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Abstract—Achieving high-performance of large scientific codes
is a difficult task. This has led to the development of numerous
mini-applications that are more tractable to analyse, while retain-
ing performance characteristics of their full-sized counterparts.
These “mini-apps” also enable faster hardware evaluation, and
for sensitive codes allow evaluation of systems outside of access
approval processes.

In this paper we develop a mini-application of a geometric
multigrid, unstructured grid Computational Fluid Dynamics
(CFD) code, designed to exhibit similar performance characteris-
tics without sharing code. We detail our experiences developing
this application, using guidelines detailed in existing research,
and contribute further additions to these to aid future mini-
application developers. Our application is validated against the
inviscid flux routine of HYDRA, a CFD code developed by
Rolls-Royce, which confirms that the parent kernel and mini-
application share fundamental causes of parallel inefficiency.

We then use the mini-application to assess the impact of Intel’s
Knights Landing (KNL) on performance. We find that the mini-
app and parent kernel continue to share scaling characteristics,
however a comparison with Broadwell performance exposed
significant differences between the kernels that were undetected
by the validation.

Keywords-scientific computing; computational fluid dynamics;
performance analysis; high performance computing

I. INTRODUCTION

The rapid development of new hardware and software in

High Performance Computing (HPC) is greatly benefiting

scientific discovery; with each new development comes new

opportunities for improving the performance of scientific ap-

plications. Evaluating the potential improvements offered by

these developments is often a time consuming process due to

the complexity of the applications involved, and the learning

curve that often comes with using new machines, architectures

and toolchains.

In recognition of these challenges, many HPC centres are

turning to alternative tools and methodologies (e.g. predictive

performance modelling [1]–[4] and hardware simulation [5],

[6]) to evaluate new systems ahead of procurement. Ad-

ditionally, mini-applications are increasingly being used to

facilitate rapid evaluation of new hardware and programming

techniques. These applications capture the key performance

characteristics of a parent code, in a much more concise form;

making them easier to work with but equally useful in per-

formance engineering activities. The use of mini-applications

has been well documented in the literature [7]–[10] and has

spawned several suites of such applications [11], [12] for

industry and the research community to examine.

While the effectiveness of mini-applications has been well

demonstrated, the development of them remains a challenging

process. In this paper we aim to document our experience

developing, validating and using a geometric multigrid, un-

structured grid Computational Fluid Dynamics (CFD) mini-

application in the context of HYDRA, an application of the

same class in use by Rolls-Royce. Specifically this paper

makes the following contributions:

• We develop a mini-application of computation over edges

which operates on datasets with the following properties:

(i) unstructured grid, (ii) geometric multigrid, and (iii) a

variable number of neighbours per node;

• We exercise two previously developed mini-application

validation techniques on this class of application, to

which they have not been applied to before. These

techniques provide evidence for similarity between the

mini-application and the parent code in terms of their

shared memory scalability;

• We assess the utility of the mini-application through an

evaluation of the Intel Knights Landing (KNL) architec-

ture. We find that although the mini-application continues

to share scaling characteristics with the target kernel, it

does not receive the same speedup from MCDRAM due

to unequal arithmetic intensity.

• We show that successful application of validation tech-

niques within a single system is not necessarily sufficient

to ensure that a mini-application will continue to perform

similar to target kernel on different hardware.

This paper is structured as follows: in Section II we discuss

related work; in Section III we summarise the functionality of

HYDRA which we aim to capture within the mini-application;



in Sections IV and V we describe our experiences constructing

mini-HYDRA; in Section VI we validate the performance

characteristics of mini-HYDRA when compared to the target

kernel; in Section VII we demonstrate the use of mini-HYDRA

to assess the impact of the KNL architecture on geometric

multigrid, unstructured grid codes; finally, in Section VIII we

summarise the work and discuss potential future work.

II. RELATED WORK

There are numerous benchmarks and mini-applications repre-

senting the performance of different classes of HPC applica-

tions, some of which have been released as part of projects

such as the Mantevo Project [11] and the UK Mini-App

Consortium [12]. Mini-applications from these repositories

and other standalone mini-applications have been used in a

variety of contexts. One such example is MiniMD, which has

been used to explore the performance of molecular dynamics

codes on the Intel Xeon Phi Knights Corner. Using a combi-

nation of AVX intrinsics and algorithmic optimisations, such

as overlapping PCIe transfers with computation, the authors

demonstrate a 5× speed-up for their application.

Mallinson et al. compare the performance of two PGAS

programming models (OpenSHMEM and Co-Array Fortran)

against MPI using CloverLeaf, a Lagrangian-Eulerian hy-

drodynamics mini-application [10]. The authors demonstrate

that OpenSHMEM is able to outperform an equivalent MPI

implementation by 7.78 iterations/sec, at 4096 sockets, when

using proprietary nonblocking operations from Cray and 4 MB

memory pages.

LULESH, a hydrodynamics mini-application representitive

of ALE3D, is used to assess the suitability of emerging

parallel programming models (e.g. Liszt and Loci) along with

more established models such as OpenMP [13], in terms of

programmer productivity, runtime performance and ease of

optimisation. The reduced size of LULESH when compared

with ALE3D allowed the authors to examine eight parallel

programming models. Their conclusion highlights that while

the emerging models such as Chapel and Loci enable a high

level of productivity, they cannot match the performance of

more established models such as MPI and OpenMP.

Similarly, Giles et al. examine the performance of OP2, a

domain specific framework for unstructured grid codes using

the AIRFOIL CFD mini-application [9]. The authors demon-

strate that they are able to achieve programmer productivity

and performance within 6% of a hand-coded implementation.

The CFD code included in the Rodinia benchmark suite

has been used to examine the performance of a Graphics

Processing Unit (GPU) when running unstructured grid ap-

plications [14]. From the results, Corrigan et al. conclude that

GPUs show promise for this class of code given an increase

in double precision performance in the future.

The work in this paper similarly makes use of a mini-

application; however, our application additionally contains a

geometric multigrid solver and supports mesh structures with

variable node degree. Further, we present an additional use

case of the mini-application, to examine the impact of the

Listing 1: Pseudo-code for HYDRA’s smooth loop

1 c a l l j a c o b // Jacobian preconditioning
2 f o r i t e r = 1 to n i t e r do

3 f o r s t e p = 1 to 5 do

4 i f d i s s i p a t i v e f l u x u p d a t e then

5 c a l l g ra d // compute gradient
6 c a l l v f l u x // accumulate viscous fluxes
7 c a l l w f f l u x // modify viscous wall fluxes
8 c a l l wvflux
9 end i f

10

11 c a l l i f l u x // accumulate inviscid fluxes
12 c a l l s r c s a // Spalart-Allmaras source term
13 c a l l u p d a t e // update flow solution
14 end f o r

15 end f o r

Listing 2: Pseudo-code for HYDRA’s iflux routine, which also

describes mini-HYDRA

1 nva r = 5
2 f o r e = 1 to nedges do

3 a = edges [ e ] . a // read node indices
4 b = edges [ e ] . b
5

6 da = d e n s i t y [ a⇤ nva r + 0] // read node data
7 db = d e n s i t y [ b⇤ nva r + 0]
8 . . .
9

10 da2 = Fa ( da , db , . . . ) // perform arithmetic
11 db2 = Fb ( da , db , . . . )
12 . . .
13

14 f l u x [ a⇤ nva r + 0] += da2 // scatter-write out
15 f l u x [ b⇤ nva r + 0] += db2
16 . . .
17 end f o r

KNL architecture on this class of application. The HPGMG-

FV and LULESH mini-applications are most similar to our

mini-application however, the former operates on a structured

mesh [15] and the latter does not have a multigrid solver.

Another body of work which is similar to our own and that

we build upon, deals with the validation of a mini-application’s

performance characteristics against those of the parent code.

The technique employed by Tramm et al. involves compar-

ing the correlation of parallel efficiency loss to performance

counters for both the mini-application and the target code [8].

Previously this technique has been applied to mini-applications

of a neutron transport code [8]; we apply this technique to

a different class of application. Messer et al. develop three

mini-applications and use a comparison between the scalability

of the mini-application and the original code as evidence of

their similarity [16]. However, the authors focus on distributed

memory scalability whereas in this work we focus on intra-

node shared memory scalability.

III. BACKGROUND

A. HYDRA

The manufacturing industry is increasingly making use of CFD

simulation codes to aid in the design and testing process of



new products. One such code is HYDRA [17], a suite of

nonlinear, linear and adjoint solvers developed by Rolls-Royce

in collaboration with several UK universities. HYDRA is used

to simulate the flow of fluids in and around some of their

commercial aerospace products. For an in-depth discussion of

HYDRA, we refer the reader to previous works [18]–[22].

In this paper, we focus on HYDRA’s nonlinear solver.

Specifically we examine the vflux and iflux routines in

HYDRA’s smooth loop (see Listing 1) as these are responsible

for the majority of HYDRA’s runtime. These routines perform

computation on edges; the code loops over edges in the dataset,

gathering properties (e.g. momenta and density) from the

nodes at either end of the edge, performs some operation (e.g.

a flux calculation) on these properties, then “scatter” writes

the results out to the two nodes. Pseudocode for iflux is

provided in Listing 2.

B. Multigrid

HYDRA employs multigrid methods which are designed to in-

crease the rate of convergence for iterative solvers, and posess

a useful computational property – the amount of computational

work required is linear in the number of unknowns [23].

Multigrid applications operate on a hierarchy of grid levels; in

this paper, we are concerned with geometric multigrid, wherein

each grid level has its own explicit mesh geometry, and the

coarse levels of the hierarchy are derived from the geometry

of the finest level.

Starting at the finest level, multigrid applications use an

iterative smoothing subroutine to reduce high frequency errors.

Low frequency errors are then transferred to the next coarsest

level (restriction), where they appear as high frequency errors

and can thus be more rapidly smoothed by the same subrou-

tine. Error corrections from the smoothing of coarse levels are

then transferred back to finer levels (prolongation). The order

in which prolongations and restrictions are applied is know

as a cycle, of which this paper considers a single type – the

V-cycle.

The potential performance implications of using a geometric

multigrid solver are twofold. First there is the increased mem-

ory requirement of explicitly representing the geometries of

all levels of the multigrid, and second there are the additional

irregular memory accesses from prolonging and restricting

corrections between levels of the multigrid.

C. Unstructured Grid

HYDRA represents its aerospace models using an unstructured

grid – with reference to Fig. 1, an unstructured grid is a

collection of nodes (e.g. b and u), edges (e.g. between u and v)

and cells (f ), with the nodes being at an arbitrary position in

space. Since HYDRA operates on multigrid datasets there are

also edges between related nodes of adjacent grid levels (e.g.

between j and v in Fig. 1). The flexibility of the unstructured

grid allows complex geometries to be represented and regions

of interest to be denoted by increasing the density of the mesh

in these areas.
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Fig. 1: Abstract representation of an unstructured grid over two

multigrid levels. (x,y) notation has meaning (multigrid level,

partition number)

The neighbours of a node in an unstructured grid are not

implicitly defined, as is the case for a structured mesh code

where the neighbours can be determined using offsets to the

array indices. This means that an explicit list of neighbours

must be maintained so that when computation over nodes is

performed (e.g. the accumulation of fluxes) data can be read

from the required locations. This of course has implications

for the memory access pattern as there is no guarantee that a

nodes neighbours directly and regularly succeed it in memory.

D. Experimental Setup

In Section VI, validation of the mini-application against target

code behaviour is performed on a dual-socket 28-core Xeon

Broadwell node. The Knights Landing evaluation is then

performed on a Xeon Phi 7210 configured with flat memory

mode and quadrant clustering mode. Full hardware details are

provided in Table I.

The unstructured grid used for validation is derived from

the geometry of Whittle Laboratory’s low pressure axial flow

turbine rotor cascade, a mesh of 105 K nodes and 305 K

edges representing a single rotor root section (blade and hub

connection) [24]. To aid visualisation a rotor section of

NASA’s SSME 2-stage fuel turbine is shown in Figure 2,

consisting of multiple root sections with similar structure to

the mesh we use [25]. The mesh is duplicated in memory by

a factor of 120, producing a set of 120 disconnected meshes.

Each kernel will then process each of the 120 meshes in turn.

This ensures that the workload does not fit in the cache, and

enables multi-threaded execution at particular process counts

such that no two threads work on the same mesh.

IV. DESIGN OF MINI-HYDRA

Although the benefits of mini-applications are clear (see

Section II), their development is not a well-defined process as

it depends largely on their intended purpose [16]. This makes

their development challenging as the purpose may differ on a

project-by-project basis, limiting the reuse of efforts. However,



Fig. 2: Visualisation of a rotor section from NASA’s SSME

2-stage fuel turbine. Blade geometry is similar to the mesh we

use.

Hardware

Broadwell Knights Landing

Model E5-2660 v4 Xeon Phi 7210
Turbo Clock (GHz) 2.4 1.3
Cores 14⇥2 64
Memory (GB) 128 16 HBM + 96 DDR

Software

Operating System Debian 8 Debian 8
Compiler Intel 18.0.0 Intel 18.0.0

TABLE I: Hardware/software configurations.

the literature details a list of considerations and guidelines;

these are aggregated by Messer et al. and summarised here as

a set of questions for reference [16].

1) Where does the application spend most of its execution

time?

2) What performance characteristics will the mini-

application capture?

3) Can any part of the development process be automated?

4) How can the build system be made as simple as possi-

ble?

The hope being that when these questions are answered

the mini-application’s developer will have a concrete under-

standing as to (i) which aspects of the target code the mini-

application should include, and (ii) the components of the sup-

porting configuration (e.g. tools and datasets). We apply these

guidelines to the development of mini-HYDRA and because

the development of each mini-application is essentially unique,

we consider it a valuable exercise to document the usefulness

of this approach. Additionally, we add our own considerations

to this list, which come from our experiences developing mini-

HYDRA.

We address the first question in Section III – the most time

consuming regions of code are contained within the routines

vflux and iflux, and it is these routines we should focus

on capturing within the mini-application. These kernels have

the same computational structure – iteration over edges, and

for each edge perform an indirect read of node data (gather),

arithmetic computation, then indirect writes back to the two

nodes (scatter). In this work we focus on iflux as it captures

the memory access behaviour of the unstructured grid, while

consisting of less code than vflux. We would like to note

that mini-applications do not always have to represent the most

time-consuming aspects of the target code, as the developer

may already have a particular characteristic in mind that they

wish to study.

The second question is answered by considering the purpose

of mini-HYDRA – to evaluate the impact of new hard-

ware features based on their suitability for applications such

as HYDRA. This use case suggests constructing a mini-

application which ignores I/O and inter-node communication

costs and focuses only on computation, encouraging us to

focus on more specific regions of the code.

Next, we propose our own consideration: which aspects of

the simulation (e.g. unstructured grid, finite volume, multigrid)

contribute to the compute behaviour within the most expensive

regions of the code? This decomposition by simulation aspect

provides us with a route for including performance character-

istics within the mini-application. Drawing upon other’s expe-

riences with HYDRA along with our own, we know that it is

the irregular memory accesses which contribute greatly to the

difficulty of running on different compute architectures. These

irregular memory accesses come from two main sources: the

edge updates over the unstructured grid and the restriction and

prolongation of corrections between the multigrid levels (see

Section III-B).

V. IMPLEMENTATION OF MINI-HYDRA

With these features in mind, we base mini-HYDRA on an

existing code as (i) it is open source, so mini-HYDRA will not

be restricted in terms of where it can be run; and (ii) it shares

simulation features with HYDRA [14]. This existing code

written in C++ implements a three-dimensional finite-volume

discretisation of the Euler equations for inviscid, compressible

flow over an unstructured grid. Its flux computation kernel

consists of an outer loop over nodes and an inner loop over

node neighbours, however iflux consists of a loop over

edges which is a critical difference and so we modify this

kernel to iterate over edges. The resulting kernel then differs

to iflux only in the arithmetic operations performed; it is

not possible for mini-HYDRA to perform the same arithmetic

as iflux as this would mean subjecting mini-HYDRA to

the same portability restrictions as HYDRA itself. We further

extend this code with additional simulation features present in

HYDRA. It should be noted that we do not focus on verifying

the correctness of the simulation against a standard problem, as

we are purely interested in performance characteristics which

we validate in Section VI.

Support for the computational behaviours of multigrid were

implemented by augmenting the construction of the Euler

solver presented by Corrigan et al. with crude operators to

transfer the state of the simulation between the levels of the

multigrid. These operators are defined by Equations 1 and 2

which serve as restriction (fine to coarse grid) and prolongation

(coarse to fine grid) operators respectively [26]. Where ul
j

represents simulation property u of node j at level l, and N l
j

is the set of node indices which are linked to node j at level

l from l − 1 of the grid.
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i∈N l

j
ul−1

i

|N l
j |

(1)

ul−1

i∈N l
j

= ul
j (2)

The restriction operator (Equation 1) primes the simulation

properties with an average across nodes from the finer grid

level – this mapping between levels is defined as part of the

input deck. The prolongation operator (Equation 2) reverses

restriction by injecting the values from the coarse grid to the

fine grid as dictated by the mapping.

The final code change made is to allow for an arbitrary

number of neighbours rather than the fixed four in the flux

summation. The summation is already weighted by the surface

area of the interface between nodes in the mesh, so no cor-

rection to the underlying mathematics is necessary to support

this change.

A. Supporting Tools

Part of what makes a mini-application a useful tool is its

simplicity, this however is not only restricted to the application

itself and must apply to the processes surrounding the mini-

application and target application that take time (e.g. building,

job submission).

We opt to simplify the building process by removing all

reliance on third-party libraries such as the Hierarchical Data

Format 5 (HDF5) library and the communications library.

These can both be safely removed as the purpose of this mini-

application is not to investigate I/O performance, inter-node

communication performance nor the overheads introduced by

library abstractions. Removing these dependencies allows the

application to be built swiftly with minor adjustmend of

compiler and its flags in the Makefile. Another obstruction

to benchmarking is the need to create job submissions scripts

so we include examples of these scripts for several common

schedulers: SLURM, LSF and Moab.

Utilities have been included to validate the final state of the

simulation after changes to the configuration (e.g. compiler

flags, code optimisations, porting to accelerators) of the code.

Additionally we include tools to extract the geometries from

the datasets used to prime HYDRA and transform them into

a form which is understood by the mini-application. We

do this to reduce the number of factors which could cause

differences in runtime behaviour between HYDRA and its

mini-application.

VI. MINI-HYDRA VALIDATION

We validate our mini-application using two existing methods.

First we compare the OpenMP parallel efficiency of both

iflux and mini-HYDRA for all levels of the multigrid [16].

Fig. 4 presents the scaling performance of level 1, show-

ing that both codes exhibit similar strong scaling behaviour

(scaling of the other multigrid levels are almost identical

to level 1 so are not shown). A strong correlation between

scaling behaviour does not imply the underlying causes of
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the observed behaviour are the same, and so we further

strengthen the comparison using a second approach. This

involves comparing the correlation of parallel efficiency loss

to performance counters for both the mini-application and the

target code [8]. Fig. 3 These comparisons highlight differences

and similarities between the two applications which we will

address in turn. It should be noted that we compare mini-

HYDRA against a direct Fortran-to-C port of iflux, rather

than the original Fortran implementation. We do this to ease

and remove the effects of language from the comparison

process; arguably this moves us further away from the true

performance characteristics of the target code, but it still allows

the examination of language independent features, such as

memory access patterns and arithmetic intensity.

The PAPI library is used to collect performance counter

data, which provides easy access to available performance

counters and additionally defines a set of 108 “preset” counters

that include performance counters typically found in many

processors [27]. Fig. 3 shows the correlation between each

PAPI preset performance counter and parallel inefficiency. To

account for variance of performance counters between runs

the mean of three measurements is used. For most of these

events the difference in correlation between the mini-app and

iflux is less than 0.1, indicating that both codes share many

performance characteristics. There are two significant differ-

ences, one of which relates to the event PAPI RES STL. This

event counts the number of cycles where instruction allocation

is stalled for any reason, whether that be cache misses or

the processor pipeline running at capacity. Because this event

is so broad it is not a useful performance indicator, and so

the two codes differing here is not considered a problem.

The other event on which the codes differ is PAPI L3 TCM

which counts level 3 cache misses. Although the difference is

large, both correlations are less than 0.7 absolute which is a

weak correlation. This is confirmed by examining this counter,

observing that as thread count increases its value changes very

little, evidenced by the standard deviation being just 2% of the

mean.

Where the correlation between a performance counter and

parallel efficiency loss is greater than 0.8, this indicates that

the corresponding hardware activity that triggers the counter
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Fig. 5: Speedup provided by KNL’s MCDRAM memory to

iflux over DDR. mini-app received no speedup

has a strong influence on scaling performance. Many of these

are related to cache read and miss events, and the differences

between the correlations of the two codes are small, indicating

that performance of both codes are similarly affected by the

cache hierarchy performance. Another event affecting parallel

efficiency is PAPI MEM WCY, which counts cycles stalled

due to a lack of available store buffers, indicates a performance

bottleneck on memory writes.

VII. THE IMPACT OF INTEL KNIGHTS LANDING ON THE

MINI-APP

In this section we present a short case study of our validated

mini-application being used to evaluate an architecture distinct

from that which was used for the validation. Specifically we

examine what impact the KNL architecture may have on

unstructured grid, geometric multigrid codes.

The Intel KNL architecture provides a number of significant

changes over its predecessor Knights Corner (KNC) – high-

bandwidth MCDRAM memory, change from co-processor to

host processor and so direct access to main memory, a 2D

mesh interconnect between cores, and the new AVX-512 in-

struction set including conflict detection (AVX-512CD). These

provide peak double-precision compute of 1331 GFLOPs and

peak MCDRAM bandwidth of 450 GB/s, which is signifi-

cantly greater than the Xeon Broadwell node with peaks of

538 GFLOPs and 150 GB/s. However as this analysis will

use unvectorised codes, and as these codes do not benefit

from fused multiply-add instructions, then the expected peak

compute performance is 83.2 GFLOPs on KNL and 67.2 GB/s

on the Broadwell node. The reason for using unvectorised

codes is that vectorising the scatter-write operations is not

arbitrary, and although KNL introduces conflict detection

instructions for precisely this purpose it has not been possible

to incorporate them into this study. We acknowledge that this

will skew the codes to be compute-bound, and we plan to

address this in future work.

A. Memory performance

Firstly the benefit of MCDRAM is analysed in Fig. 5. No

speedup is seen with the mini-app, however iflux does

receive a speedup, reaching 1.35× at 120 threads for level 1.
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Fig. 6: Memory bandwidth consumption of iflux, mini-

HYDRA, and STREAM benchmark. iflux in DDR appears

to become bandwidth-bound beyond 60 threads.

An additional observation is as the multigrid level increases,

the speedup received by iflux decreases towards 1.0. This

variance of benefit can be understood be examining the mem-

ory bandwidth consumption of both kernels as shown in Fig. 6.

Consumption is measured from native uncore performance

counters, and the maximum achievable bandwidth as measured

by the STREAM benchmark is shown [28]. At 60 threads

and below the bandwidth consumption of both kernels scales

linearly, with iflux consistently consuming 2.9× more band-

width than the mini-app. This difference in bandwidth is a

result of iflux performing 3× less instructions per iteration

than the mini-app while reading and writing the same quantity

of data.

At 120 threads the mini-app continues to consume more

bandwidth, 38% more than at 60 threads for level 1, while

iflux consumes only 4.6% more. Similarly for multigrid

levels 2, 3 and 4 iflux achieves a smaller increase in

bandwidth than the mini-app. This suggests that iflux has

become bandwidth-bound despite not reaching the maximum

GB/s70 achieved by STREAM, and so will benefit from

a move to the MCDRAM. Fig. 6 shows that a move to

MCDRAM allows iflux to significantly increase bandwidth

consumption to 83 GB/s, driving the 1.34× speedup of runtime

observed for iflux of level 1. At higher multigrid levels

the bandwidth consumption is lower, reducing the speedup

that MCDRAM can provide. It is not known why meshes
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Fig. 7: Parallel efficiency comparison of the mini-app and

iflux on KNL.

of higher multigrid levels consume less bandwidth, however

one reason may be that spatial locality is reduced and so

performance becomes increasingly latency-bound from greater

cache misses. It is also clear that mini-HYDRA consumes no

more MCDRAM bandwidth than DDR and hence receives

no speedup. We can conclude from this that more complex

HYDRA kernels with similar data access patterns but a higher

flop-to-byte ratio will not benefit from the MCDRAM.

Fig. 7 presents the strong scaling on KNL. The movement

of iflux from DDR into MCDRAM improves its parallel

efficiency to match that of the mini-app, achieving linear

scaling across the physical cores. However it should be noted

that this linear scaling is likely to be a consequence of not

fully using the vector units and so being compute-bound.

Vectorising these codes with double-precision AVX-512 in-

structions will increase memory traffic by up to 8×, which for

iflux at 60 threads could increase bandwidth consumption

to 496 GB/s. This would exceed the maximum achievable

MCDRAM bandwidth of 432 GB/s as measured by STREAM

and so a vectorised iflux could become bandwidth-bound

in MCDRAM.

B. Compute performance

KNL retains the 4-way Simultaneous Multithreading (SMT) of

KNC, but with a change to instruction scheduling as a thread in

a KNL core is no longer restricted to executing on every other

clock cycle. Therefore there is value in evaluating whether

SMT benefits mini-HYDRA. Allocating two threads to each

core provides a runtime speedup of approximately 1.3× to

both mini-HYDRA and iflux. This speedup is consistent

across all four multigrid levels, seemingly irrespective of

the reduced spatial locality of the higher levels, and so this

speedup is likely to be observed with other turbomachinery

mesh geometries.

Finally, Fig. 8 shows the speedup of KNL over our Xeon

Broadwell node. iflux receives an average speedup of 1.44×

when running in the DDR memory, which is greater than

the 1.24× increase in expected peak compute performance,

indicating an increase in work per cycle. However mini-

HYDRA receives an average speedup of 1.07×, which trans-

lates to a reduction in the work per cycle performed. This is
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(24 threads).

an interesting result given that neither kernel is bandwidth-

bound on the Broadwell node, and that iflux becomes

bandwidth-bound on KNL in DDR and so mini-HYDRA

is expected to receive the greater speedup. An analysis of

performance counters provides the answer, showing that while

mini-HYDRA on Broadwell mini-HYDRA performs 2× more

instructions than iflux, KNL performs 3× more instructions

than iflux per iteration. This means that when switching

from Broadwell to KNL, the arithmetic differences between

the two codes cause them to react differently to computational

changes in the architectures. This limits use of the current

version of mini-HYDRA as a general benchmarking utility in

place of HYDRA.

VIII. CONCLUSIONS

In this paper, we have extended existing research on mini-

application development proposing an additional considera-

tion: which aspects of the simulation contribute to the compute

behaviour within the most expensive regions of code. In our

experience this consideration aids with the acquisition/devel-

opment of a mini-application as it maps performance features

to implementable code features. Following this, a survey

of existing mini-applications was carried out to assess their

suitability at representing geometric multigrid, unstructured

grid applications. A mini-application which was similar to the

target code was extended to include multigrid behaviours so

that it could support its input geometries.

Next, we applied two previously developed mini-application

validation techniques to a class of code which they have

not previously been used on. This validation demonstrated

that the mini-application was similar to HYDRA’s iflux

routine. Further analysis highlighted that the scaling behaviour

achieved was similar, and that the hardware was being stressed

in a similar way by both iflux and mini-HYDRA according

to hardware counters.

Finally, we demonstrated the use of the mini-application by

assessing the impact of the KNL architecture on geometric

multigrid, unstructured grid applications, and contrasted this

with Xeon Broadwell. Both the mini-app and target code scale

linearly across the physical cores, however this is likely a

consequence of the codes being unvectorised and so compute-

bound. Both codes also benefit equally from executing two

hyperthreads per core. We found that the MCDRAM memory

can provide a benefit to certain mesh geometries, but this ben-

efit appears to reduce as spatial locality falls. However when

KNL performance is contrasted with Broadwell, both codes

receive different speedups from the change in architecture

which is attributed to differences in the arithmetic operations

performed. This shows that successful application of validation

techniques within a single system is not necessarily sufficient

to ensure that the mini-application will continue to perform

similar to the target kernel on different hardware, particularly

when the mini-application is not directly derived from the

parent code.

A. Further Work

The mini-application covers the memory access patterns of at

least 40% of the code base, however the arithmetic intensity of

the mini-application is closest to that of one particular parent

kernel that accounts for just 11% of its runtime. Another parent

kernel with significantly greater compute intensity accounts for

a much larger proportion of the runtime, and so we plan to

create a mini-app of this kernel.

A limitation of our Knights Landing evaluation is the

absence of vectorisation in the codes. To address this we intend

to incorporate AVX-512 conflict detection instructions into the

mini-app, allowing the evaluation of the vector units and of the

memory system under greater load. To address the variation

in response to architectural change seen with mini-HYDRA,

we have identified a number of arithmetic optimisations which

when implemented will cause it to receive a similar speedup

to the target kernel of KNL over Broadwell.

The mini-application in its current form does have utility,

however the inability to execute it at any thread count or to

use vector units on any architecture does impose limits. To

address this we plan to incorporate the OP2 framework into

the mini-app, which will enable vectorisation, safe decompo-

sition across any number of threads and multi-process parallel

execution. This will also allow for execution on large single

meshes that are more representiative of modern workloads,

such as NASA’s Rotor37 [29].
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