimension− 1, step, phase)

10



Figure 7: Step 1 of the proposed one-to-all broadcast in EJ
(2)
2+3ρ.

Figure 8: Step 2 of the proposed one-to-all broadcast in EJ
(2)
2+3ρ.

The all-to-all broadcasting algorithm works as follows. In phase 1, all nodes
call ALL-TO-ALL(n, 1, 1), which means that all nodes perform the one-to-all
broadcasting on sectors 6 and 1 in all dimensions. In order to do that, all nodes
in the network open three of their ports and utilize them to send the messages
to the neighboring nodes over the links (+ρ, +1, and −ρ2). In addition, all
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Algorithm 4 All-to-All Sector

1: procedure Sector(major, minor, dimension, x, y, step, phase)
2: Let n be the number of dimensions and M be the diameter of the network
3: if step > nM and phase = 3 then

4: return
5: else if step > nM and phase < 3 then

6: ALL-TO-ALL(n, 1, phase+1)
7: else

8: if x > 0 then

9: Send via minor packet SECTOR(
major, minor, dimension, x− 1, 0,
step+ 1,
phase)

10: if y > 0 then

11: Send via major packet SECTOR(
major, minor, dimension, x− 1, y − 1,
step+ 1,
phase)

12: if dimension > 1 then

13: ALL-TO-ALL(dimension− 1, step,
14: phase)

nodes open the other three ports and utilize them to receive the message from
their neighboring nodes over the links (−ρ, −1, and +ρ2). In phase 2, similar
to phase 1, but the one-to-all broadcasting is performed on sectors 2 and 3 in
all dimensions. Each node opens three ports for sending the messages to their
neighbors through the links (−1, +ρ2, and +ρ), whereas, the other three ports
are used to receive the messages from the neighbors through the links (+1, −ρ2,
and −ρ). Finally, in phase 3, the one-to-all broadcasting is applied on sectors 4
and 5 in all dimensions. That is, all nodes open and utilize three of their ports
to send the message to their neighbors via the links (−ρ2, −ρ, and −1); and
open and use the other three ports to receive the messages from the neighbors
via the links (+ρ2, +ρ, and +1).

By the end of phase 3, each node has sent its message to all other nodes in
the network. That is, every node in the network has received N(α)n−1 distinct
messages. Figures 9, 10, and 11 illustrates the ports and the links used by the
nodes in a single dimension to send and receive messages in each phase.

+1-1

+✂+✂
2

-✂ -✂
2

Figure 9: The sending and receiving ports in EJα during phase 1.
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+1-1

+✂+✂
2

-✂ -✂
2

Figure 10: The sending and receiving ports in EJα during phase 2.

+1-1

+✂+✂
2

-✂ -✂
2

Figure 11: The sending and receiving ports in EJα during phase 3.

In higher dimensional EJ
(n)
α , the links will be more complex. That is, there

will be more links to propagate the messages over the higher and lower dimen-
sions of the network. For clarity, the all-to-all broadcasting in a single dimen-
sional EJα is shown in Figures 12, 13, and 14 for the first, second, and third
steps of phase 1, respectively. Note that, the four senders are numbered with
their messages to track the messages in each step and to distinguish between
them.

1

2

3

4

1
1

2
2

3
3

4
4

Figure 12: All-to-all broadcast: The first step of phase 1 in part of a single
dimensional EJα.
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Figure 13: All-to-all broadcast: The second step of phase 1 in part of a single
dimensional EJα.
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Figure 14: All-to-all broadcast: The third step of phase 1 in part of a single
dimensional EJα.

5 Performance Analysis

In this section, the performance of the previous and the proposed one-to-all
broadcasting algorithms is analyzed and discussed in term of the number of
senders, receivers, active (senders + receivers), and free (total nodes - active
nodes) nodes in each step of the broadcasting.

Consider EJ
(n)
α where α ∈ Z[ρ]. Note that, the previous algorithm finishes

the broadcast in nM steps where n is the number of dimensions and M is the
network diameter (and the number of steps in each round). Then, the number
of receiver nodes in each step for the previous broadcasting algorithm is denoted
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Table 1: An analysis of the iterative (previous) One-to-All broadcasting on

EJ
(3)
3+4ρ

Round Step Free Sending Receiving Active

1
1 50,646 1 6 7
2 50,635 6 12 18
3 50,623 12 18 30

2
1 50,394 37 222 259
2 49,987 222 444 666
3 49,543 444 666 1,110

3
1 41,070 1,369 8,214 9,583
2 26,011 8,214 16,428 24,642
3 9,583 16,428 24,642 41,070

Total 12 26,733 50,652

numR and expressed as:

numR = 6dN(α)r−1 (5)

where r is the round number such that 0 ≤ r < n and d is the distance or
step number during round r such that 1 ≤ d ≤ M . Furthermore, the number
of sender nodes in each step is equal to the number of receiver nodes of the
previous step. That is, the total number of sender nodes in each step is numS
and it is computed as:

numS = 6(d− 1)N(α)r−1 (6)

where r is the round number such that 0 ≤ r < n and d is the distance or step
number during round r such that 1 ≤ d ≤ M .

Table 1 lists the number of free, sending, receiving, and active nodes in each

step in the network EJ
(3)
3+4ρ for the previous one-to-all algorithm.

The following formulas recursively computes the total number of receivers
in each step of the proposed one-to-all broadcasting.

O2A(n) =







6S(n,M − 1,M − 1)
O2A(n− 1)+
6S(n,M − 1,M − 1)

n = 1

n > 1
(7)
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S(n, x, y) =







S(n, x− 1, 0)+
S(n, x− 1, y − 1)

S(n, x− 1, 0)

O2A(n− 1)+
S(n, x− 1, 0)+
S(n, x− 1, y − 1)

O2A(n− 1)+
S(n, x− 1, 0)

O2A(n− 1)

n = 1, x > 0, y > 0

n = 1, x > 0, y = 0

n > 1, x > 0, y > 0

n > 1, x > 0, y = 0

n > 1, x = 0, y = 0

(8)

where n is the number of dimensions, M is the network diameter, and x, y are
steps counters. The number of senders in the ith step of the proposed algorithm
is as follows.

numSi = numRi−1 − number of S(1, 0, 0)

in (i− 1)th step (9)

where numSi is the number of the senders in step i and numRi−1 is the number
of receivers in step i−1 calculated based on the the above formulas. Or, numSi

can be computed as follows.

numSi = number of expanded S′s in step i− 1 (10)

For example, consider EJ
(2)
2+3ρ where its diameter is M = 2. Then, the step

1 can be written as:

O2A(2) = O2A(1) + 6S(2, 1, 1)

= 6S(1, 1, 1) + 6S(2, 1, 1)

Consequently, the number of receivers is 12, which is the total number of ex-
panded S’s in a single step, and the number of the senders is 1. Moreover, each
of the S can be expanded in step 2 and it can be written as:

= 6(S(1, 0, 0) + S(1, 0, 0)) +

6(O2A(1) + S(2, 0, 0) + S(2, 0, 0))

= 12S(1, 0, 0) + 6(6S(1, 1, 1) + 2S(2, 0, 0))

As a result, the number of receivers is 60 (since there are 60S’s) and the number
of the senders is 12, which is the number of S’s in the previous step excluding
S(1,0,0)’s. It is possible to get the third step after expanding all S’s and remov-
ing all S(1,0,0)’s from the previous step, i.e., step 2, since the broadcast ends
at S(1,0,0). This can be expressed as:

= 6(6(S(1, 0, 0) + S(1, 0, 0)) + 2 ∗O2A(1))

= 6(12S(1, 0, 0) + 12S(1, 1, 1))
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Table 2: An analysis of the proposed One-to-All broadcasting on E(J)
3
3+4ρ

Step Free Sending Receiving Active

1 50,634 1 18 19
2 50,491 18 144 162
3 49,807 144 702 846
4 47,593 684 2,376 3,060
5 42,661 2,160 5,832 7,992
6 35,425 4,752 10,476 15,228
7 29,809 7,236 13,608 20,844
8 31,861 7,128 11,664 18,792
9 40,933 3,888 5,832 9,720

Total 26,011 50,652

Accordingly, the number of receivers is 144 and the number of the senders is 48.
Finally, to get the step 4, which is the last step, all S(1, 1, 1) are expanded and
all S(1,0,0) are eliminated since the broadcast finishes at this point. Then,

= 6(12(S(1, 0, 0) + S(1, 0, 0)))

= 144S(1, 0, 0)

Thus, the number of receivers is 144 and the number of senders is 72. Since
S(1,0,0) cannot be expanded then the broadcast ends at this step.

Table 2 lists the number of free, sending, receiving, and active nodes in each

step of the proposed algorithm applied on the network EJ
(3)
3+4ρ.

6 Performance Evaluation

The simulation results of the comparisons between the previous and the pro-
posed one-to-all broadcasting are discussed in this section. The assumption
made for the simulation is that the communications are half-duplex and utilize
all ports. The number of active nodes, whether sending or receiving, are added
up for the purpose of comparisons in each step of the broadcast.

The simulation ran on EJ
(n)
3+4ρ network such that 2 ≤ n ≤ 6. In addition,

simulations on EJ
(12)
1+2ρ, EJ

(6)
2+3ρ, EJ

(4)
3+4ρ, EJ

(3)
4+5ρ, and EJ

(2)
6+7ρ networks are done

and taken into consideration since all of these networks have different dimensions
but are equal in number of steps. Then, the average of the simulation results is
computed. The following is the discussion about these simulations.

Figure 15 describes the total number of senders in each step of the broad-

casting algorithm in EJ
(3)
3+4ρ. From the figure, the proposed algorithm spreads

the message in the middle steps to larger number of nodes than the previous
algorithm. Also, it can be seen that the total number of sending nodes in the
later steps of the proposed algorithm is less than the previous algorithm. That
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means, the load on the nodes has been reduced. As a consequence, the proposed
algorithm has less overhead than the previous algorithm in later steps.
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Figure 15: One-to-All: Number of senders in each step in EJ
(3)
3+4ρ.

Figure 16 shows the number of receivers in every step of the broadcasting

algorithm in EJ
(3)
3+4ρ. Compared to the previous algorithm, the proposed al-

gorithm makes most of the nodes had received the message during the middle
steps. Thus, the nodes in the middle steps will be available to perform other
tasks whether processing, sending, or receiving more messages in the later steps.
However, the previous algorithm makes most of the nodes have to wait in order
to receive the message during the later steps. Regarding the overhead, it is
obvious that most of the nodes are busy in receiving the messages during the
later steps of the previous algorithm. As a comparison, the proposed algorithm
has less overhead and more free nodes that are available to perform other tasks
during the later steps.
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Figure 16: One-to-All: Number of receivers in each step in EJ
(3)
3+4ρ.

Figure 17 describes the number of free nodes in each step of the broadcast

algorithm in EJ
(3)
3+4ρ. It is clear that the proposed algorithm keeps some nodes

busy during the middle steps, which reduces the overhead on the nodes in the
later steps.

From Figures 17 and 18, it can be concluded that the load in the network
is distributed between the middle and later steps in the proposed algorithm

18



0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9

N
u

m
b

er
 o

f 
N

o
d

es
 

Step 

Previous

Proposed

Figure 17: One-to-All: Number of free nodes in each step in EJ
(3)
3+4ρ.

instead of keeping most of the nodes busy in the later steps.
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Figure 18: One-to-All: Number of active nodes in each step in EJ
(3)
3+4ρ.

The previous and the proposed one-to-all broadcasting algorithms have been

ran on the following EJ networks, EJ
(12)
1+2ρ, EJ

(6)
2+3ρ, EJ

(4)
3+4ρ, EJ

(3)
4+5ρ, andEJ

(2)
6+7ρ,

since all of them require 12 steps to finish the broadcast. In every step, the
average number of sending, receiving, and active nodes have been computed.
Figures 19, 20, and 21 illustrate, in respective order, the average number of
sending, receiving, and active nodes for both algorithms. Compared with the
previous figures, it can been seen that both algorithms have similar plot. As a
conclusion, the proposed algorithm is better than the previous one.
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Figure 19: One-to-All: Average number of senders in each step.
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Figure 20: One-to-All: Average number of receivers in each step.
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Figure 21: One-to-All: Average number of active nodes in each step.

In Figure 22, the proposed one-to-all shows an improvement in the total

number of senders in EJ
(n)
3+4ρ for n = 4 to 6. The difference is that the sender

node in the proposed algorithm is used once to send the message to all of its
neighbors while it is used several times in the previous one-to-all algorithm in
order to send the message to all of its neighbors.

0

200000000

400000000

600000000

800000000

1E+09

1.2E+09

1.4E+09

1.6E+09

4D 5D 6D

T
o

ta
l 

S
en

d
er

s 
fo

r 
A

ll
 S

te
p

s 

Dimension 

Previous

Proposed

Figure 22: One-to-All: The total senders in each step in EJ
(n)
3+4ρ for n = 4 to 6.

The total number of senders for all steps of the broadcasting in EJ
(n)
3+4ρ for

n = 1 to 6 is listed in Table 3 for both, the previous and the proposed, one-to-all
algorithms. Further, the table describes the difference between both algorithms
in terms of number of senders per dimension. From Figure 22 and Table 3, it can
be seen that the proposed one-to-all shows an improvements of approximately
2.7% for all dimensions. That is, the total number of senders in the proposed
algorithm is less than the previous algorithm since in the proposed algorithm
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Table 3: Total number of senders in all steps after the broadcast is completed

in EJ
(n)
3+4ρ

EJ3+4ρ 1D 2D 3D 4D 5D 6D

Previous
One-to-All

19 722 26,733 989,140 36,598,199 1,354,133,382

Proposed
One-to-all

19 703 26,011 962,407 35,609,059 1,317,535,183

Difference 0 19 722 26,733 989,140 36,598,199
Ratio 1 1.027027027 1.027757487 1.027777229 1.027777763 1.027777777

the sender is used only once.

7 Conclusion

The paper proposes an enhanced one-to-all and all-to-all communication algo-
rithms for higher dimensional Eisenstein-Jacobi (EJ) networks. The proposed
one-to-all algorithm is compared with one-to-all algorithm (previous) used in
[22]. For the comparisons, the author did simulations for both the proposed
and the previous algorithms on different sizes of higher dimensional EJ networks
and showed that the proposed algorithm achieves 2.7% less in total number of
senders than the previous algorithm. In addition, the simulation results show
that proposed algorithm transfer the message to larger number of nodes than
the previous algorithm during the middle steps of the broadcasting. As a conse-
quence, the nodes in the middle steps become free and available to process other
tasks since the overhead is reduced in the later steps. Further, the broadcasting
traffic load in the proposed algorithm is distributed among the steps while it is
pushed in the later steps of the previous algorithm.

Furthermore, the paper presented the all-to-all broadcasting algorithm, which
is based on the proposed one-to-all algorithm. In all-to-all broadcasting, the
communication is assumed to be half-duplex and because of that the all-to-all
broadcasting algorithm is divided into three phases where in in each phase the
messages are propagated on two sectors.
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