
HAL Id: hal-01680058
https://brgm.hal.science/hal-01680058

Submitted on 10 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-layout reorganization for an efficient intra-node
assembly of a Spectral Finite-Element Method

Gauthier Sornet, Sylvain Jubertie, Fabrice Dupros, Florent de Martin,
Philippe Thierry, Sébastien Limet

To cite this version:
Gauthier Sornet, Sylvain Jubertie, Fabrice Dupros, Florent de Martin, Philippe Thierry, et al.. Data-
layout reorganization for an efficient intra-node assembly of a Spectral Finite-Element Method. PDP
2018, Mar 2018, Cambridge, United Kingdom. pp.255-258, �10.1109/PDP2018.2018.00043�. �hal-
01680058�

https://brgm.hal.science/hal-01680058
https://hal.archives-ouvertes.fr


Data-layout reorganization for an efficient intra-node
assembly of a Spectral Finite-Element Method

Gauthier Sornet(1,2), Sylvain Jubertie(1), Fabrice Dupros(2),
Florent De Martin(2), Philippe Thierry(3), Sebastien Limet(1)
Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, France.(1)

BRGM, BP 6009, 45060 Orléans Cedex 2, France.(2)
Intel Corporation, Paris, France. (3)
Email: gauthier.sornet@gmail.com

Abstract—The Finite-Element Method (FEM) is
routinely used to solve Partial Differential Equa-
tions (PDE) in various scientific domains. For seismic
waves modeling, the Spectral Element Method (SEM),
which is a specific formulation of the classical FEM
approach, have gained significant attention for the last
two decades. This is explained both from the very good
numerical accuracy of this method and from the parallel
performance of classical MPI-based implementations
that scale up to several tens of thousands computing
cores.
Nevertheless, the trend for current processors with an
increasing level of low-level parallelism requires signif-
icant efforts at the shared-memory level. One major
bottleneck is coming from the standard FEM assembly
phase that leads to significant amount of irregular
memory accesses.
This prevents any efficient automatic optimizations
from the compiler for instance. In this paper, we
extract a kernel from a spectral-element application
dedicated to earthquake simulations in complex geo-
logical medium (EFISPEC code developed at BRGM,
the French Geological Survey). We study the intra-
node behavior and we propose different levels of op-
timization (data-layout, manual vectorization, multi-
threading) to fully benefit from SIMD units and
NUMA architectures. Experiments performed on Intel
Broadwell architecture show that the proposed opti-
mizations dramatically improve the intra-node perfor-
mance of the mini-application. Moreover, our results
show a good match with rooflines theoretical perfor-
mance models. We believe that these optimizations
are not specific to this mini-application and may be
implemented in different SEM and FEM based solvers
as well.

I. Introduction
Physics-based three-dimensional numerical simulations

are becoming more predictive and have already become
essential in geosciences. In seismology, simulations with a
very fine scale resolution are crucial for land-use planning.
As a consequence, the large processing requirements of
such methodologies is a challenge for the High Perfor-
mance Computing community.
On one hand, the finite-element method is the cornerstone
of many scientific softwares. For instance, the spectral
finte-element method is widely used to solve the wave
propagation problem due to its numerical efficiency, but

a major bottleneck to scale out is the summation of the
element contributions (assembly phase). This is due both
from the shared values between neighboring elements and
the inherent indirection for data accesses induced by the
FEM.
One the other hand, the trend is to increase the com-
plexity of computing node at the hardware level. Current
applications should deal with multiple levels of hierarchical
memories and increasing number of cores with larger
SIMD registers. The increasing gap between the comput-
ing power and data transfers is a major issue. A careful
attention is required to map threads and memory on such
platforms. These evolutions must be taken into account to
adapt and re-design current applications mainly based on
a flat programming model.
In this paper, we study an extracted kernel from the EFIS-
PEC code [1] developed at BRGM, the French Geological
Survey. The paper proceeds as follows. Section II describes
the related work. Section III details the elastodynamic
equations and the spectral-element method implementa-
tion. Section IV introduces our methodology to optimize
the computation at the shared-memory level. In sections V
and VI, we introduce the experimental tests and discuss
the results obtained with a focus on the peak performance.

II. Related Work
Current supercomputer nodes rely on shared-

memory architectures and integrate many different
levels of parallelism. At the core level, we have both
the Instruction-Level Parallelism and the Data-Level
Parallelism, the latter is provided through SIMD (Single
Instruction on Multiple Data) units. Cores are assembled
into multi-core processors which provide the Thread Level
Parallelism. A single node may also integrate several
multi-core processors to form a NUMA (Non-Uniform
Memory Access) architecture.
Regarding parallel FEM assembly, the local computation
requires to gather values of each element through an
indirection table. This indirection reduces the efficiency
of the cache, since non-contiguous data are likely to be
accessed. Our experiments with several compilers also
show that it prevents automatic compiler vectorization



even when adding SIMD pragmas. However, this phase
may be performed in parallel since no concurrent writes
occurs. This is not the case for the assembly phase where
the element contributions are summed since elements
shared values at their boundaries. Thus, optimizing this
kernel to take advantage of current architectures, from
the cache hierarchy to the different levels of parallelism,
is not straightforward and the scientific literature dealing
with this topic is abundant.
For instance, optimized implementations on GPU
have been described in [2], [3], [4]. Most of these
approaches implement mesh coloring strategy and fully
benefit from the memory bandwidth available on the
underlying architecture. At the shared-memory level,
FEM implementations described in [5], [4], [6] underlines
the impact of SIMD instructions and data-reuse at the
cache memory level. Additionally, advanced algorithms
described in [7] introduced a divide and conquer
methodology to build a tree of dependent tasks. This
cache-aware recursive procedure is implemented using
Cilk multithreading library. Recent work [8] deals with a
combination of optimizations to improve the performances
of a spectral element kernel.

III. EFISPEC: Spectral finite element solver
A. Numerical background

The spectral-element method (SEM) appeared more
than 20 years ago in computational fluid mechanics [9],
[10], [11]. The SEM is a specific formulation of the finite-
element method for which the interpolated points and
the quadrature points of an element share the same loca-
tion. These points are the Gauss–Lobatto–Legendre (GLL)
points, which are the p+1 roots of (1−ξ2)P ′

p(ξ) = 0, where
P ′

p denotes the derivative of the Legendre polynomial of
degree p and ξ coordinate in the one-dimensional reference
space Λ = [−1, 1].
The generalization to higher dimensions is done through
the tensorization of the one-dimensional reference space.
In three dimensions, the reference space is the cube � =
Λ× Λ× Λ.
The mapping from the reference cube to a hexahedral
element Ωe is done by a regular diffeomorphism Fe : �→
Ωe. In a finite-element method, the domain of study is
discretized by subdividing its volume Ω into welded non-
overlapping hexahedral elements Ωe, e = 1, . . . , ne such
that Ω = ∪ne

e=1Ωe.
The elements Ωe form the mesh of the domain. On the
one hand, each element Ωe has a local numbering of the
GLL points ranging from 1 to p+ 1 along each dimension
of the tensorization. On the other hand, the mesh has
a unique global numbering ranging from 1 to N (see
Fig. 1). The mapping from the local numbering to the
global numbering is the so-called ”assembly” phase of all
finite-element calculations.
Each GLL point of an element Ωe is redirected to a

unique global number, ∀Ωe. When multiple elements share
a common face, edge or corner, the assembly phase sums
the local GLL value into the global numbering system.
In this article, the problem of interest is the equation of
motion whose weak formulation is given by∫

Ω
ρwT ·ü dΩ =

∫
Ω

∇w : τ dΩ−
∫

Ω
wT ·f dΩ−

∫
Γ

wT ·T dΓ

where Ω and Γ are the volume and the surface area of the
domain under study, respectively; ρ is the material density;
w is the test vector; ü is the second time-derivative of
the displacement u; τ is the stress tensor; f is the body
force vector and T is the traction vector acting on Γ.
Superscript T denotes the transpose, and a colon denotes
the contracted tensor product.

IV. Multi-level optimization strategies
A. Arithmetical intensity

To compute an element of order 4, there are (4 + 1)3 =
125 GLL values to load with other parameters (GLL
weights or Lagrange derivatives). It costs 8120 bytes to
load but 48150 floating point operations to compute.
Then, the Arithmetical Intensity of an order 4 computing
element is 48150/8120 = 5.93. This is a flops per loaded
bytes factor such as a byte is involved into 5.93 flops.

B. Data-layout
Our kernel requires to transfer data between a global

and a local representation by indirect memory access as
shown in figure 1. The x86 architecture loads DRAM data
by continuous aligned lines of 64 bytes. In the worst case,
floats load 64 bytes and waste 60 unused bytes. Moreover,
any byte stores corrupt a cache line for other threads such
as they have to reload it. The situation is worsened on
NUMA architecture where one needs to carefully control
threads and data affinity. Finally, packing data to SIMD
vector is costly.
We proceed as follows. First of all, we reorder the memory
locations of the GLL values to make them contiguous.
Then, as shown in Figure 1, we interleave pack of elements
GLLs to build an indirection SIMD vector. We exploit
dedicated intrinsics that can gather and scatter values
from data arrays that follows SIMD indirection vectors.
Finally, we interleave the other corresponding parameters
of each GLL element. Thanks to this reorganization of
the data-layout, we can tackle the vectorization.

C. Manual vectorization
Automatic compiler vectorization capabilities are lim-

ited as exposed in the paper [12]. As the Boost SIMD
AVX512 library is not free, some low-level substitution
functions have been implemented with intrinsics to ab-
stract the architecture level (add, sub, mul ...). Thus, we
decide to compute packs of elements with the same SIMD
operations. It is made efficient thanks to the adapted



Element a Element b

A) Global GLL numbering

B) Local GLL numbering
Element a Element b

1 2 3

4 5 6

7 8 9

3 10 13

6 11 14

9 12 15

a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

a11 a12 a13 a21 a22 a23 a31 a32 a33 b11 b12 b13 b21 b22 b23 b31 b32 b33

a11 a12 a13 a21 a22 a23 a31 a32 a33b11 b12 b13 b21 b22 b23 b31 b32 b33

Original memory data-layout organized by element

Reorganized memory data-layout organized by vector of interleaved GLL

Element a Element b

vector vector

C) Data-layout reorganization

...

SIMD

Figure 1: Memory-layout of the GLL points for two-dimensional order 2 elements.

data-layout described in the previous section. In fact,
the required packed data can be directly loaded to the
SIMD vectors. This way, instead of computing one by one
element, it computes several elements at a time.

D. Multithreading and mesh coloring
Efficient exploitation of shared-memory platforms is

not straightforward. As explained from the data-layout
section, The threads should not share any line of the
cache. Even worse, it must avoid any race conditions.
To be efficient, we have to prevent starvation and
synchronization’s overhead. Moreover, the memory data
localities have to match as much as possible with core
affinities.
These warm points require a multi-level strategy. On the
one hand, at low levels, atomic do not work with SIMD
instructions. On the other hand, at high levels, the divide
and conquer strategy described in [7] implies several
costly modifications of the original application. Therefore,
we implement a coloring strategy with a minimal number
of synchronizations (one by color). We schedule as many
blocks as threads by color to prevent threads starvation.
Thus, a block of several elements SIMD vectors are
computed by a same thread. It relies on OpenMP library
and parallel for directives.

V. Experimental setup
We evaluate our strategy on a dual-socket platform with

Intel Xeon E5-2697 v4 Broadwell processors, for a total of
thirty-six cores at 2.3 Ghz (bi-socket with 2 numa-nodes
by socket). In order to double-check our results, we use two
compilers : Clang 5 and ICC 17 with -O3 -march=native
optimization flags. Two versions of our kernel have been
experimented for automatic compiler vectorization and for
manual developper vectorization. A mesh of more than
two million GLLs is used for our experiments based on
order 4 approximation. We build a roofline model based on
the SGEMM and the Stream benchmarks (figure 2). If we
consider the peak performance provided by the SGEMM

4096

2048

1024

512

256

128

642 36.1618.08 64

Broadwell e5-2697v4 2x18x2.3Ghz roofline

Arithmetical Intensity

G
Fl
o
p
s

948 GFlops

2314 GFlops

64
GBy

tes
DRA

M no
NU

MA
-Aw

are

128
GBy

tes
DRA

M

5
.9
3

Figure 2: Roofline model on Broadwell platform.

routine, our kernel is memory-bound. Additionally, we
have introduced a peak application performance. These
values are computed with a small example able to fit in
the cache-memory. In this case, we measure a peak value
of 948 Glops on Broadwell.
The NUMA effect makes significantly lower the expected
performance with an average of 400 Gflops on Broadwell.

VI. Experimental results
A. Compiler versus developper vectorization

First of all, a sequential implementation get a 5 times
speedup from a manual explicit use of intrinsics. In fact,
the compiler does not provide any vectorization. The
multithreading results are summarized in the figure 3.
Firstly, we can observe in poor blue peak performance and
the limited scaling of implementations automatically vec-
torized by the compiler. We hardly achieve an average of
140 Gflops, this represents less than 5% of the theoretical
peak performance. The manually vectorized version shows
much better results with a maximum of 316 Gflops. This
demonstrates the efficiency of our implementation and the
performance measured are coherent with the theoretical
values coming from the roofline model.



550

500

450

400

350

300

250

200

150

100

50

0 36343230282624222018161412108642

Number of threads

G
Fl
o
p
s

Broadwell automatic compiler
Broadwell manual developper

Figure 3: Comparison between automatic clang and man-
ual developper vectorization on Broadwell platform for the
irregular version using the Clang compiler.

The trend is very similar between Intel and Clang com-
pilers. In fact, the performances of the automatic com-
piler (ICC17 and Clang5) SIMD implementations are re-
spectively 123GFlops and 131GFlops. The manual devel-
oper SIMD implementations reach 218GFlops(Intel) and
316GFlops(Clang).

We can also observe the plot shape on Broadwell plat-
form that underlines a saturation of the performance as
we increase the number of cores. This behavior could be
explained thanks to the roofline model and underline that
the order 4 version is more likely to be memory bound on
Broadwell.

VII. Conclusion and future work

We have identified the bottlenecks in the original EFIS-
PEC code that prevent good intra-node scalability. Firstly,
the standard MPI implementation may not allow a good
scaling on multi-core and NUMA nodes, while showing
good results on distributed architectures. We have dis-
cussed the performance of the parallel assembly phase.
Secondly, mapping from global to local numbering requires
gathering data from different memory locations, thus pre-
venting a good usage of the memory bandwidth. Finally,
auto-vectorization is hardly performed by the compilers,
even when adding SIMD pragmas in the code ([12]).
For each of these limitations, we have proposed a solution
and an implementation into a kernel extracted from EFIS-
PEC. Significant gains have been reported on an AVX-
2 platform. In fact, we have improved the overall peak
performance of the assembly phase by a factor 2.3 on
a Broadwell architecture. Moreover, the results obtained
match with the theoretical performance given by the
roofline models.
Several directions of improvements of these results could
be considered since we do not reach the upper bound of
the roofline model. For instance, we plan to implement
a better strategy for threads and memory mapping on

NUMA architecture. Moreover, back porting these opti-
mizations into the full EFISPEC application is another
major step of our work. This represents a challenge as
the performance observe at the mini-app level could be
dramatically reduced when the full application is con-
sidered [13]. Finally, a Domain Specific Language (DSL)
could help to the physicists to focus only on the description
of their algorithms.

References
[1] F. De Martin, “Verification of a spectral-element method code

for the southern california earthquake center loh.3 viscoelastic
case,” Bull. Seism. Soc. Am., vol. 101, no. 6, pp. 2855–2865,
2011.

[2] E. D. Cris Cecka, Adrian J. Lew, Assembly of finite element
methods on graphics processors. 2010.

[3] M. Rietmann, P. Messmer, T. Nissen-Meyer, D. Peter, P. Basini,
D. Komatitsch, O. Schenk, J. Tromp, L. Boschi, and D. Giardini,
“Forward and adjoint simulations of seismic wave propagation
on emerging large-scale GPU architectures,” in Proceedings of
the ACM / IEEE Supercomputing SC’2012 conference (J. K.
Hollingsworth, ed.), (Salt Lake City, United States), p. article
n 38, IEEE Computer Society Press, Nov. 2012. ISBN: 978-1-
4673-0804-5.

[4] K. Banaś, F. Krużel, and J. Bielański, “Finite element numerical
integration for first order approximations on multi- and many-
core architectures,” Computer Methods in Applied Mechanics
and Engineering, vol. 305, pp. 827 – 848, 2016.

[5] D. Komatitsch, J. Labarta, and D. Michéa, A Simulation of
Seismic Wave Propagation at High Resolution in the Inner Core
of the Earth on 2166 Processors of MareNostrum, pp. 364–377.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[6] A. Abdelfattah, M. Baboulin, V. Dobrev, J. J. Dongarra,
C. Earl, J. Falcou, A. Haidar, I. Karlin, T. V. Kolev, I. Masliah,
and S. Tomov, “High-performance Tensor Contractions for
GPUs,” in International Conference on Computational Science
2016 (ICCS 2016), vol. 80, pp. 108–118, 2016.

[7] L. Thébault, E. Petit, M. Tchiboukdjian, Q. Dinh, and W. Jalby,
“Divide and conquer parallelization of finite element method
assembly,” in Parallel Computing: Accelerating Computational
Science and Engineering (CSE), Proceedings of the Interna-
tional Conference on Parallel Computing, ParCo 2013, 10-13
September 2013, Garching (near Munich), Germany, pp. 753–
762, 2013.

[8] T. Ichimura, K. Fujita, P. E. B. Quinay, L. Maddegedara,
M. Hori, S. Tanaka, Y. Shizawa, H. Kobayashi, and K. Minami,
“Implicit nonlinear wave simulation with 1.08t dof and 0.270t
unstructured finite elements to enhance comprehensive earth-
quake simulation,” in Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis, SC ’15, (New York, NY, USA), pp. 4:1–4:12,
ACM, 2015.

[9] A. T. Patera, “A spectral element method for fluid dynamics:
laminar flow in a channel expansion,” J. Comput. Phys., vol. 54,
pp. 468–488, 1984.

[10] Y. Maday and A. T. Patera, “Spectral element methods for the
incompressible navier-stokes equations,” State of the art survey
in computational mechanics, pp. 71–143, 1989.

[11] P. F. Fischer and E. M. Rønquist, “Spectral-element methods
for large scale parallel Navier-Stokes calculations,” Comput.
Methods Appl. Mech. Engrg., vol. 116, pp. 69–76, 1994.

[12] G. Sornet, F. Dupros, and S. Jubertie, “A multi-level opti-
mization strategy to improve the performance of stencil com-
putation,” Procedia Computer Science, vol. 108, pp. 1083 –
1092, 2017. International Conference on Computational Science,
{ICCS} 2017, 12-14 June 2017, Zurich, Switzerland.

[13] M. Christen, O. Schenk, and Y. Cui, “Patus for convenient high-
performance stencils: evaluation in earthquake simulations,” in
Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’12,
pp. 11:1–11:10, IEEE Computer Society Press, 2012.


