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A B S T R A C T

FPGAs are an excellent platform to implement computer vision applications, since these applications tend
to offer a high level of parallelism with many data-independent operations. However, the freedom in the
solution design space of FPGAs represents a problem because each solution must be individually designed,
verified, and tuned. The emergence of High Level Synthesis (HLS) helps solving this problem and has allowed
the implementation of open programming standards as OpenVX for computer vision applications on FPGAs,
such as the HiFlipVX library developed exclusively for Xilinx devices. Although with the HiFlipVX library,
designers can develop solutions efficiently on Xilinx, they do not have an approach to port and run their code
on FPGAs from other manufacturers.

This work extends the HiFlipVX capabilities in two significant ways: supporting Intel FPGA devices and
enabling execution on discrete FPGA accelerators. To provide both without affecting user-facing code, the
new carried out implementation combines two HLS programming models: C++, using Intel’s system of tasks,
and OpenCL, which provides the CPU interoperability. Comparing with pure OpenCL implementations, this
work reduces kernel dispatch resources, saving up to 24% of ALUT resources for each kernel in a graph, and
improves performance 2.6 × and energy consumption 1.6 × on average for a set of representative applications,
compared with state-of-the-art frameworks.
1. Introduction

FPGAs can increase performance and reduce energy consumption
of computer vision (CV) applications. Their pipeline parallelism and
massive computing resources are a perfect match to simultaneously
process image pixels. For example, Fig. 1 shows the execution time and
energy efficiency of an OpenVX Canny Edge detector implementation
running on a CPU and on an FPGA with the library presented in this
work. Compared with the CPU, the FPGA achieves a 5 × speed-up of
and improves energy by 9 × (see Section 5 for details). However, the
fine grain FPGAs reconfigurability and the complexity of their workflow
hinders the ability to easily reach these results without an adequate
software programming language support.

Fortunately, programming frameworks, as OpenVX, are designed
with the aim of implementing portable CV applications by hiding
the hardware complexity behind a simple API. OpenVX presents an
open, royalty-free standard for cross-platform acceleration [1] where
applications are expressed as graphs to maximize optimization potential
because all dependencies are known before the graph is processed. On
FPGAs, the acceleration of OpenVX applications remains a challenge
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because their efficient implementation requires per-device specific op-
timizations on primitives and communication. Some High-Level Syn-
thesis (HLS) libraries address these requirements; e.g., HiFlipVX, an
optimized library of OpenVX functions that exploits streaming capa-
bilities and parametrization for Xilinx FPGAs [2]. However, HiFlipVX
highly-tuned implementation is neither portable nor efficient on other
FPGA platforms such as Intel. Other OpenVX acceleration proposal,
such as AFFIX, suffers from the same issues, single-vendor support, but
in this case for Intel devices [3].

Implementing a portable OpenVX API for FPGA requires to main-
tain a user-facing API as close as possible to the OpenVX standard.
The present paper builds on our previous work [4] with a HiFlipVX
implementation to support Intel FPGA devices with different external
memories as DDR4 and HBM. This work extension details the key
changes required to maintain the library API unchanged, to guarantee
portability, and to keep performance.

The proposed implementation leverages Intel’s HLS System of Tasks
[5] asynchronous model for concurrent execution of OpenVX nodes.
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Fig. 1. OpenVX comparison with an Intel Xeon Bronce 3204 CPU and a Intel FPGA
Stratix 10 GX for a Canny edge detector with two different image sizes: HD (1920 ×
1080 pixels) and 4k (3840 × 2160 pixels). (a) Execution time. (b) Energy on Intel CPU
implementation and the FPGA of this work.

Therefore, with this proposal extension, the HiFlipVX graphs can be
encapsulated as an OpenCL or SYCL library. The inter-operation of
HiFlipVX graphs with OpenCL ensures the host communication with
discrete devices and preserves the asynchronous properties of OpenCL
using a unique command queue per OpenVX graph resulting in less
runtime overhead.

In summary, the main contributions of this study are:

• A new portable implementation of OpenVX for FPGAs using
HiFlipVX, originally designed for Xilinx devices, providing com-
patibility with Intel devices.1

• Interoperation of HiFlipVX applications as OpenCL/ SyCL li-
braries to support discrete FPGA devices with either DRAM or
HBM memories.

• An analysis of the performance and energy efficiency of different
graph applications. Compared with previous OpenVX for Intel
FPGA implementations, this work improves the performance 2.6 ×
and saves 1.6 × of energy on average.

The rest of the paper is organized as follows. Section 2 presents
related work in this area. Section 3 presents the HLS flow alternatives
to implement OpenVX on FPGAs. Section 4 introduces the HiFlipVX
library. Section 5 presents the methodology. Section 6 describes the
changes to port HiFlipVX to Intel FPGAs. Section 7 discusses the results,
and Section 8 sets out our conclusions.

2. Related work

Computer vision and image processing algorithms require high per-
formance and energy efficiency that can be achieved with FPGAs [6].
Unluckily, the big effort required for programming FPGA is a huge
drawback that makes its adoption difficult.

Image processing on a FPGA can be implemented with Domain
Specific Languages (DSL). For example, the newly HeteroHalide [7]
extends the Halide DSL, formerly used on CPU and GPU, to support
Intel and Xilinx devices. Hipacc [8] developed another DSL to support
multiple back-ends from different vendors and devices such as FPGA,
GPU, and CPU. Also, a Hipacc extension provides support for the
OpenVX API [9], but they do not include results for whole application
graphs, as this work does. PoliMage [10] and Pu’s [11] are two pro-
posals that support Xilinx FPGAs. Despite DSLs are facilitating FPGAs
adoption, the steep learning process and the difficulties to enlarge their
functionalities remain a challenge.

A more suitable option to ease FPGA implementation is the adop-
tion of a library approach or standard based library. For example,
implementing functions from the OpenCV library, Xilinx provides the
xfOpenCV library [12]. Other libraries target specific FPGAs vendors,

1 https://github.com/angelicadavila/HiFlipVX-for-Intel-FPGAs.
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e.g., HiFlipVX and AFFIX are OpenVX libraries for Xilinx and Intel,
respectively [2,3,13].

Standard libraries together with the adoption of vision standards
such as OpenVX could ensure adequate cross-platform portability and
performance. Moreover, applications require intensive tuning for each
FPGA vendor, even with HDLs. In the case of computer vision applica-
tions, as other ones, each type of FPGA requires specific coding style
to achieve optimal performance [6,14]. Among the available options,
HiFlipVX and AFFIX are the ones that could offer a more general
computer vision library.

Nevertheless, AFFIX is based on OpenCL, which limits the OpenVX
functions and graphs implementation. On the other hand, HiFlipVX,
through the use of standard C++ language simplifies the graph’s im-
plementation, and it focused on portability including explicit data type
management to generate optimized hardware. Moreover, HiFlipVX was
validated out in numerous embedded applications for Xilinx [15–17].
This previous analysis recommends to extend HiFlipVX as an standard
OpenVX based library to be compatible also with Intel FPGAs.

3. OpenVX programming flow alternatives on FPGA

HLS programming languages enable to directly write hardware
applications using high-level languages such as C/C++, OpenCL, and
SyCL instead of using hardware description languages, reducing the
programming entry barrier of FPGAs. HLS have favored the flourishing
of a new ecosystem of high level toolkits and programming strategies
to reach optimized FPGA pipeline implementations, similarly to what
CUDA and OpenCL did to GPUs a decade ago.

One of the most successful approaches in heterogeneous systems is
OpenCL, because it unifies the programming language across devices
such as CPU and GPU [18]. As an HLS language for FPGA, OpenCL
still suffers from a limitation: optimization strategies differ from those
from other devices and require choosing the appropriate OpenCL execu-
tion model [19–21]. Furthermore, code written with only the OpenCL
standard does not perform well on FPGAs as it requires manufacturer
defined extensions.

Programming the OpenVX standard using OpenCL for FPGAs is a
challenge since OpenVX applications use a graph-based programming
model where nodes, instances of kernels, contain the function code; and
edges represent the data movements [1]. This data flow programming
model has two main design alternatives in OpenCL:

• Standard OpenCL: each OpenVX node is an OpenCL kernel, as
shown in Fig. 2a. This alternative is portable between manufac-
turers; but the main disadvantage is the lack of guarantees to
generate a deep pipeline connecting the function nodes, because
each kernel requires control and communication with the host.
Outside of the standard, Xilinx defined their own pragmas and
streaming interfaces to generate deep pipelines.

• OpenCL channels: each node is an OpenCL kernel, and channel-
s/pipes connect them all. This option allows deep pipelines by
the use of streaming communication among kernels, as shown
in Fig. 2b. In this case, multiple command queues are required
to launch every kernel from host to get a concurrent execution of
the graph. This approach is implemented and named differently
by each FPGA vendor; e.g., Intel and Xilinx adopt channels and
pipes, respectively.

These two approaches evidence the portability problem between
manufacturers and the limitations of standard OpenCL API, whereby
each FPGA manufacturer extensions help to optimize and guide the
compilers through bitstream generation. Even, sometimes, these exten-
sions are different per FPGA device family limiting portability [14].

In terms of performance, the use of the aforementioned channel
approach allows higher throughput and lower latency, but due to

restrictions of the OpenCL standard, generating portable and easy to use

https://github.com/angelicadavila/HiFlipVX-for-Intel-FPGAs
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Fig. 2. Programming flow alternatives for OpenVX using HLS for FPGA devices. The yellow boxes show OpenVX functions implemented as OpenCL functions and the green ones
the OpenVX functions implemented as kernels. The bottom boxes show host command queues, Q𝑛, that manage the kernels. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 1
Programming flow alternatives to implement the OpenVX standard.

Programming Manufacturer Deep Host
flow portable pipeline dependency

Standard OpenCL � ✗ LOW
OpenCL channels ✗ � HIGH
HiFlipVX ✗ � –
This work � � LOW

libraries is a challenge. For example, AFFIX implements OpenVX graphs
with single-input single-output host pipes [3] curtailing the OpenVX
specification, which defines multiple-input multiple-output edges.

Besides OpenCL, a more flexible HLS language is C/C++. Although
C/C++ suffers the portability restrictions between manufacturers, the
programming details can be hidden to the programmer under wrapper
layers.

For Xilinx devices, HiFlipVX implements OpenVX using C/C++,
enabling a highly parameterizable library. However, to complete an
efficient and portable OpenVX specification, it is necessary to port the
library to Intel devices. The differences between C/C++ standards and
compiler, such as OpenCL, are not trivial, showing differences between
manufacturers. Also, FPGA families present a wide variety of designs,
from simple embedded devices to high-performance ones with external
memory and ports, specially oriented to HPC applications.

This work overcomes those limitations. Specifically, HiFlipVX
achieves both portability, supporting two of the main FPGAs manu-
facturers, and performance, by coalescing OpenVX nodes in a single
OpenCL/RTL element maximizing pipeline deep for Intel FPGAs as
shown in Fig. 2c. With this strategy, OpenVX applications overcome the
pipeline depth limitations in Standard OpenCL (Fig. 2a) and reduces the
host dependency on OpenCL Channels implementation (Fig. 2a). This
property is specially crucial for Intel FPGA devices as Table 1 shows.

4. HiFlipVX

HiFlipVX is an open source HLS FPGA library for image processing
applications [2]. It has been extended for object recognition, which
involves feature detection [22] and neural networks [23]. HiFlipVX is a
C++ based library containing 53 functions, which are highly optimized
and parametrizable using templates. Most of its functions, or object
kernels, are based on the OpenVX standard. They are implemented to
be streaming capable with stream data objects, on edges, to link kernel
instances as nodes in a graph. It extends the OpenVX based functions
by additional parameters, such as vectorization, or more options, such
as additional data types.

The functions in HiFlipVX can be categorized in pixelwise, filter,
analysis, and conversion functions as Fig. 3 shows. Pixelwise functions
process the input images pixel by pixel, like adding two images to-
gether. Filter functions work in a window on the input image, like in a
Gaussian filter. The conversion functions change the image by scaling
3

it or changing the image format. The analysis functions usually have
Fig. 3. Image functions categories implemented in HiFlipVX.

Table 2
FPGA resources for Stratix 10 GX and MX.

FPGA model ALUTs FFs RAMs DSP

Stratix 10 GX 1866240 3732480 11721 5760
Stratix 10 MX 1405440 2810880 6847 3960

to perform a complete analysis of the input image, such as creating
a histogram. Other functions that operate, for example, on feature
vectors [22] or on tensors [23] can be classified into the mentioned
categories.

The library was designed to be as vendor independent as possi-
ble. Since no external libraries are required, it can also run on a
normal CPU. Nevertheless, it performs better in terms of resources
and execution time than the vendor-specific library, xfOpenCV, on
Xilinx FPGAs [2]. Additionally, the library is extended with pragmas
and macros for acceleration on Xilinx FPGAs. These directives are
used for pipelining, partitioning arrays, selecting specific resources and
interfacing between functions. The functions of HiFlipVX were used
for various applications, such as in a toolchain. [15], or an operating
system [16]. Akgün et al. show that the use of vectorization increases
not only performance but energy efficiency as well [17].

5. Evaluation methodology

All experiments have been run on two high-end FPGAs: an Intel
Stratix 10 GX Development Kit (1SG280LU2F50E-2VG) with 2 GB of
HiLo DDR4 DRAM @933.3 MHz and an Intel Stratix 10 MX Develop-
ment Kit (1SM21BHU2F53E2-VGS1) with 32x 256 MB HBM memory
banks @800 MHz. Both boards use the PCIe Gen3 x8 to connect with
the host CPU. Table 2 summarizes FPGA resources specification.

This work evaluates the performance portability of HiFlipVX with
parameters such as latency, initiation interval (II), and resource esti-
mation from RTL compilation using i++ HLS compiler V. 19.4. The
FPGA core power measurements use the Board Test System application
provided by Intel, with a 1 s sampling rate. To ensure power accuracy,
kernels run at least 1 min to obtain measurements. For most experi-
ments, the Stratix 10 GX was selected as the reference board, since the
only difference with the MX is the DRAM vs. HBM banks.

Our benchmark suite comprises four representative OpenVX graphs,
including all the categories of Fig. 3, from the Intel OpenVX and

Khronos samples:
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• Canny edge detector: Popular multi-stage algorithm for edge
detection and suppressing noise.

• Auto-contrast: Algorithm to improve contrast in images, adjusting
the image intensity.

• Census transform: A common algorithm for correspondence prob-
lem used in stereo image processing for disparity calculations
[24].

• Skin tone detection: Algorithm to detect human white skin tone.

Finally, these benchmarks are also used to compare with existing
tate-of-the-art approaches running them on the same FPGA, except the
kin tone which is not implemented by other works.

. Tuning HiFlipVX for Intel FPGAs

The OpenVX specification provides a high level abstraction to eas-
ly implement computer vision applications on multiple devices. The
penVX objects are designed for dynamic applications, so the runtime
rovides support to manage objects during execution. However, since
itstream generation takes a long time, on FPGAs, the verification
nd optimization of OpenVX graphs has to be statically performed at
ompile time.

The OpenVX standard leaves the optimization process to vendors. In
he case of HiFlipVX, the new implementation supports programmer’s
ptimizations through specialized versions of its template-based API
or each vendor. So, programmers can tune the OpenVX applications
ccording to the FPGA platform with minimal changes in the user-
acing code. Such portability from Xilinx to Intel implementation has
equired changes in the implementation of three OpenVX components:
xecution model, kernels, and edges. Kernel nodes are the compute part
f the graphs, while edges have the memory management with virtual
nd image objects which potentially improves speed up.

.1. Execution model

For Intel FPGAs, HiFlipVX synthesizes every graph as a single kernel
Fig. 2c). The system of task, a proprietary Intel API, enables task-
evel pipelining, allowing asynchronous nodes to create a graph for
ntel FPGAs. On the contrary, the Xilinx specialization uses the HLS
ataflow pragma for function or loop level parallelism.

.2. Kernels

HiFlipVX kernel nodes are implemented with C++ functions, so
he first step to maintain kernel performance and properly guide the
ompilation process is to add specific translations of Xilinx’s pragmas
o their Intel counterparts. Specifically, the next two pragmas and
omponent attributes are used:

• HLS array_partition/hls_register: forces the compiler
to generate variables as registers.

• Loop pragmas: the difference is the location in the code. These
pragmas are inserted after and before the loop, for Xilinx and
Intel, respectively.

The resource utilization comparison of the HiFlipVX for Xilinx [2]
nd Intel devices shows that the ALUTs resource usage is similar, less
han 15% variation for 6 representative OpenVX functions (all running
t the same 100 MHz frequency), except Sobel Filter, 27% difference,
s depicted in Fig. 4a.

Since the core programmable unit in Intel Stratix architecture packs
our-input LUTs and registers (FFs), the FFs usage in Fig. 4b shows

similar tendency as ALUTs. The RAM usage in Fig. 4c, shows the
ame number of blocks although the RAM sizes are different, 18 K
n Xilinx and 20 K in Intel; the similarities are attributed to SIMD
ectorization of 1 which synthesizes arrays and variables as registers.
hese results evidence the differences between architectures and HLS
ools; e.g., Xilinx LUTs are capable of self-split to implement two
eparated logic functions, unlike Intel that has dedicated ALUTs to
mprove routing time in complex designs [25].
4

Fig. 4. Resource comparison between Intel and Xilinx [2] FPGA at 100 MHz and
vectorization equal to 1, for 6 sample OpenVX functions.

6.3. Edges

For Xilinx, HiFlipVX implements optimized communications
through streaming with HLS STREAM pragma. The pragma creates
FIFOs or double buffers to transfer data between functions or loops in a
data flow area and it uses pass-by-pointers for kernel node parameters.
In general, these choices guarantee an Initiation Interval, II, equal to 1
cycle and low latency for filter-type kernels [2].

The lack of equivalent pragmas for streaming communications in
Intel API and the pass-by-pointer as parameters can result in kernels
with poor performance, constraining the II up to 114 cycles, because
the HLS tool generates a single Avalon Memory-Mapped (MM) Master
interface with a single arbiter for all variables [26,27].

When function parameters are passed-by-reference, which are more
suitable for Intel [28], the II reduces to 1 cycle, substantially im-
proving the pipeline performance. The first two groups of bars in
Fig. 5 show a 114× cycle difference between the pass-by-pointer and
pass-by-reference for a 3 × 3 filter.

Reference parameters do not support concurrency requirements of
nodes in OpenVX graphs. To support them, the Intel system of task
with stream as function parameters allows nodes to run asynchronously.
Streams reach an II of 1 cycle and, in practice, resulting in Avalon
streaming interfaces which provides high-bandwidth and low latency
communication.

Comparing the streams with reference, streams latency is up to 2 ×
higher because system of task adds control logic in kernel pipeline to
communicate among graph nodes. Fig. 5 shows the impact on both II
and latency of all the interface changes: passing arguments by reference
and stream communication among kernels.

In terms of code implementation, Intel stream interface has 3 spe-
cific data types: stream_in for inputs, stream_out, for outputs, and stream
for general interconnect between kernel nodes. To achieve the porta-
bility, the Listing 1 shows the data type redefinition of the vx_image
based on templates which allows to adapt the hardware with the vec-
torization factor (V) and the capacity of stream buffers (buff_cap). This

implementation hides the hardware interface details to programmers.
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Fig. 5. Latency and initiation interval for interface optimizations on edges in a 3 × 3
filter function (lower is better).

Listing 1: vx_image for virtual image implementation with Intel
streams support

template <class T, const size_t V,
int stream_type , uint buff_cap=256>

using vx_image=
typename conditional <stream_type ==
vx_streamIn_e ,
ihc::stream_in <vx_image_t <T, V>>,
typename conditional <stream_type==
vx_streamOut_e ,
ihc::stream_out <vx_image_t <T,V>>,
typename conditional <stream_type==
vx_stream_e ,
ihc::stream<vx_image_t <T,V>, ihc::buffer<
buff_cap >>, vx_image_t <T,V> > ::type>::type
>::type;

Virtual image objects implemented with streams are limited to ac-
cess by reference, and the use of arrays of streams are not allowed. Also,
multiple reads from a stream by different nodes require to duplicate the
number of edges in the FPGA. For this reason, a custom internal kernel
vxSplit is needed to concurrently feed multiple kernels with a single
copy of the data-stream references.

Contrary to virtual image objects, images references allow direct
user access, which creates an opaque reference to an image buffer [1].
In Intel FPGA, the user can access data through external ports using the
Avalon MM buses.

In embedded FPGAs, stream interfaces with input and output quali-
fiers are enough to control I/O ports. However, discrete devices with an
external memory, as DRAM, require memory IP controllers. To manage
external DRAM memories, HiFlipVX takes advantages on existing host
drivers for OpenCL/SYCL to perform the required transactions. Also,
those transfers are transparently instantiated with two custom kernels.

The DRAM interfaces are created with the ihc::mm_master to specify
the external Avalon MM data bus interconnection to the OpenCL/SYCL
drivers. Listing 2 shows the vx_image to create images for FPGAs with
DRAM support. The data bus size (WIDTH_MEM) is parametrized with
the specification of DRAM memory controller from the BSP (Board
Support Package), and PORT enumerates the bus interface. The last
template parameter, emb_x, advises the compiler whether the interface
is embedded or not, for Xilinx devices it is always true.

Listing 2: vx_image for image implementation with Intel DRAM
support
template <class T, const uint WIDTH_MEM , uint V

=1, uint PORT=1, uint emb_x=1>

using vxCreateImage =
typename conditional < emb_x == 0,
ihc::mm_master <vx_image <T, V>,
ihc::aspace<PORT>, ihc::awidth<WIDTH_MEM >,
ihc::dwidth <32>, ihc::latency <0>,::maxburst
<16>,
ihc::align<64>, ihc::waitrequest <true>>,
vx_image <T, V>>::type;
5

Fig. 6. DRAM memory interconnection to a HiFlipVX graph.

Fig. 7. Performance (frames per second) of Canny edge detector with a HD image
varying coalescing to read DRAM memory (LSU width), higher is better.

Image objects for DRAM generates load/store units for continuous
and aligned memory accesses, user defined parameters as burst size
with the coalescence parameter are available for user optimizations.
Furthermore, the load/store controller allows to adjust technology dif-
ferences between FPGA boards and maximizes DRAM bandwidth. Fig. 6
shows the interfaces and load/store units required to interconnect a
DRAM memory to HiflipVX graph.

To evaluate Load/Store units, Fig. 7 plots the performance of Canny
edge detector as a representative graph. It shows that high coalescence
factors with very wide LSUs, >512 bits, can reduce performance up to
7 ×, because the compiler heuristic generates a non-aligned controller
access. In load/store units with a bus width smaller than 512 bits, the
maximum DRAM burst is underused, except in 64 bits which is the same
bus width as DRAM (𝑑𝑞).

Once an OpenVX graph has been programmed in C/C++ with
HiFlipVX, the compilation flow depends on the target FPGA. For an
embedded FPGA, the FPGA IP can be generated after the RTL genera-
tion, and for an Intel discrete FPGA, the IP is coupled to a BSP, which
is part of the OpenCL and SyCL drivers, to enable communication with
a host CPU.

OpenCL and SyCL Library feature allows including RTL modules
into function kernels packaged into an library object (.lib). However,
the system of tasks used in HiFlipVX is not supported yet. To overcome
this problem, the compilation flow has an additional step, supported
with a tool extension in HiFlipVX that takes two inputs: (1) an XML
file with the BSP memory port descriptions, and the RTL from HiFlipVX,
both of them compatible with the target FPGA.

The tool extension output enables the library generation with Intel
standard aoc tools. As result, the HiFlipVX libraries objects are ready
to be used in OpenCL/SyCL kernels. Since OpenCL backend implemen-
tation is more mature than SyCL, it has been chosen to be evaluated
in this work. Fig. 8 shows the compilation flow to couple the Intel
HiFlipVX graph to a heterogeneous system (right path) and how the
Xilinx flow is unaffected (left path).

7. Results

This section starts analyzing how the new HiFlipVX implementation
behaves when the graph complexity changes. Then, it evaluates Hi-
FlipVX running 4 representative OpenVX graphs and, finally, compares
this work with two state-of-the-art proposal.
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Fig. 8. HiFlipVX programming and compilation flow for Xilinx and Intel FPGAs.

.1. HiFlipVX scalability analysis

To assert how system of tasks and deep pipelines impact on graph
calability, the first stage of the SIFT feature detector is used as a
ynthetic graph benchmark. This multi-Gaussian graph applies multiple
imes a Gaussian filter to an image stream [29]. The benchmarks allow
s to tune the depth of the resulting kernel pipeline by adding Gaussian
iltering steps, one after the other.

Fig. 9a plots the impact of the number of filter nodes for the multi-
aussian graph (kernel pipeline depth) on execution time and FPGA

requency. From 2 to 16 filters, memory latency hides computation
hich flattens the execution time. After that point, 16, execution time

ncreases almost linearly with the number of filters, showing good
calability. Please note the slight frequency reduction for large number
f filters also contributes to the larger execution time.

Resource usage is shown in Fig. 9b, which increases linearly, with
growing rate of 0.33, 0.17, and 0.13 for ALUTs, FFs, and RAMs

esources, respectively. As a consequence, FPGA power raises with a
rowing rate of 74 mW per additional Gaussian filter stage as is shown
n Fig. 9c. In summary, HiFlipVX with the system of task scales well
ithout adding any extra overhead increasing the graph complexity.

.2. OpenVX application resource utilization

This section analyzes resource usage (per-kernel) of four representa-
ive applications: Canny edge, Autocontrast, Census transform, and Skin
one detection. Fig. 10 shows the graph diagram for all of them. For
he sake of clarity, the custom internals kernels, enabling DRAM and
plitting data streams (vxSplit) described in Section 6, are not depicted
n the graphs.
6

r

Fig. 9. Impact of node scalability on (a) execution time; (b) frequency and resource
utilization; and (c) power consumption for the Multi-Gaussian synthetic benchmark
using the Stratix 10 GX.

Table 3
Estimated resource usage for each OpenVX function in Canny edge graph using
HiFlipVX with a 4k image and vectorization factor of 8 on a Stratix 10 GX.

Function ALUTs FFs RAMs DSP

Load Image Object 10553 39508 17 0
vxGauss 3627 5620 18 0
vxSobel 5907 8854 19 0
vxSplit 221 117 2 0
vxMagnitud 5907 8966 4 8
vxPhasea 165 133 1 0
vxNonMaxSuppression 4605 5842 18 0
Store Image Object 4177 11949 18 0

aOrientation only for 4 gradient directions.

7.2.1. Canny edge
The Canny edge detector, Fig. 10a, is a multi-node graph algorithm

that extracts the edge information from images. In HiFlipVX, its imple-
mentation consists of 5 nodes. Table 3 shows the estimated resource
usage from the Intel HLS compiler report for all Canny edge nodes.2

The image objects are the most resource demanding function since
it track multiple external memory request at a time, trying to group
access before being send to the memory controller.

7.2.2. Autocontrast
Autocontrast, requiring to extend HiFlipVX to support the graph

from Fig. 10b with two new kernels for color conversions: NV12 to
RGB and RGB to NV12, and EqualizeHist.

2 Since all FPGAs used in this work are from the same family, Stratix 10,
he resource estimation on HiFlipVX graph are equal, and from here on, all
esults corresponds to the Stratix 10 GX FPGA, except when noted.
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Fig. 10. OpenVX application graph diagrams. (a) Canny edge detector, (b) Autocontrast image, (c) Census transform, (d) Skin tone detection.
Fig. 11. Code comparison between a reduced version of OpenVX, AFFIX, and HiFlipVX. OpenVX definitions and FPGA optimization parameters are marked in orange and gray,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Estimated resource usage for each OpenVX function in Autocontrast graph using
HiFlipVX, with a HD image and vectorization factor of 1.

Function ALUTs FFs RAMs DSP

Load Image Object 934 3025 16 0
vxColorConvert(NV12) 1273 1744 0 1
vxSplit 130 103 0 0
vxChannelExtract 143 119 0 0
vxEqualizeHist 2584 3874 1029 0
vxChannelCombine 173 143 0 0
vxColorConvert(RGB) 1037 1268 0 0
Store Image Object 1102 3605 18 0

Autocontrast requires more RAM resources than other graphs be-
cause the intensity channel (Y) is stored in RAM memory until his-
togram is calculated. This strategy avoids stalls in streams at expense
of higher resource usage that mainly depends on the input image size;
e.g., if the image size changes from HD to 4 K, RAM usage increases by
4 ×. HiFlipVX enables the user to provide FPGA tuning parameters. For
example, in this case, the code includes a hint to implement the DRAM
access coalescence with a LSU width of 64 bits to save resources and
compensate the extra DRAM usage. The Table 4 shows the resource for
each function in the Autocontrast graph.
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Table 5
Estimated resource usage for each function in Census transform using HiFlipVX, with
a 4k image and vectorization factor of 8.

Function ALUTs FFs RAMs DSP

Load Image Object 10569 39520 17 0
vxCensus 179 208 0 0
vxHistogram 960 16924 2 0
Store Image Object 2095 5501 18 0

7.2.3. Census transform
Census transform is not part of the OpenVX standard, so we added it

to the HiFlipVX library. The implementation concatenates several filters
as Canny does. Table 5 shows the estimated resource usage for Census
transform functions, while Table 3 shows the usage for shared functions
between Census transform and, above explained, Canny.

7.2.4. Skin tone detection
The last evaluated graph is Skin tone detection, which requires

threshold objects to produce output Boolean images. The graph is
composed by 14 nodes of four different OpenVX kernels that process
8 bit data. Table 6 shows the resources for each function in the Skin
tone graph.
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Table 6
Estimated resource usage for each OpenVX function in skin tone graph using HiFlipVX,
with an HD image and vectorization factor of 1.

Function ALUTs FFs RAMs DSP

Load Image Object 3675 17257 16 0
vxAndNode 152 119 0 0
vxSubtract 230 153 0 0
vxThresholdNode 154 120 0 0
Store Image Object 2380 6936 18 0

Fig. 12. Latency of Canny edge for HiFlipVX and AFFIX using an Stratix 10 GX FPGA.

7.3. OpenVX application analysis

The new HiFlipVX implementation simplifies the adoption of dif-
ferent FPGAs. For example, this section evaluates execution time,
frequency, power, and energy on two FPGA devices: Stratix 10 GX
(S10GX) and Stratix 10 MX (S10MX). The main difference between the
boards is the global memory. While the S10GX has one DRAM bank
with a data port width of 512 bits, the S10MX has a HBM multi-banked
memory composed by 32 DRAM banks and a data port width of 256
bits per bank. Running on both boards only required to change the
vxCreateImage port declaration.

Table 7 shows the execution time, frequency, power and energy of
the four graphs. For all of them, the S10GX has higher frequencies
and lower execution times, with time gains between 1.4 and 6,8%.
Since all graphs are compute bound; e.g., in Canny edge and Census
transform the maximum memory bandwidth used is 2.4 GBs for S10GX
and S10MX, the HBM memory does not provide any advantage in spite
of using one memory bank per variable. Most probably, the same Stratix
10 architecture explains the close results. For power and energy, in
all but Autocontrast, the S10GX consumes more energy and with the
lower execution time increases average power, up to 18%. The higher
energy consumption in Autocontrast by the S10MX may be due to
the BSP differences and the required extra RAM that increases routing
complexity.

7.4. Comparison with existing approaches

AFFIX [3] is a previous proposal that implements OpenVX graphs.
It relies on OpenCL channels to offer an implementation based on
OpenVX standard, as shown in Fig. 2b. The use of OpenCL limits the
programmability of AFFIX. Comparing the graph codes from Fig. 11,
AFFIX, lower left, relies on OpenCL macros that are error-prone, diffi-
cult to maintain, and moves away from the clarity of OpenVX, upper
left. In contrast, our work allows to use a well-formed C++ code,
the same language as OpenVX API, to program graphs using OpenVX
standard with templates to optimize hardware generation. In any case,
in order to integrate HiFlipVX graphs to a host CPU, HiFlipVX can
have a simple OpenCL interface called from a single queue command
to execute the graph.

In order to comparatively analyze performance against our pro-
posal, we modified AFFIX to communicate host and FPGA kernels
through the on-board DRAM instead of using the Intel host pipe ex-
tension to directly communicate between the host and FPGA kernels.
Although host pipes reduce latency overhead, they have two limi-
tations: they are only supported on a few Arria 10GX development
kits [30], and also, each pipe can only have one input and one output
8

Fig. 13. Resource usage per logic unit relative the total units on Stratix 10 GX and
Stratix 10 MX for AFFIX and HiFlipVX implementations.

port. This second fact limits graph implementations; e.g., the Census
transform was reduced to one output as shown in Fig. 10c where the
AFFIX implementation follows the dotted line and ignores the solid one.
To compare with this work, it is mandatory to replace the pipes with
equivalent DRAM input/output to run benchmarks on Stratix10 GX and
Stratix 10 MX boards.

In Table 8, it can be observed that HiFlipVX reaches a speed-up of
3.4 × and 3.6 × for Canny Edge and Census. In case of Autocontrast, it
was not possible to use the same implementation for both AFFIX and
ours, so that, they are hardly comparable. Our approach is behaving a
20% worse since synthesized frequency is lower in comparison to AFFIX
(Fig. 13). This penalization on frequency is due to a higher consumption
of resources (RAM) in the HiFlipVX implementation.

Comparing the energy of the proposals, HiFlipVX dissipates 23%
less power than AFFIX in Census transform case, our assumption is
that, in HiFlipVX, the dispatch circuits to connect nodes with host are
minimized,3 also, in Canny edge and Census transform the HiFlipVX
frequency is lower than AFFIX, at least 50% in Canny. In Autoconstrast,
with the worst performance, it is only 10% less energy efficient.

Comparing the latency between both implementations in Fig. 12,
HiFlipVX shows a 10% of improvement on average. One of the pipeline
speed-up sources comes from the hyper-optimized loop structure which
is enabled by default in the HLS compiler. The use of hyper-registers
on an application has demonstrated a performance gain of 1.4 × on
Stratix10 devices compared with previous FPGAs generation [31]. Al-
though the compiler tries to apply this technique in both AFFIX and
HiFlipVX, in case of AFFIX, the use of OpenCL channels is inhibiting
this optimization.

Fig. 13 shows the resource consumption: ALUT, RAM, FF, and DSP;
of AFFIX and HiFlipVX. In case of Canny edge, Census transform, and
Autocontrast, AFFIX has a higher utilization of ALUTs and FFs resources
than HiFlipVX. In opposition to HiFlipVX, in AFFIX, OpenCL generates
a ‘‘kernel dispatch logic’’ for each OpenVX kernel to communicate with
the host, which is responsible for an increase of 1463 ALUTs and 1467
FFs per kernel node. In the case of HiFlipVX, kernel nodes are collapsed
in a single kernel with a single dispatch logic with saves from 4 to
24% of resources per kernel in the evaluated graphs on the Stratix
10 GX. On the Stratix 10 MX, the difference is less than 5% between
implementations.

In Autocontrast, the amount of RAM resources in HiFlipVX is 4 ×
bigger as it is sensitive to image size. In contrast, AFFIX implementation
prefers to split the pipeline and read twice from external memory
instead of using RAM resources. Concerning to DSPs resources, in
HiFlipVX the color conversion is implemented with a 8-bit approxima-
tion [32] that does not require DSPs for float operations in contrast to
AFFIX.

At last, we compare our proposal against the traditional OpenCL
model, depicted in Fig. 2a, used by the Chai benchmark [33] for Canny

3 Compilation reports state this difference in the dispatch logic between
AFFIX and HiFlipVX.
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Table 7
HiFlipVX results on a Intel Stratix 10 GX and Intel Stratix 10 MX using a 4k image.

OpenVX application Stratix 10 GX Stratix 10 MX

Time [ms] Frq [MHz] Power [W] Energy [mJ] Time [ms] Frq [MHz] Power [W] Energy [mJ]

Canny edge 6.8 310 13.2 89.8 7.3 293 11.3 76.5
Census 6.8 331 12.9 87.7 6.9 326 10.9 74.6
Autocontrast 23.1 301 13.1 302.6 23.9 294 13.8 318.1
Skin tone 33.2 343 12.8 424.9 35.7 315 10.9 361.5
Table 8
Comparison between HiFlipVX and AFFIX on a Intel Stratix 10 GX and Intel Stratix 10
MX using a 4k image.

OpenVX application Stratix 10 GX Stratix 10 MX
𝑇 𝑖𝑚𝑒_𝐻𝑖𝐹 𝑙𝑖𝑝𝑉 𝑋
𝑇 𝑖𝑚𝑒_𝐴𝐹𝐹𝐼𝑋

𝐸𝑛𝑒𝑟𝑔𝑦_𝐴𝐹𝐹𝐼𝑋
𝐸𝑛𝑒𝑟𝑔𝑦_𝐻𝑖𝐹 𝑙𝑖𝑝𝑉 𝑋

𝑇 𝑖𝑚𝑒_𝐻𝑖𝐹 𝑙𝑖𝑝𝑉 𝑋
𝑇 𝑖𝑚𝑒_𝐴𝐹𝐹𝐼𝑋

𝐸𝑛𝑒𝑟𝑔𝑦_𝐴𝐹𝐹𝐼𝑋
𝐸𝑛𝑒𝑟𝑔𝑦_𝐻𝑖𝐹 𝑙𝑖𝑝𝑉 𝑋

Canny edge 3.2 2.4 3.6 1.9
Census 3.6 1.7 3.4 1.8
Autocontrast 0.8 0.9 0.8 0.7

edge. Our approach, HiFlipVX reaches a speedup of 9 × in comparison
o Chai’s. There are two limiting factors that justify this results in
hai’s: communication between nodes through external memory is
lower and shallow kernels (short pipelines) do not fully exploit FPGA
arallelism.

. Conclusions

One of the main features of OpenVX is the portability among
evices. However, on FPGA devices, providing cross-platform support
emains a challenge. This paper presents a cross-platform OpenVX
ibrary for FPGAs based on HiFlipVX library, which originally only
argeted Xilinx devices. This new version efficiently supports Intel
PGAs exploiting the novel Intel’s system of tasks to coalesce OpenVX
odes into accelerated graphs on Intel FPGAs.

The new implementation introduces a novel compilation flow that
ntegrates the expressiveness of OpenVX graphs in C/C++ with the

performance of OpenCL kernels. Also, applications can interoperate
with OpenCL and SyCL code. With these 3 aspects, the library gains
flexibility to support multiple FPGA architectures and devices with
conventional and High Bandwidth Memories.

In terms of resource utilization, on Intel devices, the enabled opti-
mizations save around 1.5% of ALUTs usage per node in graphs versus
the standard OpenCL approach with one kernel per node, since the host
hardware control communication is only generated for the complete
HiFlipVX graph application. Compared with the state-of-art, HiFlipVX
performs up to 3.6 and 9.6 × faster than AFFIX and Chai, respectively.
Energy results also reflects the successful implementations with savings
up to 2.4 ×.
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