arXiv:2302.10806v1 [cs AR] 21 Feb 2023

DYNAMIC RESOURCE PARTITIONING FOR MULTI-TENANT
SYSTOLIC ARRAY BASED DNN ACCELERATOR

A PREPRINT
Midia Reshadi* David.Gregg
School of Computer Science and Statistics School of Computer Science and Statistics
Lero, Trinity College Dublin Lero, Trinity College Dublin
Dublin 2, Ireland Dublin 2, Ireland
Midia.Reshadi@tcd.ie David.Gregg@tcd.ie

February 22, 2023

ABSTRACT

Deep neural networks (DNN) have become significant applications in both cloud-server and edge
devices. Meanwhile, the growing number of DNNs on those platforms raises the need to execute
multiple DNNs on the same device. This paper proposes a dynamic partitioning algorithm to
perform concurrent processing of multiple DNNs on a systolic-array-based accelerator. Sharing an
accelerator’s storage and processing resources across multiple DNNs increases resource utilization
and reduces computation time and energy consumption. To this end, we propose a partitioned weight
stationary dataflow with a minor modification in the logic of the processing element. We evaluate the
energy consumption and computation time with both heavy and light workloads. Simulation results
show a 35% and 62% improvement in energy consumption and 56% and 44% in computation time
under heavy and light workloads, respectively, compared with single tenancy.

Keywords DNN accelerator - Multi-DNN processing - Multi-Tenancy - Dataflow.

1 Introduction

Deep neural networks have permeated applications like recommender systems [[1]], self-driving cars [2], and language
translation [3]. The massive demand for DNN processing has led designers to develop domain-specific hardware
accelerators to achieve energy efficiency and sufficient processing capacity [4][S][6l]. Applications like augmented
and virtual reality (AR/VR) [7] and autonomous driving cars use several DNNs for different sub-tasks in edge-side
devices. For example, a VR application includes hand pose estimation and hand and eye-tracking sub-tasks as user
inputs [8]]. Similarly, cloud infrastructure [9] offers INFerence-as-a-Service (INFaaS) [10] for processing multiple
real-life DNN-based applications in parallel. Thus, multi-tenant accelerators are shared across multiple requests on
cloud-computing platforms.

There are two different methods of running multiple DNNSs on the accelerator: sequential and concurrent. In the
sequential approach, a layer from one DNN executes on the accelerator at any time. In the concurrent approach, multiple
layers from different DNNs can be executed in parallel on the DNN accelerator. The goal of this paper is to enable
parallel processing of more than one DNN layer on the systolic array accelerator, where we share storage and computing
resources across multiple DNNs.

In processing each DNN layer, the dataflow procedure defines scheduling, bounding, and assignments of tensor
values to memory and computation resources [L1]. The main goal of the dataflow procedure is to maximize data reuse
to achieve energy efficiency. Three basic dataflow approaches are commonly proposed for implementing DNNs on
systolic-arrays: weight stationary, input stationary, and output stationary. The weight stationary approach pre-loads
weight data to each of the processing elements (PEs) of the systolic array, and then streams inputs data through the
systolic array to produce a stream of outputs. The input-stationary approach is similar to weight-stationary, but the

This paper was accepted at 31° Euromicro International Conference on Parallel, Distributed, and Network-Based Processing
(PDP 2023).

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

DNN Workload 1

o . =
—H [Filter
 ——————
e §‘:
DNNs with } | <CN
different | 23 =
shapes :'—E 5 —> §
and H g 5 =
dimensions } LRy
J
DNN Workload 3 = T‘ :‘
. /A —
-
. =
|20
oo > < - >
Application Host CPU Hardware Resource

(DNN Accelerator)

Figure 1: The multi-tenant DNN accelerator.

role of weights and inputs is swapped. In the output stationary approach, inputs and weights are streamed through the
systolic array to compute output values at each of the PEs, after which the outputs must be drained in a separate stage.

Fig. [I] shows an example of three DNNs that are mapped to a weight-stationary systolic array. The role of the
dataflow procedure is to allocate work to the hardware resources, and map weight, input, and result data to the PEs.
First, the weight values are moved from the filter weight buffer into the individual processing elements of the systolic
array. In the next stage, input data is streamed from the input feature map (IFMAP) buffer from left to right across the
rows of the systolic array. Each input value is multiplied by the weight value stored within the corresponding PE, and
the product flows downward to the PE vertically below. As the products flow downward vertically through the PEs, they
are added together, so that each PE produces a partial sum of products each cycle. The partial sums move downward
vertically along the columns of the PEs, until the total sum emerges at the bottom of the systolic array, and is stored to
the output feature map (OFMAP) buffer.

This paper proposes a dynamic partitioning algorithm as a solution at the data-mapping level to improve resource
sharing across multiple DNN layers. This algorithm needs a small change in PE logic, but it requires no expensive
hardware costs, such as clusters with additional inter-cluster communication. Resource partitioning means allocating
parts of the data to subsets of resources (processing and storage components). This operation is inherently data-level
management and can be implemented in the dataflow procedure. We partition the systolic array vertically, so that partial
sums from the same layer are added together. There is no easy way to partition our weight-stationary systolic array
horizontally, because partial sums always flow downward towards the OFMAP, and partial sums from different layers
must be kept separate.

Resource partitioning increases resource utilization and improves energy efficiency and computation time. We
summarize the main contributions of this paper as follows:

* Dynamic resource partitioning of multi-tenant DNN accelerator. This paper applies dynamic resource
partitioning to the PE and memory elements to increase resource utilization in multi-tenant or multi-DNN
acceleration platforms.

* Partitioned weight stationary mechanism. This paper extends the weight stationary mechanism for support-
ing dynamic resource partitioning.

* Data mapping solution with a slight hardware modification. We simply add a tri-state gate to the pro-
cessing element logic to provide the calculation control required to enable the partitioned weight stationary
dataflow.

This paper is organized as follows: Section II provides preliminaries on DNN accelerators; Section III presents the
dynamic partitioning algorithm in detail; Section IV presents comprehensive evaluations; Section V concludes.

2 Preliminaries

The primary purpose of this section is to define key concepts in a multi-tenant deep neural-network accelerator. We
introduce the structures of the multi-DNN workloads and systolic array logic in detail.

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

DNN;
| |
I [
I [
| |
I [
! Hp ' DNNn
| S ©
; H |
ty t Time . .
Ly Arrival time (A,) L1, Execution
time (Ey)

Figure 2: The DNNG graph consisting of n DNNs.

2.1 Deep Neural Networks Graph (DNNG)

Multi-DNN workloads comprise several deep neural networks (DNN), including various layers with different
dimensions. Accordingly, we introduce the deep neural network graph (DNNG) for the abstract definition of multi-DNN
workloads. A deep neural network graph is a weighted directed acyclic graph (DAG), G(V, E) where each vertex
v; € V corresponds to layer [; € L that L ={l1,ls,...,l,,}. The edge e; € E corresponds to the flow of data between
layers, and therefore defines the precedence of layer execution. Each DNNG has an arrival time A; and estimated
execution time E,. Multi-DNN systems include n DNNs, and each DNN comprises a different number of layers, as Fig.
shows the pool of n DNNs with m and p layers.

Each layer consists of three convolution tensors: filter weights (FW), input feature map (IFMap), and output feature
map (OFMap), in which each tensor is a 4-dimension array with multiple shapes: FW € RMCRS TFMap ¢ RVCHAW,
and OFMap € RVMPQ_ Thus, the shapes of each layer are:

shapes(l;) = {M,N,C,R,S,H, W, P,Q} (D

The number of multiply and accumulate (MAC) operations required to process a layer equals the product of the
shapes of FW and IFMaps:
Opr(l;,)=EM xNxCxRxSxHxW (2)

Calculating the number of MAC operations is used as a measure to estimate the execution time of each layer.

2.2 Systolic-array Based DNN Accelerator

A systolic-array-based accelerator (SA) is a domain-specific processor that consists of a 2D array of processing
elements (PE) and storage components for matrix multiplication in applications like deep neural network processing.

Our design is similar to the Google TPU [12]], a weight-stationary systolic array with three SRAM memory buffers:
one for each of the filter weights, input feature map and output feature map. However, we use more abstract naming
for buffers, that is the load, feed, and drain buffers, as shown in Fig. E} For ease of presentation, we represent the
dimension of each buffer as Buf fer[row, column|, which signifies the buffer’s row and column.

Each PE comprises a load register (LR) and MAC unit to perform multiply and accumulate operations. The PE logic
has two operating modes depending on the load input: Load (load = 0) and Calculate (load = 1). Fig. [3|depicts the
structure of the PE with two data input-ports including reused-data (RD), feed-data (FD) and generated-data (GD) as
a data output-port. There is also a control input-port called load that specify the PE operation. Each PE element is
represented as PFE|x, y] where x and y refer to the PE’s index in the « and y dimensions, respectively. For instance,
PEI0, 2] denotes PE in the first row and third column of the PE array.

In the systolic array, tensor values move through PE-array in X the dimension from the feed buffer and Y dimension
from the load buffer. After completing each MAC operations in the PE, the results move downwards to the adjacent PE
in the Y dimension. Note that data from the load buffer and results from MAC operations both move downwards in the
Y dimension along the same inter-PE connections. Therefore, we must load data from the load buffer and compute
results in separate steps. All three on-chip buffers are connected to off-chip DRAM memory.

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

Load Buffer
(Reused data)

EOO0OE > g
O00000 woat—srs

Feed Buffer |:| PE Arra D
(Feed data) 0 M O

OO00000 ro- X—®
OOOOo0od

< GD
= Drain Buffer
3 (Generated data)

Figure 3: The systolic-array based DNN accelerator. In the PE logic, LR, F'D, RD, and G D stand for load register,
feed data, reused data, and generated data, respectively. F'D and RD are input data ports, and G D is an output data
port and load is input control port. X dim and Y dim refer to X and Y dimensions, respectively.

Lo T2 Lo{ T1 Lo{ To
I Aty +To I Aty + T I Aty
DNNj,., DNN, DNN,

O B - I - OH - OB

“‘n...y Task Queue |

128x128

Partitioning at Aty + Ty Partitioning at T

Figure 4: The partitioning mechanism. A; is arrival time and 7y, 71, T2 are execution time (F;)

3 Dynamic Resource Partitioning Algorithm

3.1 Systolic Array Partitioning

As shown in Fig. [3] our systolic array comprises computational and storage elements. Resource partitioning means
dividing storage and processing elements into equal-sized partitions and employing them to process multiple DNN
layers simultaneously. This goal is achieved by assigning tensors of a layers to a resource partition. For example,
allocating a part of each storage element to tensors along with utilizing a subset of PEs to compute. Fig. [f[a) shows a
simple example of a dividing a systolic array in two partitions. Two DNNss are in task queue called DN N; and DN Ny
with m and n layers, respectively. Two memory spaces of load, feed, and drain buffers are allocated to the DNN
layers. Furthermore, the PE-array is split into two 6 X 3 sub-arrays (six rows and three columns).

3.2 Partitioning Strategy

The systolic array structure shown in Fig. [3|allows only vertical partitioning. For example, in a 128 x 128 systolic
array (128 PE rows and 128 PE columns), if the number of partitions is 4, then the partition shapes will be 128 x 32
(128 x 14@). Using horizontal partitioning (e.g., two 64 x 128 partitions) causes incorrect results because the OFMap
results of the upper partition enter the lower partition as inputs. Fig. @ shows the n number of DNNs as available tasks
for processing in a task queue. The first arrival time belongs to the first layer of the first DNN (Lo of DN Ny); the

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator

A PREPRINT

Algorithm1: Dynamic Resource Partitioning

1:
2:

W

A A

Inputs: DNNG (m, n, A, E¢)
SA architecture (Storage(size), PE(x,y))
Outputs: Partition size estimation (PE(x’,y’))
Task assignment(t; = PE(x',y")

Queue [index] <« @
f (index==1) //First DNNG inside queue
Assign 7, to PE(X,y) //Assign to all PEs with no partitioning
else
for All [; with A;; < E
Number of partitions= Number of DNNGs inside Queue
Call Partition_Calculation (Number of available layers)
Call Task Assignment (Available Layers)
Call Partioned Weight Stationery (4vailable Layers)
nd_for
end_if

Function Partition_Calculation (Number of available layers)
PE,, = PE, //Partition size in x dimension

PE %y

Y' 7 | Number of Available layes
return (PE(x’,y’))
end_function

J //Partition size in y dimension

Function Task Assignment (4vailable layers)
for All available |;
Number of operations of the layer l;, Opr(l;)=[] shapes
Sort Opr(l;) from high to low
Assign [; with the highest Opr to available partition
nd_for
return (Assigned [;)
end_function

Function Partitioned Weight Stationery (Available layers)
n = Number of available layers
for All partitions n
//step ©
Temporal_for PE [partition columny] to Drain Buffer [partition column]
arallel_for PE [partition rowx] to Drain Buffer [partition row]
//step ®
emporal_for Feed Buffer [partition column] on PE [partition columny]
arallel_for Feed Buffer [partition row] on PE [partition rowx]
//step ©
arallel_for Load Buffer [partition row] to PE [partition rowx]
arallel_for Load Buffer [partition column] to PE [partition columny]
parallel_temporal_for
end_for
end_function

Figure 5: Dynamic resource partitioning algorithm

partitioning algorithm assigns the first layer to the entire systolic array, so, the first layer is processed by all PEs because
there are no other available layers to process in parallel with this layer.

As it is shown in Fig. [4] after finishing the layer Ly of DN Ny at time Aty + 79, there are n available layers in the
queue for processing (L of DN Ny, Lo of DN Ny,.., Lo of DN N,,_1).

Therefore, the accelerator is partitioned into n parts with the PE-array size equal to 128 x Llnﬁj (PE row=128, PE

columns= Llnﬁj). Some DNNss consist of only a few layers and are finished sooner than the DNNs with many layers.
Hence, some partitions are freed after completing its allocated layers, and then these partitions may be merged if they
are adjacent. Partition merging accelerates the processing of the remaining layers with more processing resources.

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

Step @..(Drain Data)
Temporal row mapping PE [X, 3-5] — Drain Buffer [Partition 2]
Spatial column mapping PE [X, 3-5] —Drain Buffer [Partition 2]
Temporal row mapping PE [X, 0-2] —Drain Buffer [Parition1]
DNNZ DNN1 Spatial column mapping PE [X, 0-2] —Drain Buffer [Parition1]

'»‘ Ln. e e L1 LO
“»Task Queue

Temporal column mapping Feed Buffer [Partition 1] — PE [X, Y]
Spatial row mapping Feed Buffer [Partition 1] — PE [X, Y]

..... «—> Temporal column mapping Feed Buffer [Parition2] — PE [X, Y]
Partition DNNT ¢ opNN2 || L Spatial row mapping Feed Buffer [Parition2] — PE [X, Y]
Partition columns in Step @) (Load Data)
rows [T Bufior partition || SR Spatial row mapping Load Buffer [Partition 1] — PE [X, 0-2]
aiony: P H 2 istep @ Spatial column mapping Load Buffer [Parition1] — PE [X, 0-2]
""""""""""" i Spatial row mapping Load Buffer [Partition 2] — PE [X, 3-5]
A PE[X,O-MEEIE[X&Q | Spatial column mapping Load Buffer [Partition 2] — PE [X, 3-5]
E (b)
DNN1 § DNN2 |-
SR in { in Oc partitions : Step @
Stepe Partition } Partition | {[™|]--. Temporal_for PE [Partition 2 [rowx]] to Drain Buffer [Partition 2 [row]]
1 . : . 2 [PE] Parallel_for PE [Partition 2 [columny]] to Drain Buffer [Partition 2 [column]]
B:;er L Partition Temporal_for PE [Partition 1 [rowx]] to Drain Buffer [Partition 1 [row]]
v i 1 i 1 Parallel_for PE [Partition 1 [columny]] to Drain Buffer [Partition 1 [column]]

Step @

Temporal_for Feed Buffer [Partition 1 [column]] to PE [columny]
Parallel_for Feed Buffer [Partition 1 [row]] to PE [rowx]
Temporal_for Feed Buffer [Partition 2 [column]] to PE [columny]

Parallel_for Feed Buffer [Partition 2 [row]] to PE [rowx]
Step @

Parallel_for Load Buffer [Partition 1 [row]] to PE [Partition 1 [rowx]]
Parallel_for Load Buffer [Partition 1 [column]] to PE [Partition 1 [columny]]
Parallel_for Load Buffer [Partition 2 [row]] to PE [Partition 2 [rowx]]

Parallel_for Load Buffer [Partition 2 [column]] to PE [Partition 2 [columny]]

(c)

SC: Spatial column mapping
TC: Temporal column mapping
SR: Spatial row mapping

TR: Temporal row i

Figure 6: (a) Partitioned systolic array. In each PE partition, PE[X, 0 — 2] means PE address in the entire X range
(X =0tob)andY in the range of 0 to 2. (b) Symbol-based representation of partitioned weight stationary dataflow
(c) Loop-nest definition of of partitioned weight stationary dataflow.

3.3 Partitioning Algorithm

Fig. B]shows the pseudo-code of the dynamic partitioning algorithm. The algorithm takes the DNN graph (DNNG)
and the specs of the accelerator as inputs (Line: 1) and, after estimating the partition size (Line:2), assigns layers to the
partitions operated as sub-accelerators (Line:3).

All DNNSs are stored in the queue, and the first layer of the first DNN is run by all PEs (Line:6). More DNNss join the
queue after processing the first layer. Based on waiting layers in the queue whose arrival time is lower than the execution
time of the first layer (Line:8), the Partition_Calculation function (Line:15-19) computes the size of partitions, and the
Task_Assignment function (Line:20-27) assigns the available layers to the partitions.

The Partition_Calculation function divides PEs only in the Y dimension; the height of the partition is always equal
to the height of the base PE-array, but the width of PE-array is divided by the number of available tasks (Line:17).

In the Task_Assignment function, all available layers are sorted based on the required MAC operations (Eq. (2)) to
prioritize layers with higher processing demand (Line 22-23). Prioritizing layers is necessary because, in some cases,
we may have partitions with different sizes due to merging some partitions. At the same time, there may be several
layers with different dimensions ready for processing. In this case, layers with higher dimensions are assigned to the
partitions with higher resources. Finally, the partitioned weight stationary function (Line:28-42) is called to perform
dataflow operations on the partitioned resources.

3.4 Partitioned Weight Stationary Dataflow

Dataflow defines the temporal and spatial scheduling of operations for computation [11]. Simply put, operation
scheduling is carried out in space and time. In this work, we propose a partitioned weight stationary dataflow to support
the partitioning algorithm. We label the three steps of the dataflow with abstract names that are analogous to internal
buffers: @ load, @ feed, and ® drain steps. As it is shown in Fig. (Line: 28-42), all steps are defined by the loop-nests.

Data Load. In step @, the reused-data (filter weights) partitions are assigned to PE partitions from the load buffer.
Hence, the load input of all PEs inside a partition is set to 1 (load = 1) to store the reused-data in the load register
(LR). Step @ includes spatially assigning the rows and columns of reused data (that is stationary) from the load buffer

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

Reused Data Reused Data
PE ¢ PE {
Load 2N Load —> 0
[R] IR
Mul_En 1
Feed Data —-/-I—»@—D—»(D Feed Data - -)
Generated Data Generated Data
(a) (b)

Figure 7: (a) The proposed PE with a controlled multiplier. Mul_FEn is connected to the En (enable) signal of the
tri-state gate. In the state of Mul_FEn = 0, the multiplier is disconnected from the adder logic, so the PE just passes
data in the X dimension. When Mul_En = 1, PE operates in conventional (calculate) mode. (b) The Baseline PE.

to the X and Y dimensions of PE partitions. Hence, the load operation is defined by two spatial maps as shown in Fig.
Bl (Line: 38-39).

Typically, Parallel_for [[13] denotes the spatial mapping of data in a loop-nest representation, which means
assigning tensor values to the set of PEs. In contrast, Temporal_for denotes temporal assignment, which means
assigning tensor values move across the systolic array cycle by cycle [14]].

In Fig. [6[a) step @ involves spatial row and column assignments of reused-data to PE partitions, and Fig. [6[b)
defines all assignments with details of PE-array indices during data assignments. Fig. [6[c) shows a for-loop definition,
including two Parallel_for for each partition assignment.

Data Feed. In step 0, the partitions of feed data (IFMap) move from feed buffers across the PE arrays in the X
dimension, and PEs calculate partial sum and then send them to the neighbouring PEs in the Y dimension. As a result,
the data movement is performed by spatially assigning feed data to PE arrays in rows and temporally assigning feed
data to PE arrays in columns. Fig. [5|(Line:35-36) shows an abstract for-loop presentation of step @. In contrast to
step @, feed data partitions pass through multiple PE partitions. Thus, a technique is required to guarantee that each
feed data partition is computed solely by its matching PE partition. To create such a feature with minimum hardware
overhead, we just add a tri-state buffer between adder and multiplier in PE logic. Fig.[7(a) shows our proposed PE with
controlled-multiplication ability compared to the baseline PE (Fig. [7(b)). The proposed PE has a second control input
called Mwul_En which is used to choose to enable or disable multiplication when passing through relevant or irrelevant
partitions. Therefore, in step @ the load input of all PEs is set to 0 (load = 0) to operate in calculation mode and the
Mul_En input of PEs is set to 1 (Mul_En = 1) only when they pass trough the corresponding data partition. For
example, in Fig. [6(a) the Mul_En input of partition 1 PEs is set to 0 (Mul_En = 0) when passing DNN2 data in step
0, and itis setto 1 (Mul_En = 1) in partition 2 PEs when passing DNN2.

Data Drain. Finally, in step ®, the generated OFMaps (drain data) leave PEs by spatial column and temporal row
assignment, which is shown in Line:32-33 of Fig. |5} In this step, OFMaps move in Y from PE partitions to the drain
buffer. Fig. [6[b) describes the symbolic representation, and Fig. [f[c) shows the loop-nest definition of the spatial
column and temporal row assignment of OFMap data from two PE partitions to the drain buffer. In step @, the load
input of all PEs is set to 0 and, Mwul_FEn is set to 1, which indicates PEs operate in the calculate mode.

4 Simulation Results

4.1 Simulation Workload

We used 12 PyTorch DNN models [[15] and divided them into two groups to simulate the multi-tenancy environment
in heavy and light loads. Table 1, illustrates the type and load of the workloads. The first group of DNNs is the
heavy-load multi-domain type, and the second is the light-load recurrent neural network (RNN) type.

4.2 Simulation Toolchain

We simulate a systolic array similar to TPU v3 which comprises 128 x 128 PEs with load, feed, and drain buffers.
We used the Scale-Sim simulator [16] to evaluate the computation time, and the energy consumption is estimated based
on 45nm technology by Accelergy framework [[17]. Scale-Sim is a dedicated systolic array simulator, and Accelergy is
an open source tool for estimating accelerator area and energy consumption. As shown in Fig. 8] we employ both tools
by extracting component activities in the form of a logfile from the Scale-Sim and then importing the log file into the

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

""""""" ‘EXtraCt Workload
i\ PyTorch (——P (.csv) - |—C— ————— "
S - L _— . | omputation |
Architecture Scale-Sim time |
Features | —pp! | (Cycle) |
(-cfg) * ——————— -
Components ™,
[Systolic array ?g;“;—:lt:
Architecture (-YAML)
architecture ‘
description
(YAML) Accelergy R
q Energy !
............... Energy estimator | |
“::a::‘.l-.r:.:‘.:f:“:" . — —(iof Ii) =
{ Cacti Plugin }» Area estimator

Figure 8: The Simulation toolchain

Table 1: Simulation workloads

Type Domain Training model
AlexNet[20]

Image classification ResNet50[21])

GoogleNet[22]

Multi-domain
/
Heavy load workload

Sentiment analysis

Sentiment analysis CNN
(SA_CNN)|[23]

Sentiment analysis LSTM
(SA_LSTM)[24]

Recommendation system

Neural collaborative filter
(NCF)[25]

Intelligent search

AlphGoZero[26]

Natural language processing

Transformer [27]

Recurrent Neural Network
/
Lightload workload

Melody extraction

Melody LSTM 28]

Language translation

Google Translate [29]

Text to speech

Deep voice[30]

Handwriting recognition

Handwriting LSTM [31]

Accelergy framework as a component activity. Accelergy uses Cacti [18] and Aladdin [19] plugins to estimate energy
usage based on component activity.

4.3 Results

Fig. [O(a) and[9b) show the computation time of our two workloads in the baseline systolic array with no partitioning
algorithm and a systolic array with the dynamic partitioning algorithm. As we can see in Fig. [9(a) and[9b), all DNNs
run sequentially in baseline scenario but concurrently in the dynamic partitioning algorithm. DNNs such as AlexNet in
multi-domain workloads or Google Translate in RNN workloads are completed later than other DNNs. However, these
DNNs have been running in parallel with the other DNNs from the beginning, but the processing of DNNs with smaller
dimensions is completed earlier.

Employing the dynamic allocation algorithm increases resource utilization, which reduces the total computation time
due to the parallel execution of the layers. Fig. [0(c) and[9(d) show more details about assigned resource partitions to
DNN layers.

According to Fig. Pfc), the processing of AlphaGoZero, NCF, and SA_CNN were completed using 128 x 16
partitions due to their low dimensional layers. The reason that all layers of NCF are processed by 128 x 16 partition,
while 128 x 16 and 128 x 32 partitions process some layers of SA_LSTM or Transformer, is that the NCF layers are
lighter (have lower dimensions) compared with SA_LSTM or Transformer DNNss.

As per our algorithm in Fig. [5] the allocated partitions become free once each layer is finished and can be merged
with other adjacent free partitions to create a partition with more resources to speed up the remaining DNNs.

More complex DNNs with high dimension layers like ResNet50, GoogleNet, SA_LSTM, and Transformer use both
128 x 16 and 128 x 32 partitions, and the last two fully connected layers of AlexNet use all PEs to complete the
processing. In the RNN workload (Fig. [9(d)), we see a similar case in which the handwriting LSTM and Deep voice
DNNs are processed by a 128 x 32 partition. The last layer of Melody LSTM uses a 128 x 64 partition size, and the
last six layers of Google translate use all PEs to finish the processing.

Fig. P(e) and O(f) show energy consumption of the baseline systolic array and the dynamic partitioning technique
respectively. As shown in Fig. [O[e) and Fig. [0(f), utilizing a dynamic partitioning mechanism saves 35% in multi-domain

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

10

Computation Time (Cycle) Millions

DOAlexnet
DResnet50

@ Transformer

Thousands
w w
S @

N
a

N
5

DGoogle Translate
BMelody LSTM
@Deep Voice

10

mHandwriting LSTM

)
o
>

e
°
=
=
c 15
2
=
S
s
3
[N
£
S
o

0 0
Dynamic partitioning " Baseli ystoli ray Dynamic Partitioning Baseline systolic array
(@) (b)
T 11-26 127-54
Googlenet L55 - 58 L1-2
1 L1-9 L10-54 PR
Resnets0 Partition size: Melody LSTM L3
0128x16
-9 4
satstm [1% B26x3z L1-2 L3 L4-9
1418 m128x128
Transformer [L Google Translate
L1-4 L5-6 L7-8
Alexnet [I — L1-2
< oL1-8 . poms pra—
Deep Voice Partition size:
AlphaGoZero [| 0128x32
L1-8 L: Layer
NCF e.g. L1-5 means Layer1 to Layer5 1.2 m128x64
-4 Handwriting
m128x128
SACNN [] LSTM
0 1 1 2 2 3 3 4 4 5 1'0 20 30
Computation time(Cycle) Millions
Computation time (Cycle) Thousands
() ()
180
B » 25
s 160 2
:
9]
—_ £ 020
5 £ 2
T 3
E 2
5 100 g
£ 80 £
2 é 10
g 60 8
> 3 s
E 40 o
[} c
c]
w 20 0 -
0 Dynamic partitioning Baseline systolic array
Dynamic Partitioning Baseline systolic array

(e)

®

Figure 9: (a) The computation time of multi-domain workload (b) The computation time of RNN workload (c) The
detailed computation time with assigned partition sizes of multi-domain workload (d) The detailed computation time
with assigned partition sizes of RNN workload (e) The energy consumption of multi-domain workload (f) The energy
consumption of RNN workload

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

workload and 62% in RNN workload compared to the baseline systolic array. Energy saving is achieved due to the
efficient resource utilization of our dynamic partitioning algorithm.

5 Related Work

Multi-tenancy has been addressed for DNN accelerators in server and edge platforms. There are two main types
of hardware accelerators for DNNs. Spatial accelerators consist of a network of processing elements connected by
some sort of network on chip (NoC). Spatial accelerators provide a lot of flexibility in the division of work between
PEs. In contrast, systolic arrays provide a fixed pattern of execution and communication between PEs. Systolic arrays
can be extremely efficient because the PEs and intercommunication network are extremely simple and deterministic.
In contrast, spatial accelerators provide much greater flexibility, at the cost of more complex hardware to support the
flexibility.

Spatial accelerators are arguably much better suited to multi-tenancy in edge devices because they provide the
flexibility for groups of PEs to work independently of others. Supporting multi-tenancy on a systolic array is much more
difficult because the PEs work together in lock-step with a fixed data movement pattern. Where systolic array-based
accelerators support multi-tenancy, it is almost always by providing separate systolic arrays for each tenant, rather than
splitting one systolic array between tenants. In contrast, our work focuses on dividing a single systolic array between
multiple tenants.

Edge-side multi-DNN processing by spatial accelerators. In edge platforms, DNN types and numbers are com-
monly fixed and predefined. Hence, a designer can modify an accelerator design according to the type of DNNs.
For example, Herald [32]] consists of multiple accelerators called sub-accelerators tuned for different dataflows to
support multi-DNN processing. The sub-accelerators are divided among the tenants so that there is no need to share
sub-accelerators.

Server-side multi-tenancy by systolic array based accelerators. Planaria [33]] and AI-MT [34]] are examples of
server-side acceleration. Planaria comprises sixteen systolic arrays that are connected via an on-chip bi-directional ring
bus. Planaria uses an extension of the systolic array called omni-directional. In the omni-directional type, the PE logic
is modified to send the calculated partial sum to the output ports in all directions. Thus, the modified PE logic routes the
tensor values in four directions, which turns the systolic array into a more general full spatial accelerator. Lee et al.
proposed dataflow mirroring [35] for an omni-directional systolic array, to compute multiple DNN layers by different
inter-PE communication patterns. As previously mentioned, we partition a single systolic array, and we require only a
very small additional hardware cost compared with solutions like utilizing an omni-directional structure.

AI-MT enhanced the Al-multitasking hardware to a systolic array-based accelerator to divide each layer into sub-
layers and categorize them into compute or memory-intensive types. Subsequently, the scheduler schedules sub-layers
based on their type and runs them sequentially. In other words, AI-MT performs task scheduling at the hardware level.

Google performs multi-tenant inference and training operations on a supercomputer of connected Tensor Processing
Units (TPU) [36]. Each TPU is a systolic array, but there is no support for partitioning the TPU. So, multi tenancy is
performed by allocating different tenant DNNs to different TPUs. TPU v2 and v3 [37] comprise pods where each pod
consists of eight TPU boards, and each TPU board includes eight systolic arrays. Thus, a TPU board is the primary
cluster of systolic chips.

6 Conclusion

Multi-tenancy and multi-DNN processing are the new challenges in cloud and edge devices that affect computation
time and energy consumption. This paper proposes a dynamic resource partitioning algorithm with a slight hardware
modification and uses a data-level method to share an accelerator across several DNNs. Therefore, multiple DNNs
use partitions of memory and processing components as sub-accelerators. We divide the PEs of the weight-stationary
systolic array into vertical partitions that achieve data reuse in multi-tenant processing. At the hardware level we
add a tri-state gate to the PE logic to allow data to flow through PEs without triggering computation. We apply two
different types and loads of multi-DNN workloads to simulate the proposed idea. Simulation results show significant
improvements in computation time and energy consumption due to increased resource utilization.

7 Acknowledgment

This work was supported, in part, by Science Foundation Ireland under grant No. 13/RC/2094_P2, co-funded under
the European Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero
(Science Foundation Ireland Research Centre for Software), and, in part, this project has received funding from
the European Union’s Horizon 2020 research and innovation programme under the Marie Sktodowska-Curie grant
agreement No 754489.

“https://lero.ie/

10

https://lero.ie/

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

References

[1] Alexandros Karatzoglou and Baldzs Hidasi. Deep learning for recommender systems. In ACM RecSys, pages
396-397, 2017.

[2] Sauhaarda Chowdhuri, Tushar Pankaj, and Karl Zipser. Multinet: Multi-modal multi-task learning for autonomous
driving. In IEEE WACYV, pages 1496—-1504, 2019.

[3] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves
Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

[4] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks. IEEE JSSC, 52(1):127-138, 2016.

[5] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. MAERI: Enabling flexible dataflow mapping over dnn
accelerators via reconfigurable interconnects. ACM SIGPLAN Notices, 53(2):461-475, 2018.

[6] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and
Olivier Temam. ShiDianNao: Shifting vision processing closer to the sensor. In ISCA, pages 92-104, 2015.

[7] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood,
Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learning at facebook: Understanding inference at the edge. In
HPCA, pages 331-344, 2019.

[8] Computational directions for augmented reality systems. VLSI Symposium on Circuits Plenary Talk, 2019.

[9] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, Logan Adams, Mahdi Ghandi, et al. A configurable cloud-scale dnn processor for real-time ai.
In ISCA, pages 1-14, 2018.

[10] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. INFaaS: Managed & model-less
inference serving. arXiv preprint arXiv:1905.13348, 2019.

[11] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Using dataflow to optimize energy efficiency of deep neural network
accelerators. IEEE Micro, 37(3):12-21, 2017.

[12] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of a tensor processing unit. In
ISCA, pages 1-12, 2017.

[13] Midia Reshadi and David Gregg. LOCAL: Low-complex mapping algorithm for spatial dnn accelerators. In
NorCAS, pages 1-7, 2021.

[14] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna.
Understanding reuse, performance, and hardware cost of dnn dataflow: A data-centric approach. In IEEE/ACM
Microarchitecture, pages 754-768, 2019.

[15] Pytorch. URL https://pytorch.org/.

[16] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna. A
systematic methodology for characterizing scalability of dnn accelerators using scale-sim. In ISPASS, pages
58-68, 2020.

[17] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. Accelergy: An architecture-level energy estimation methodol-
ogy for accelerator designs. In ICCAD, pages 1-8, 2019.

[18] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P Jouppi. Cacti-p: Architecture-level modeling
for sram-based structures with advanced leakage reduction techniques. In ICCAD, pages 694-701, 2011.

[19] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Aladdin: A pre-rtl, power-performance
accelerator simulator enabling large design space exploration of customized architectures. In ISCA, pages 97-108,
2014.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. CACM, 60(6):84-90, 2017.

[21] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual learning for image recognition. In /EEE
CVPR, pages 770-778, 2016.

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In IEEE CVPR, pages 1-9, 2015.

11

https://pytorch.org/

Dynamic Resource Partitioning for Multi-Tenant Systolic Array Based DNN Accelerator A PREPRINT

[23] Igor Santos, Nadia Nedjah, and Luiza de Macedo Mourelle. Sentiment analysis using convolutional neural network
with fasttext embeddings. In IEEE LA-CCI, pages 1-5, 2017.

[24] Jin Wang, Liang-Chih Yu, K Robert Lai, and Xuejie Zhang. Dimensional sentiment analysis using a regional
cnn-Istm model. In ACL, pages 225-230, 2016.

[25] Wanyu Chen, Fei Cai, Honghui Chen, and Maarten De Rijke. Joint neural collaborative filtering for recommender
systems. ACM TOIS, 37(4):1-30, 2019.

[26] David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge.
nature, 550(7676):354-359, 2017.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser, and
Illia Polosukhin. Attention is all you need. NIPS, 30, 2017.

[28] Hyunsin Park and Chang D Yoo. Melody extraction and detection through Istm-rnn with harmonic sum loss. In
IEEE ICASSP, pages 27662770, 2017.

[29] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[30] Sercan O Arik, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gibiansky, Yongguo Kang, Xian Li,
John Miller, Andrew Ng, Jonathan Raiman, et al. Deep voice: Real-time neural text-to-speech. In ICML, pages
195-204. PMLR, 2017.

[31] Victor Carbune, Pedro Gonnet, Thomas Deselaers, Henry A Rowley, Alexander Daryin, Marcos Calvo, Li-Lun
Wang, Daniel Keysers, Sandro Feuz, and Philippe Gervais. Fast multi-language lstm-based online handwriting
recognition. IJDAR, 23(2):89-102, 2020.

[32] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin Chen, and Vikas Chandra. Heteroge-
neous dataflow accelerators for multi-dnn workloads. In HPCA, pages 71-83, 2021.

[33] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer, Brahmendra Reddy Yatham, Navateja Alla,
Hardik Sharma, Mohammad Alian, Eiman Ebrahimi, Nam Sung Kim, et al. Planaria: Dynamic architecture fission
for spatial multi-tenant acceleration of deep neural networks. In IEEE/ACM Microarchitecture, pages 681-697,
2020.

[34] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. A multi-neural network acceleration architecture. In ACM/IEEE
ISCA, pages 940-953, 2020.

[35] Jounghoo Lee, Jinwoo Choi, Jaeyeon Kim, Jinho Lee, and Youngsok Kim. Dataflow mirroring: Architectural
support for highly efficient fine-grained spatial multitasking on systolic-array npus. In ACM/IEEE DAC, pages
247-252, 2021.

[36] Norman P Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James Laudon, Cliff Young, and
David Patterson. A domain-specific supercomputer for training deep neural networks. CACM, 63(7):67-78, 2020.

[37] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James Laudon, Cliff Young, Norman
Jouppi, and David Patterson. The design process for google’s training chips: TPUv2 and TPUvV3. IEEE Micro, 41
(2):56-63, 2021.

12

	1 Introduction
	2 Preliminaries
	2.1 Deep Neural Networks Graph (DNNG)
	2.2 Systolic-array Based DNN Accelerator

	3 Dynamic Resource Partitioning Algorithm
	3.1 Systolic Array Partitioning
	3.2 Partitioning Strategy
	3.3 Partitioning Algorithm
	3.4 Partitioned Weight Stationary Dataflow

	4 Simulation Results
	4.1 Simulation Workload
	4.2 Simulation Toolchain
	4.3 Results

	5 Related Work
	6 Conclusion
	7 Acknowledgment

