
Master Thesis

FSP: a Framework for Data Stream Processing

Applications targeting FPGAs

Author

Alberto Ottimo

Supervisor

Prof. Gabriele Mencagli

Master’s Degree in Computer Science and Networking

October 08, 2021

Contents

Introduction 9

1 Background 12

1.1 Data Stream Processing . 12

1.2 Apache Storm . 13

1.3 Apache Flink . 15

1.4 WindFlow . 18

1.5 Field Programmable Gate Array (FPGA) 20

1.5.1 OpenCL . 22

1.5.2 Intel FPGA SDK for OpenCL . 23

2 Data Stream Processing on FPGA 32

2.1 Operator implementation . 32

2.2 Operator State . 35

2.2.1 Shift Registers using Private or Local memory 38

2.2.2 Direct Address Table using Local Memory 39

2.3 Operator Dependencies . 40

2.4 Managing Streams . 47

2.5 Host ↔ Device Communication . 48

3 Code Generation 54

3.1 FPS framework . 54

3.2 Use case: Spike Detection . 56

3.2.1 FSP Python APIs . 57

3.2.2 FSP Host and Device code . 65

3.2.3 Device Code . 65

1

4 Evaluation 73

4.1 Test Applications . 73

4.2 Results . 74

5 Conclusions 80

Appendices 82

A Average Calculator optimized compute phase function 83

2

List of Figures

1.1 High-Level view of a Storm Topology. 14

1.2 Task-Level view of a Storm Topology. 15

1.3 Levels of abstraction offered by Flink. 16

1.4 Runtime architecture of Flink. 17

1.5 Parallelized view of the Flink streaming Data-Flow. 18

1.6 Example of MultiPipe structure. 20

1.7 OpenCL memory hierarchy. 23

1.8 Intel FPGA SDK for OpenCL Programming Model 24

1.9 Intel FPGA SDK for OpenCL Single-Step Kernel Compilation Flow 25

1.10 Intel FPGA SDK for OpenCL Multi-Step Kernel Compilation Flow 26

2.1 Base operators provided by the FSP framework 36

2.2 Stateless and Stateful operators . 36

2.3 OpenCL memory hierarchy on FPGA. 37

2.4 Dispatch policies . 41

2.5 Single-Buffering transfer implementation diagram 49

2.6 Double-Buffering transfer implementation diagram 49

2.7 N-Buffering transfer implementation diagram with N = 3 49

2.8 Representation of header_t . 51

3.1 FSP Workflow. 55

3.2 FPGA Data Flow graph of Spike Detection 56

4.1 Results of the Shared application with Source operator with different par-

allelism degrees. 75

4.2 Comparison between the N-Buffer technique and Shared Memory protocol

with different micro-batch sizes. 76

3

4.3 Results of the WindFlow implementation of Spike Detection by varying

the micro-batch size. 78

4.4 Comparison between the best results of all the Spike Detection versions. . 78

4.5 Results of the Inefficient version with Average Calculator operator repli-

cated 4 times and with II = 22. 79

4

Listings

1.1 NDRange Kernel implementation example 27

1.2 Single Work-Item Kernel implementation example 28

1.3 Intel Channel declaration syntax . 28

1.4 Intel Channel write blocking and non-blocking functions 29

1.5 Intel Channel read blocking and non-blocking functions 29

1.6 Producer-Consumer example using Intel Channels 29

1.7 Improved implementation of the Consumer kernel with a switch statement 30

2.1 Replicating FPGA operator by specifying the number of compute units . . 33

2.2 FPGA base operator implementation . 33

2.3 Implementation of the shift registers using local memory 38

2.4 Implementation of the compute phase function using a Direct Address Table 39

2.5 Wrapper data structure for channel communication 43

2.6 Forward Dispatch policy with right-hand side with parallelism degree = 1 . 43

2.7 RoundRobin dispatch policy in blocking mode with right-hand side with

parallelism degree > 1 . 44

2.8 RoundRobin dispatch policy in non-blocking mode with right-hand side

with parallelism degree > 1 . 44

2.9 KeyBy dispatch policy with right-hand side with parallelism degree > 1 . . 44

2.10 Gather policy in blocking mode with left-hand side with parallelism degree

= 1 . 45

2.11 Gather policy in blocking mode with left-hand side with parallelism degree

> 1 . 46

2.12 Gather policy in non-blocking mode with left-hand side with parallelism

degree > 1 . 46

2.13 Host implementation of the N-Buffering technique 49

5

2.14 Host and Device supporting functions for shared memory communication

protocol . 51

2.15 Host implementation of push() function using shared memory protocol . . 51

2.16 Implementation of Source base operator on FPGA using shared memory

communication protocol . 52

2.17 Implementation of pop() function using shared memory protocol 53

2.18 Implementation of Sink operator on FPGA using shared memory commu-

nication protocol . 53

3.1 FNode Python constructor . 57

3.2 FNodeKind Python enumerator . 57

3.3 FGatherPolicy enumerator . 58

3.4 FDispatchPolicy Python enumerator . 58

3.5 Declaring the Source operator of the Spike Detection application 59

3.6 Declaring the Average Calculator operator of the Spike Detection application 59

3.7 Declaring the Spike Detector operator of the Spike Detection application . 59

3.8 Declaring the Sink operator of the Spike Detection application 60

3.9 Declaring the constants of the Spike Detection application 60

3.10 FNode class function to add a private buffer 60

3.11 FNode class function to add a local buffer 61

3.12 FNode class function to add a global buffer 61

3.13 Adding a private and a local state to the Average Calculator operator of

the Spike Detection application . 63

3.14 Declaring and populating an FPipe to describe the Spike Detection appli-

cation . 64

3.15 Generating the device and the host code of the Spike Detection application 64

3.16 Tuples definitions generated by the FSP framework 65

3.17 Tuples definitions customized for the Spike Detection application 66

3.18 Average Calculator phase functions generated by the FSP framework . . . 67

3.19 Average Calculator begin phase function implementation for the Spike De-

tection application . 67

3.20 Average Calculator compute phase function implementation for the Spike

Detection application . 67

6

3.21 Spike Detector compute phase function implementation for the Spike De-

tection application . 69

3.22 Random Number Generator implementation 69

3.23 Add a Random Number Generator state to the Generator base Operator . 69

3.24 Host operator implementation . 70

3.25 pop() signature function of the Host Sink base operator 71

3.26 Host FPipe implementation . 71

3.27 Host file example . 72

A.1 Average Calculator compute phase function optimized (II = 1) implemen-

tation for the Spike Detection application 83

7

Introduction

The Data Stream Processing (DSP) paradigm studies novel algorithms and parallel pro-

cessing techniques to process continuous streams of high-speed data. Based on the appli-

cation domain, this might require to maintain stringent performance requirements such

as high throughput, in terms of processed inputs per second, and low latency. In recent

years, state-of-art DSP engines like Apache Storm [1], Apache Flink [2] have been release

to provide user-friendly solutions for scale-out environments (i.e. clusters of homogeneous

machines). More recently, streaming libraries for single machines (i.e. scale-up servers

with several multi-core CPUs) have been released in order to achieve higher performance

on these computing platforms. One of them, WindFlow [3], has been developed by the

Parallel Programming Models group of the University of Pisa, Department of Computer

Science.

In this thesis, we propose a novel FPGA-based Stream Processing (FSP) framework

that enables developers of DSP applications to employ FPGA co-processors to accelerate

streaming applications or some of their critical parts. The framework is characterized by

a high-level Python API to describe DSP processing pipelines of intermediate transforma-

tions (operators) with high-level abstractions. From this description, the OpenCL code

is generated using Jinja 2.11 [4] as a templating engine for both the host program and

for the device program. The generated code for the host program manages the streams

and the computation onto the FPGA device. The device code is generated according to

the provided high-level description of their operators and their interconnections, and it is

completed by the developer with the business logic code of each operator. To present the

framework API, we use a previously studied streaming benchmark, named SpikeDetec-

tion, in order to describe how the framework can be used and which kind of performance

can be achieved using it.

In this thesis, we outline the most important components needed to construct a DSP

9

application for the FPGA and we describe the implementation solutions adopted dur-

ing this work. The implementation of the operators is based on the Single-Work Item

programming model, which is one of the programming models provided by OpenCL and

strongly recommended by Intel for FPGA-based accelerators. In order to increase their

processing bandwidth, operators of streaming applications can be replicated according

to a parallelism degree chosen by the programmer with the high-level API. To proper

replicate an operator, we adopt a code replication approach that is easily achievable with

the code generation and gives us flexibility and the possibility of optimizations. The com-

munication between operator replicas is a central part of the design, in order to achieve

satisfactory performance. We use the channels provided by the Intel FPGA SDK for

OpenCL Channels Extension. This mechanism allows to easily and quickly exchange

data between kernels through FIFO buffers implemented directly on the FPGA fabric,

without the need to use memories with high latencies such as the Global Memory. The

programmer can choose the dispatching policies, i.e., how the outputs produced by an

operator are sent to the next operator in the pipeline and to its internal replicas. Finally,

two solutions are presented concerning the communication between the host and the de-

vice to properly manage streams. The first one uses the basic APIs provided by OpenCL,

while the second one is specific for hardware solutions in which there is a shared memory

between the host CPU and the device FPGA board. The first implementation is designed

for FPGAs connected via PCI-Express interfaces and uses an N-Buffering technique to

overlap the device computation with the data transfers. The second one tries to keep the

overhead as low as possible in order to minimize or completely remove the communication

overhead. A custom protocol has been designed to exploit the shared memory, which is

accessible by both the host and the device at the same time.

Finally, in the final stages of this study we employ some benchmarks to show the effi-

ciency of the adopted solutions, as well as to offer a comparison with the same application

developed using WindFlow and targeting a large server machine.

Document structure

This chapter outlined the reasons that led to the creation of this thesis and gave a brief

introduction to our work.

10

Chapter 1 introduces the basic concepts of the stream processing paradigm and out-

lines the current state-of-art DSP engines and their main approaches to facilitate the

programmer with the implementation of DSP applications. In addition, it shows the

FPGA architectural models and the abstraction levels needed to program such kinds of

devices, focusing on the OpenCL programming model and in particular on the Intel FPGA

SDK for OpenCL programming model that will be used in this work.

Chapter 2 presents the implementation of the main components of a generic DSP

application targeting FPGAs, including how to model the operator computation, how to

manage the state of stateful operators, the inter-kernel communication and the commu-

nication between host and device to move data on the streams.

Chapter 3 describes how our FSP framework works and how a sample application can

be implemented leveraging our programming model, going from the high-level description

to the code generation and to the implementation of the operators business logic to

complete the implementation.

Chapter 4 shows the benchmark results of the Spike Detection DSP application imple-

mented with our framework targeting the Intel Arria 10 SoC FPGA. Benchmarks show

how the two communication mechanisms designed during our work behave with the use of

different micro-batch sizes. Furthermore, we compare our best results against the ones of

the WindFlow implementation of Spike Detection, which runs on a large server machine.

Finally, Chapter 5 concludes this work by summarizing the objectives, contributions

and possible future goals of this study.

11

Chapter 1

Background

1.1 Data Stream Processing

In recent years the number of interconnections have significantly increased: data streams

are generated by an infinite quantity of sources such as Internet of Things sensors, servers,

applications and many more; this data comes with all types of volumes and formats,

from various locations and clouds. In such complex context, legacy technologies are

obsolete and can’t guarantee low-latency and high-throughput that are fundamental to

nowadays applications [5]. The answer to these requirements is a new model of data

management, exploiting data as streams: Data Stream Processing (DSP) is the paradigm

that continuously analyzes and processes data, monitoring and providing new information

in real-time. Streams are sequences of single elements, or segments, belonging to the

same logical data structure. The defined continuous computation (query) ingests events

and produces results in a continuous manner, whose operators must be executed ”on

the fly” [6]. These continuous queries over streams can be programmed by using the

abstractions provided by the currently available Data Stream Processing Systems, which

are based on the Data-Flow programming paradigm. Indeed, the main approach to design

Data Stream Processing Applications is by using Data-Flow direct graphs. Each vertex

of the graph represents a task or computation, called operator, and every edge models the

stream defining dependencies.

An operator is the basic functional unit of an application. In general, an operator

processes input data from incoming streams, applies an arbitrary function, and emit

results towards one or more output streams for further processing. Operators without

12

input ports are called data sources and operators without output ports are called data

sinks. A Data-Flow graph must have at least one data source and one data sink.

Operators can be classified depending on their state [7]:

• stateless operator which works on a item-by-item basis in a streaming scenario and

processes a new item without any information about past processed data.

• stateful operator which require instead proper mechanisms to maintain and update

a set of internal data structures while processing input data, and the result of the

internal processing logic also depends on the current value of the state.

A special case of stateful operators is the partitioned stateful operator: while this type

of operator manages an internal state, the data structures supporting the state can be

separated into independent partitions, and each partition corresponds to a data substream

multiplexed together to a unique stream. The correspondence between elements and

substreams is made by applying a predicate on a partitioning attribute called key or a

unique combination of the data item attributes. An example of operators of this kind are

the ones that process network traces partitioned by sender and receiver IP address or the

ones that analyze trading transactions from a stock exchange partitioned by the company

symbols.

Over the years, Stream Processing Engine (SPE) have been proposed as they allow

developers to have more flexibility in defining their applications without dealing with

low level implementations. Among them, we remember Apache Flink [2] and Apache

Storm [1], which are state-of-art solutions for distributed systems of homogeneous ma-

chines. Furthermore, we find WindFlow [3], a C++ library for parallel data stream

processing targeting heterogeneous shared-memory architectures.

1.2 Apache Storm

Apache Storm is a framework for real-time data processing and the main scopes of the

framework can be summarized as follows [8]:

• Stream processing

• Continuous computation

13

• Distributed remote procedure call

Storm is highly-scalable, fault-tolerant, i.e., it can reassign tasks of failed nodes, reliable,

i.e., re-sending lost data, and language agnostic.

The Storm stream processing system provides an abstraction layer that allows pro-

grammers to manually build the processing graph of workers and their connections needed

for real-time processing. The abstraction level is given by the Storm concept of topology

which is the data-flow graph of the desired application built with processing logic nodes

and links. The final representation of the topology, as shown in figure 1.1 is an acyclic-

graph that contains two different type of nodes:

• Spouts: the sources of the stream;

• Bolts: the processing logic units that transforms input data and produce output

streams.

Each node in the topology is executed in parallel, specifying for each node, the desired par-

allelism degree. The topology can be submitted to a Storm cluster for the real processing

of data streams.

Figure 1.1: High-Level view of a Storm Topology.

A stream in Storm is defined as a sequence of tuples in the form of key-value pairs.

Bolts can subscribe to specific streams to receive tuples from them, while both spouts

and bolts emit tuples to a stream which is sent to every bolt that subscribed to it.

Storm provides stream groupings as a way to define how to send tuples between parallel

entities. A stream grouping defines the routing of the tuples between the parallel replicas

(i.e., tasks) of each operator. Among them we remember:

14

• Shuffle Grouping: tuples are distributed uniformly at random among the receiver

bolt’s tasks.

• Fields Grouping: tuples are distributed according to a subset of its fields. It is also

guaranteed that tuples with equal values for that subset of fields go to the same

replica of the bolt operator.

• Custom Grouping: the user defines a specific routing strategy to forward tuples.

At the task level, a topology can look like the one in the figure 1.2.

Figure 1.2: Task-Level view of a Storm Topology.

1.3 Apache Flink

Flink is a framework and a distributed processing engine for stateful computations devel-

oped by the Apache Software Community, written in Java and Scala. It provides APIs

for both stream processing and batch processing use cases simultaneously, based on fluent

interfaces. A fluent interface is designed to increase code readability, exploiting method

chaining where return values from methods are used to relay instruction context.

Flink offers multiple levels of abstraction, shown in Figure 1.3, providing the two

concepts which are the basement of the framework: stateful and timely stream processing.

The lowest levels provide stateful streaming, allowing users to process events from one

or more streams and use consistent fault tolerant state. This lower lever is not always nec-

essary and the programmers can directly use the DataStream API (bounded/unbounded

15

Stateful Stream Processing

DataStream / DataSet API

Table API

SQL

Core APIs

Declarative DSL

High-level Language

Low-level building block
(streams, state, [event] time)

Figure 1.3: Levels of abstraction offered by Flink.

streams) and the DataSet API (bounded data sets). These fluent interfaces offer the

common building blocks for data processing (e.g., user-specified transformations, joins,

aggregations, windows, states, etc.) and data types represented as classes. The Table API

is an extended version of the relational model with tables with a schema and compara-

ble operations (e.g select, project, join, group-by, aggregate, etc.). The highest

level is the SQL language which is similar to the previous layer but represents programs as

SQL queries. It can also interact with the Table API underlying layer executing queries

over tables defined in it.

Flink provides different predefined operators such as Map, Filter, Reduce, etc., and

it also provides an extensive support for windowed operators, which made a-tuple-at-a-

time transformations, that can be defined over keyed and unkeyed data stream. Flink offers

the classical tumbling/sliding and count/time based windows. Other types of window can

be defined by specifying the eviction and trigger policies.

Flink has a completely distributed and efficient architecture mainly targeting clusters

of heterogeneous node. The runtime consists of two types of processes:

• the JobManager coordinates task scheduling and reacts to finished tasks or execution

failures.

• one or more TaskManagers, also called workers, are the components that execute

the tasks of a data-flow graph, buffering and exchanging the data streams.

In Figure 1.4 we show the architecture during the runtime execution of a Flink application.

The execution of a Flink program can happen in a local Java Virtual Machine (JVM) or

on clusters of many machines.

16

Flink Program

Client

TaskManager

Task
Slot

Task
Slot

Task

Task
Slot

Task

Network Manager

Actor System

Memory & I/O Manager

JobManager

(Worker)

(Master / YARN Application Master)

Dataflow Graph

Actor System

Actor
System

Deploy/Stop/
Cancel Tasks

Trigger
Checkpoints

Task Status

Heartbeats

Statistics

…

…

TaskManager

Task
Slot

Task
Slot

Task

Task
Slot

Task

Network Manager

Actor System

Memory & I/O Manager

(Worker)

Data Streams

Submit job
(send dataflow) Cancel /

update job

Status
updates Statistics &

results

Program
code

Scheduler

Checkpoint
Coordinator

Optimizer /
Graph Builder

Dataflow graph

Program
Dataflow

Figure 1.4: Runtime architecture of Flink.

When executed, Flink programs are mapped to streaming dataflows, consisting of

streams and transformation operators. Each stream is split in more stream partitions,

and each operator has one or more operator subtasks, which execute independently and

in different threads or machines.

The number of on operator subtasks is called parallelism of that particular operator.

The parallelism of a stream always coincides to that of its source, but different operators

may have different parallelism.

We can distinguish two different patterns for transporting data between two operators:

• One-to-one (or forwarding): it preserves partitioning and ordering of the elements,

meaning that the subtask i of the receiver operator will see the same elements in

the same order, as they were produced by subtask i of the source operator. An

example of this pattern is shown in figure 1.5 between the Source operator and the

map operator;

• Redistributing: it changes the partitioning of stream since each subtask sends data to

different target subtasks, depending on the selected transformation. In this pattern

the order among elements is only preserved for each pair of sending-receiving task.

Examples are:

– keyBy: re-partitions by hashing (i.e., assigning all records with the same key

17

to the same partition, and to the same receiver’s subtask);

– rebalance: distributes the data in a round-robin fashion, creating equal load

per partition (i.e, balanced work-load across the receiver’s subtasks in this case

of infinite input streams);

– shuffle: randomly spreads elements according to a uniform distribution, bal-

ancing the load among the receiver’s subtasks;

– broadcast: broadcasts elements to every subtask of the receiver operator.

Source map()
keyBy()/
window()/

apply()
Sink

Operator
Subtask

Source
[1]

map()
[1]

keyBy()/
window()/

apply()
[1]

Sink
[1]

Source
[2]

map()
[2]

keyBy()/
window()/

apply()
[2]

Stream
Partition

Operator Stream

Streaming Dataflow
(parallelized view)

Streaming Dataflow
(condensed view)

parallelism = 1

parallelism = 2

Figure 1.5: Parallelized view of the Flink streaming Data-Flow.

1.4 WindFlow

WindFlow is a C++17 application DaSP parallel library, developed by the Parallel Pro-

gramming Models group at the Department of Computer Science of the University of

Pisa 1. It is built on top of FastFlow [9] C++ library, and it allows to create parallel

streaming applications providing several parallel patterns (operators). The main opera-

tors that can be used to compose the desired application (Storm-like approach) are the

following:
1This is the official web site of the PPMs research group: http://calvados.di.unipi.it/paragroup

18

• Source: produces a stream of items characterized by the same data type;

• Sink: absorbs the input stream and possibly stores the received results of the com-

putation into files or databases;

• Map: applies a transformation on each received item, producing exactly one output

item for each processed item;

• Filter: applies a boolean predicate to each input, dropping all items of the stream

for which the predicate evalutes False;

• FlatMap: applies a transformation on each input item, producing zero, one or more

than one output per each input data;

• Accumulator: applies a fold function on the received inputs partitioned by key. It

combines the current item with the last reduced values.

Furthermore, different windowed operators can be employed: Keyed Farm executes a win-

dowed query in parallel on different key partitions, while windows relative to the same

key are processed sequentially by the same parallel entity; Windowed Farm executes a

windowed query in parallel on distinct streaming windows; Paned Farm executes a win-

dowed query in parallel by exploiting window-overlapping, splitting consecutive windows

into panes; Windowed MapReduce executes a windowed query in parallel by exploiting

data parallelism within each window. For further information, please refers to [10]. Once

the programmer have built the functional logic chain of the computation between oper-

ators, they are grouped into a MultiPipe. Each operator of the MultiPipe has its own

parallelism (number of operator replicas), and each operator can be connected with the

next one in two different ways:

1. direct connection: one replica of the operator is connected with one replica of the

next operator;

2. shuffle connection: one replica is connected with all replicas of the next operator,

the shuffling can be random, key-based, window-based or pane-based depending on

the type of the operators.

The following figure 1.6 shows an example of the MultiPipe structure in which there is a

direct connection between the Source operator and the A operator, while the others are

shuffle connections.

19

MultiPipe
● WindFlow provides a specific construct to compose together operators and to build complex
streaming applications

● This construct is called MultiPipe. It is composed by
○ Some parallel pipelines working in parallel (each pipeline is a linear sequence of replicas of the utilized

operators)

○ Pipelines might be not independent but data items may cross a pipeline and jump to another one

Two connection modes
transparent to the high-level
programmer

• Direct: one replica
connected to exactly one
replica of the next operator
in the MultiPipe

• Shuffle: one replica
connected to all the
replicas of the next
operator in the MultiPipe

● The connection mode depends on the type of operator and on its parallelism level
● Shuffle connections arise when specific distributions are employed: shuffle, key-based or
complex ones depending on the next operator in the MultiPipe

Source(2)

S

S

A

A

B

B

C

C

S

S

B

A(2) B(3) C(2) Sink(2)

de20

Figure 1.6: Example of MultiPipe structure.

1.5 Field Programmable Gate Array (FPGA)

An FPGA is a programmable integrated circuit composed by an array of programmable

logic blocks and routing switches. The main building block of an FPGA is the basic

logic element (BLE), which has a look-up table (LUT) and a flip-flop (FF). The LUT

can implement any logic function by programming its SRAM bits, and it can either feed

or bypass the FF via programmable multiplexer. Modern FPGAs have a hierarchical

architecture in which several BLEs are grouped into logic clusters referred to as logic

array blocks (LABs) in Altera device or slices and configurable logic blocks (CLBs). They

employ an island-style architecture in which LABs are arranged into a two dimensional

mesh with rows and columns of routing channels. Switch blocks connect wires of adja-

cent channels through programmable switches and connection blocks have programmable

switches that connect the LAB’s inputs and outputs to the wire segments surrounding

it. BLEs can be connected via a series of wire segments by configuring the SRAM bits of

programmable switches in the connection blocks and routing switches. Moreover, FPGAs

contain other programmable blocks: I/O blocks to communicate with external devices

such as micro-controller or external memories; memory blocks (BRAM) which are config-

urable random access memory used to store data and to transfer data between on-chip

resources; dedicated hard blocks such as digital signal processing (DSP) block that has

dedicated circuitry that implements multiply and accumulate operations.

FPGA Synthesis

To create an FPGA design, the application is described using a Hardware Description

Language (HDL) like Verilog or VHDL, and converted into a bitstream using a synthesis

20

tool which follows 8 steps:

1. RTL elaboration: generates a netlist, that is a set of elements (FFs, LUTs, etc.),

pins (inputs and outputs), and interconnections (routing channels and switches),

needed to implement the given HDL behaviour;

2. Logic synthesis: optimizes the usage of logic gates in the netlist in terms of area

occupancy and delay;

3. Technology mapping: since the netlist is hardware-independent, in this step it is

converted into a netlist that depends on the logic units included in the specific target

FPGA;

4. Clustering: forms the LABs, grouping the BLEs mapped in the previous step;

5. Placement: physical association between the netlist and the resources of the FPGA;

6. Routing: configuration of the interconnection network, i.e., routing channels and

switchboxes;

7. Timing analysis: determines each needed timing characteristic, such as the maxi-

mum clock frequency;

8. Bitstream generation: the last step produces the bitstream to configure all FPGA

programmable units needed by the netlist.

As designs became more and more complex and the time-to-market pressures in-

creased, developers and the vendor community have strived to provide more software-

based tool chains to help reduce development times; one of these techniques is high level

synthesis (HLS), which can be thought of as a productivity tool for hardware designs. It

typically uses C/C++ source files to generate RTL that is, in most cases, optimized for a

particular target FPGA device. In recent years, Intel has developed an SDK for program-

ming its FPGA devices in OpenCL. OpenCL (Open Computing Language) [11] is an

open and royalty-free standard for programming heterogeneous systems in a host/device

fashion.

21

1.5.1 OpenCL

OpenCL provides a framework for parallel programming and includes a programming

language, APIs, libraries and a runtime system to support software development. The

OpenCL standard describe its core ideas using a hierarchy of models:

• Platform Model

• Execution Model

• Programming Model

• Memory Model

The Platform model consist of a host connected to one or more devices. A device is

divided into one or more compute unites (CUs) wich are further divided into one or more

processing elements PEs. An OpenCL application runs on a host according to the models

native to the host platform; the host submits commands to execute computation on the

processing elements within a device.

The execution of an OpenCL program occurs in two parts: kernels that execute on

devices and a host program that executes on the host. The host program defines the

context for the kernels and manages their execution. When a kernel is submitted for

execution by the host, an index space is defined. An instance of the kernel, called work-

item, executes for each point in this index space. Work-items are organized into work-

groups to provide a more coarse-grained decomposition of the index space. The index

space supported in OpenCL is called NDRange, a N-dimensional index space, where N is

one, two, or three. Each work-item can be uniquely identified by a global ID, relative to

the NDRange index space, or a combination of local ID and work-group ID, respectively

the ID within the work-group and the work-group where it resides.

A wide range of Programming Models can be mapped onto this Execution model, but

OpenCL support only two of these: the data parallel programming model and the task

parallel programming model.

The Memory Model defines four distinct memory regions:

• Global Memory. This memory region permits read/write access to all work-items

in all work-groups. Usually this type of memory is generally the largest but the

slowest memory that a device can access.

22

• Constant Memory. A region of global memory that remains constant during the

execution of a kernel. This memory is usually cached to guarantee lower latency

access.

• Local Memory. This memory region is visible only by work-items within a work-

group. It can be used to allocate variables that are shared by all work-items in that

work-group. Usually it is implemented as low latency memory but with limited

capacity.

• Private Memory. A region of memory private to a work-item, usually implemented

as registers.

Device
Global / Constant Memory

Work Group

Local Memory

Private
Memory

Work Item

Private
Memory

Work Item

Work Group

Local Memory

Private
Memory

Work Item

Private
Memory

Work Item

Host Memory

Host

Figure 1.7: OpenCL memory hierarchy.

1.5.2 Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL provides the APIs and the run-time to program and use

Intel FPGAs. Unlike CPUs and GPUs, run-time OpenCL kernels compilation is not

23

feasible due to very long placement and routing time. Intel FPGA SDK for OpenCL

Offline Compiler is used to compile kernels to an image file, the bitstream, that the host

program uses at runtime to program the FPGA. To properly compile the application

and to execute on the FPGA, the Custom Platform is needed. Typically, the board

manufacturer develops the Custom Platform that supports a specific OpenCL board.

The offline compiler targets the Custom Platform when compiling the OpenCL kernel to

generate the hardware programming image.

Figure 1.8: Intel FPGA SDK for OpenCL Programming Model

Programming Flow

The Intel FPGA SDK for OpenCL Offline Compiler can create the FPGA programming

bitstream in a single or multistep process. From the kernel source file (.cl), the offline

compiler groups one or more kernels into a temporary file and then compiles this file to

generate the following files and folders:

• .aoco object file, an intermediate object file that contains information for later stages

of compilation;

• .aocx image file, the bitstream, that is the hardware configuration file and contains

24

information necessary to program the FPGA at runtime;

• a work folder or subdirectory, which contains data necessary to create the bitstream

file.

By default, the offline compiler uses the single step process to generate the bitstream.

Note that this process is very time consuming as it requires to perform a full compilation

of the bitstream, which takes hours.

Figure 1.9: Intel FPGA SDK for OpenCL Single-Step Kernel Compilation Flow

The multistep process is preferable as it allows to iterate on OpenCL kernel design

to implement optimizations or other iterative modification. The stages in the follow-

ing design flow serve as checkpoints for identifying functional errors and performance

bottlenecks. They allow to modify your OpenCL kernel code without performing a full

compilation on each iteration, performing some or all of the compilation steps.

The multistep design flow includes the following steps:

• Emulation: assesses the functionality of the OpenCL kernel by executing it on one

or multiple emulation devices. For Linux systems, the Emulator offers symbolic

debug support, allowing to locate the origins of functional errors in the kernel code.

• Intermediate Compilation: there are two available intermediate compilation steps.

Compiling the kernel source files using the -c flag instructs the offline compiler to

generate the .aoco object file that contain the output from the OpenCL parser; or,

instead, compiling them using -rtl flag, instructs the offline compiler to generate the

.aoco file and the .aocr file.

• Review HTML Report: compiling the kernel source files using the -report, instructs

the offline compiler to generate a report of those kernels. This report is very useful

25

Figure 1.10: Intel FPGA SDK for OpenCL Multi-Step Kernel Compilation Flow

26

tool as it contains detailed information about the implementation such as utilized

resources, timings, memory, etc.

• Simulation (Preview): assesses the functionality of your OpenCL kernel by running

it through simulation without a long compilation time.

• Fast Compilation: assesses the functionality of your OpenCL kernel in hardware.

The fast compilation step generates the bitstream in a fraction of the time required

to complete a full compilation, by performing only light optimization.

• Profiling: the offline compiler inserts performance counters in the bitstream. During

execution, the counters collect performance information which can be reviewed in

the Intel FPGA Dynamic Profile for OpenCL GUI.

• Full deployment: performs a full compilation and the resulting bitstream will be

suitable for deployment.

Programming Model

Intel FPGA SDK for OpenCL specifies two programming models: the NDRange ker-

nel and the Single Work-Item kernel. Typically, in the NDRange kernel programming

model, the host launches multiple work-items in parallel. This programming model is

implemented by the offline compiler as a deep pipeline, as the kernel usually consists of

hundreds of stages. Each work-item is processed one at a time, trying to schedule them

one per clock cycle by the run-time scheduler, to minimize pipeline stalls and maximize

efficiency. An example of a NDRange kernel code is shown in the following Listing 1.1:

Listing 1.1: NDRange Kernel implementation example
1 __kernel void ndrange_kernel(__global const float ∗ restrict a,
2 __global const float ∗ restrict b
3 __global float ∗ restrict result)
4 {
5 int i = get_global_id (0);
6 result[i] = a[i] + b[i];
7 }

With the Single Work-Item kernel programming model, instead, the entire kernel is

executed by one work-item. This programming model follows the sequential model like C

programming, and is well suited for fine-grain computations. Loop iterations are converted

into pipeline stages and dependencies are resolved by the offline compiler.

An example of a Single Work-Item kernel code is shown in the following Listing 1.2:

27

Listing 1.2: Single Work-Item Kernel implementation example
1 __kernel void single_work_item_kernel(__global const float ∗ restrict a,
2 __global const float ∗ restrict b
3 __global float ∗ restrict result)
4 {
5 for (int i = 0; i < size; ++i) {
6 result[i] = a[i] + b[i];
7 }
8 }

One programming model is not better than the other. Intel suggests to use the

NDRange kernel programming model if:

• data is present before computation;

• kernel does not have loop and memory dependency;

• kernel can execute multiple work-items in parallel efficiently;

• kernel can take advantage of SIMD processing.

And it suggests to use the Single Work-Item programming model if:

• data is processed in stream fashion;

• algorithm can not easily break down into work-items due to data dependencies;

• data can not be easily partitioned.

However, Intel in [12] recommends to use the Single Work-Item kernel programming

model.

Channels Extension

The Intel FPGA SDK for OpenCL channels extension provides a mechanism for inter-

kernel communication and for kernel to I/O communication. The implementation is

based on FIFO buffers. Implementation of channels decouples data movement between

concurrently executing kernels from the host processor.

To read from and write to a channel, the kernel must pass the channel variable to

each of the corresponding API calls. The channel handle has to be declared as a file scope

variable using the syntax shown in the Listing 1.3:

Listing 1.3: Intel Channel declaration syntax
1 channel <type > <variable_name >

28

The type can be a built-in data type or a user defined data structure.

To send data across a channel, one of the following signatures in the Listing 1.4 can

be used:

Listing 1.4: Intel Channel write blocking and non-blocking functions
1 void write_channel_intel(channel <type > channel_id , const <type > data);
2 bool write_channel_nb_intel(channel <type > channel_id , const <type > data);

The former allows to write into the channel with a blocking semantics; this means that, if

the channel is full, the caller stalls and waits until at least one data slot becomes available

in the FIFO buffer. In order to avoid stalls, the latter can be used as it provides a non-

blocking semantic. Indeed, the call returns a boolean value that indicates whether data

was written successfully to the channel.

Data can be read with the function signatures presented in the Listing 1.5:

Listing 1.5: Intel Channel read blocking and non-blocking functions
1 <type > read_channel_intel(channel <type > channel_id);
2 <type > read_channel_nb_intel(channel <type > channel_id , bool ∗ valid);

Similarly to the previous case we examined, the first of these signatures has a blocking

semantics: if the channel is empty, the caller stalls until at least one element is written

to the channel. Non-blocking reads are performed with the latter function signature and

are useful to avoid stalls if data is not available on the channel. On a successful read,

the boolean pointed by valid is set to true and the call returns a valid data read from

the channel. On a failed read, valid is set to false and the value read from the channel is

undefined.

Data written to a channel remains in a channel as long as the kernel program remains

loaded on the FPGA device. However, data is not persistent across multiple or different

execution of programs that lead to FPGA device reprogramming. Considering the code

example shown in Listing 1.6:

Listing 1.6: Producer-Consumer example using Intel Channels
1 channel int c;
2 __kernel void producer () {
3 for (uint i = 0; i < 10; ++i) {
4 write_channel_intel(c, i);
5 }
6 }
7 __kernel void consumer(__global uint ∗ restrict dst) {
8 for (uint i = 0; i < 5; ++i) {
9 dst[i] = read_channel_intel(c);

10 }
11 }

29

Both kernels are launched as Single Work-Item kernels. The producer kernel writes ten

elements to the channel per invocation. The consumer reads five elements from the channel

per invocation. During the first invocation, the consumer kernel reads only the first five

elements. In this example, to avoid deadlocks, the consumer must be executed twice for

every invocation of the producer. If consumer is invoked less than twice, the producer

stalls because the channel becomes full. If, on the other hand, the consumer is invoked

more than twice, consumer stalls because there is insufficient data in the channel.

There are few design restrictions in the implementation of channels:

• A kernel can read from the same channel multiple times, however, multiple kernels

can not read from the same channel. Similarly, a kernel can write to the same

channel multiple times but multiple kernels cannot write to the same channel.

• Channels within a kernel can be either read-only or write-only. Performance of a

kernel that reads and writes to the same channel might be poor.

• Vectorizing a kernel (specifying the num_simd_work_items attribute which uses

channels, creates multiple channel access inside the same kernel and requires ar-

bitration, which negates the advantages of vectorization. As a result, the SDK’s

channel extension does not support kernel vectorization.

• The Intel FPGA SDK for OpenCL channels extension does support indexing into

arrays of channel IDs, but it could lead to inefficient hardware. A slightly more

efficient hardware can be generated with a switch statement, as shown in the fol-

lowing Listing 1.7:

Listing 1.7: Improved implementation of the Consumer kernel with a switch statement
1 channel int c[N];
2 __kernel void consumer(__global uint ∗ restrict indexes , const uint n) {
3
4 for (uint i = 0; i < n; ++i) {
5 int value;
6 switch(i % N)
7 {
8 case 0: value = read_channel_intel(c[0]); break;
9 case 1: value = read_channel_intel(c[1]); break;
10 ...
11 case N−1: value = read_channel_intel(c[N−1]); break;
12 }
13 }

30

• If no data dependencies exist between channel calls, the offline compiler attempts

to execute them in parallel. As a result, the offline compiler might execute these

calls in an order that does not follow the one expressed in the code.

31

Chapter 2

Data Stream Processing on FPGA

In this section we are going to show how to model a DSP application in OpenCL for

FPGA. We start introducing the operator implementation, which is the basic functional

unit composing the Data-Flow graph of the application. An operator receives input

data items (which we will call “tuples” from now on) from incoming streams, applies an

arbitrary function to process them, and emits the resulting tuples to outgoing streams.

We will further show how to implement an operator and we provide a base set of operators.

Operators can be stateless or stateful: the former processes a tuple without any additional

information, while the latter has to maintain an operator state that it uses to process an

incoming tuple. We also show the different possibilities to store and manage an operator

state and how operators interact with each other. Lastly, we show how special operators

on FPGA like Source and Sink operators communicate with the host program depending

on the hardware configuration.

2.1 Operator implementation

In our framework, operators are implemented as OpenCL kernels. Both the NDRange

kernel model and the Single Work-Item model can be used to properly implement a

kernel. Our implementation is based on the Single Work-Item kernel model as it is well

documented as well as strongly suggested by Intel.

With the Single Work-Item implementation, once the kernel is compiled, loop itera-

tions inside the operator are converted into pipeline stages. This way the operator can

take advantage from the pipeline parallelism provided by the hardware implementation.

32

To further improve parallelism, the operator can be replicated according to its par-

allelism degree. Intel SDK for OpenCL gives the possibility to replicate operators by

specifying the number of compute units to the kernel, such as in the following Listing 2.1.

Listing 2.1: Replicating FPGA operator by specifying the number of compute units
1 __attribute__ ((num_compute_units(N)))
2 __kernel kernel_name (...) {
3 size_t cid = get_compute_id ();
4 ...
5 }

where N is the parallelism degree of the operator, and the get_compute_id () function is

an intrinsic function that returns the ID of the specific compute unit. However, we adopted

a different solution that gives us more flexibility for stateful operator implementation. The

kernel code of each operator is copied an amount of times equal to its parallelism degree,

and a unique identifier is assigned to each copy. Once compiled, this translates into

physical hardware copies of the same operator; this give us the possibility to manage

directly each replica and the state associated to them. From now on, we will use logical

operator to refer to the operator that needs to be replicated, and operator replica to

designate the actual implemented kernel.

With regards to the implementation of an operator replica, we chose to split the

operator business code into three phases. The first phase is the begin phase, in which

the operator initializes its own internal variables and the operator state. Next we find

the compute phase, in which the operator receives tuples, processes and sends them to

the next operator. Lastly, the closing phase, which can be used to clean up the operator

state. As shown by the following listing, each phase is implemented as a call to the

corresponding phase function. Phase function implementation have to be provided by

the developer and they have access to the operator state variables, which are provided as

function parameters.

In the following Listing 2.2 we show a basic structure of an operator:

Listing 2.2: FPGA base operator implementation
1 __attribute__ ((uses_global_work_offset (0)))
2 __attribute__ ((max_global_work_dim (0)))
3 __kernel void kernel_name(/∗ global memory objects and global variables ∗/)
4 {
5 // kernel scope variables
6 ...
7 bool done = false;
8
9 // call of the begin phase function

10
11 while (!done) {
12 // gather component

33

13 // call of the compute phase function
14 // dispatch component
15 }
16
17 // call of the closing phase function
18 // send End −Of −Stream to the next operator replicas
19 }

The first two lines instruct the compiler to implement this kernel with the Single Work-

Item kernel model, while the signature of the kernel is on line 3. Kernel arguments can

be global memory objects and global variables. Global memory objects are pointers to

buffers allocated in the global memory region of the OpenCL device, and they are used

to write data that has to be processed (i.e., by the previous operator in the pipeline or by

the operator interfacing the operators running on the host with the ones running on the

FPGA) or memory to store the computed results. Global variables, on the other hand, are

constant values provided by the host program. They are usually values representing the

size of global memory objects or constant values needed for the computation. The body of

the kernel consists of several components. In the first part of the kernel body we find the

list of kernel scoped variables, declared and initialized both from the framework and the

developer. In the next part, the kernel calls the begin phase function of the operator. The

main loop of the kernel starts at line 8, in which incoming tuples from the input stream are

gathered, computed and dispatched to the next operator. Inside the main loop, a gather

component applies the gather policy to receive incoming tuples from previous operator

replicas. This component is also in charge of updating the done variable to True once the

stream ends. After a tuple is received, the compute phase function is called to process the

tuple. At the end of the main loop, the dispatch component applies the dispatch policy to

send the computed tuple to each next operator replicas. The closing function is called at

line 14, and, at the next line, the End-of-Stream (EOS) is sent each next operator replicas.

The EOS is a mechanism to signal that the stream is closed and the receiving operator

replica can terminate its execution.

We devised a set of base operators that are common on a variety of DSP applications:

• Source: this operator reads tuples from the input stream provided by the host

program. It may apply a user provided transformation function on those tuples

before to send them to the next operator replicas.

• Generator: similar to the Source operator, but it does not have memory commu-

nication with the host program. Streams can be generated directly on the device

34

by this operator. Built-in functions are provided to generate random integer and

floating point numbers.

• Filter: evaluates a user-defined predicate on each incoming tuple. It drops tuples

for which the predicate is False, and keeps the others.

• Map: this operator applies a one-to-one user-defined transformation of the incoming

tuples by means of the compute phase function. Processed tuples are sent to the

next operator replicas. Outgoing tuples can have a different datatype w.r.t. the

incoming tuple.

• Sink: it gathers the tuples sent by the previous operator and makes them available

to the host program.

• Collector: similar to the Sink operator, but does not provide tuples to the host

program.

2.2 Operator State

An operator can be characterized by the kind of state that it maintains. An operator is

stateless if it does not maintain any history about past received tuples. Stateful operators

process incoming tuples on key basis and the operator has to maintain a state per each

key.

The operator state is maintained using the four types of memory provided by the

OpenCL abstractions. Private and local memories are visible by one replica of the oper-

ator. Private buffers can be used to store scalars and small arrays. This type of memory

is usually implemented by the offline compiler as registers of various configurations (for

example, plain registers, shift registers, and barrel shifter), which have a high-bandwidth

(100s TB/s) and low latency (1 clock cycle). Large arrays, or arrays with some sort of

dependencies (i.e., write-after-read), or arrays which are accessed with a variable index,

are promoted to local memory, which is usually implemented with a Block RAM. This

type of hardware memory has a different cost in terms of access and hardware resource:

it usually has a lower bandiwdth (TB/s), twice the latency and consumes more hardware

resources compared with the register implementation.

35

Source

FPGAHost

(a) Source Operator

FPGA

Sink

Host

(b) Sink Operator

Generator

FPGAHost

(c) Generator Operator

FPGA

Collector

Host

(d) Collector Operator

MAP

FPGA

(e) Map Operator

Filter

FPGA

(f) Filter Operator

Figure 2.1: Base operators provided by the FSP framework

opop

(a) Stateless Operator

op

State

(b) Stateful Operator

Figure 2.2: Stateless and Stateful operators

Global memory can be used in various ways: a pointer to global memory can be shared

by all the replicas of the operator, or even by the entire application. Otherwise, it can

be used in a private manner by a replica. Furthermore, a global memory buffer can be

accessed in read-only mode, in write-only mode and in read-write mode. Depending on

the memory access mode, the compiler can apply specific optimizations to improve latency

36

and bandwidth. For example, a global memory used in a read-only manner can be coupled

with a cache memory, and the compiler can be able to prefetch data if the access pattern

has some predefined properties. In addition, it is possible to declare constant memory,

which is essentially implemented with global memory. However, the offline compiler can

apply more aggressive optimizations to speed up read-only memory accesses on such areas.

FPGA

Processor DDR

Global Memory Interconnect

External Memory
Controller and PHYPCIe External Memory

Controller and PHY

Single Work-Item Kernel

Private Memory
(registers)

Local Memory
(BRAM)

Single Work-Item Kernel

Private Memory
(registers)

Local Memory
(BRAM)

Fifo
Channels

Fifo
Channels

Fifo
Channels

Figure 2.3: OpenCL memory hierarchy on FPGA.

The developer must carefully choose which type of memory to use as it can significantly

impact the performance of the operator replicas, and may affect the whole application as

well.

Our framework provides useful APIs for managing global memory for stateful opera-

tors. The developer can declare one or more global memory buffers for a logical operator

and for each of them it is possible to specify the visibility between the replication oper-

ators. The state implemented with the global memory can be declared private for each

replica, or shared among all replicas of the operator. Furthermore, the access mode can be

specified as read-only, write-only, or read-write. If the state is shared among all replicas,

the developer must implement the operator (and its replicas) either to manually parti-

tioning the state or by managing the concurrent access. To handle concurrent accesses,

the developer can use atomic functions, although Intel strongly discourages them as they

can significantly impair the kernel performance.

Our framework does not provide APIs for creating and managing high-level data

37

structures to maintain the operator state: the developer has the burden of implementing

the necessary data structures, i.e. hash tables, on top of the raw memory buffers declared

with our API. However, in the next part of this section we show useful implementations

for managing the state, which can be useful for a broad range of DSP applications.

2.2.1 Shift Registers using Private or Local memory

The shift register is a very important design pattern for efficient implementation of many

applications on the FPGA. Suppose we want to implement a stateful operator of a DSP

application in which the computation of each incoming tuple is based on a window con-

taining the last 16 tuples with the same key attribute. Each tuple tuple_t has a field

key which has a value from 0 to 31. If the tuples are small enough they can be stored in

private or local memory.

In the following Listing 2.3 we show a possible implementation using the shift registers:

Listing 2.3: Implementation of the shift registers using local memory
1 #define KEYS 32
2 #define DIM 16
3 ...
4 __kernel compute_function(const tuple_t in, __local tuple_t windows[KEYS][DIM]) {
5 ...
6 const uint key = in.key;
7 #pragma unroll
8 for (int i = 0; i < DIM − 1; ++i) {
9 windows[key][i] = windows[key][i + 1];

10 }
11 windows[key][DIM − 1] = in;
12 ...
13 }

The compute function has two parameters: the incoming tuple in and the windows

variable which stores the last 16 tuples for each key. In the for loop, all tuples inside the

corresponding window pointed by the key are shifted to the left. The tuple in is then

inserted into the last position of the window. The pragma unroll is necessary so that

the offline compiler can infer that the shift registers pattern is being used and therefore can

properly implement it in hardware. This technique is very useful because, if implemented

correctly, it guarantees II = 1 even when using Local memory. When implementing a

shift register in the kernel, the developer has to keep in mind the following points:

• Unroll the shifting loop so that it can access every element of the array.

• All access points must have constant data accesses. For example, if the computation

is inside a nested loop using multiple access points, unroll these loops to establish

38

the constant access points.

• Initialize all elements of the array to the same value. Alternatively, leave the ele-

ments uninitialized as they do not require a specific initial value.

• If some accesses to a large array are not inferable statically, the offline compiler

creates inefficient hardware. If these accesses are necessary, use Local memory

instead of Private memory.

• Do not shift a large shift register conditionally. The shifting must occur in every

loop iteration that contains the shifting code to avoid creating inefficient hardware.

2.2.2 Direct Address Table using Local Memory

Many DPS applications have stateful operators that keep a state through hash tables.

There are some implementations of Hash Tables on FPGAs but they are used in specific

contexts, such as in network applications [13], and implemented with low-level languages

such as Verilog. A simpler yet effective alternative is the Direct Address Table, which can

be implemented using all the memory levels provided by OpenCL. We recommend using

Private and Local memory as they have low latency, but in this case, tuples of the stream

have to have a finite and small set of keys.

Suppose we want to implement a stateful operator with four internal replicas, which

internally maintains a Direct Address Table that keeps track of the number of tuples for

each key. Each tuple of type tuple_t has a field key that stores an integer between 0

and 255 (we assume that the set of keys have cardinality 256 in this example, and each

key is a unique identifier).

The Direct Address Table of each replica is implemented as an array of size 64 (the

number of keys divided by the number of replicas). The following Listing 2.4 shows a

possible implementation of the compute phase function of the stateful operator.

Listing 2.4: Implementation of the compute phase function using a Direct Address Table
1 #define PAR 4 // parallelism degree of the map operator
2 #define KEYS 256 // max value of a key
3 ...
4 __kernel computation_function(const tuple_t in, __local histogram[KEYS / PAR]) {
5 ...
6 const uint key = in.key / PAR;
7 histogram[key]++;
8 ...
9 }

39

The histogram parameter is the Direct Address Table provided by a replica and it is

implemented with Local memory. The state associated to a tuple is accessed by indexing

the histogram array with the value of the tuple key divided by the parallelism degree of

the stateful operator.

2.3 Operator Dependencies

As described above, each logical operator is replicated according to the parallelism degree

assigned to it. Let us consider the case of two consecutive logical operators, we call

them left-hand logical operator (L) and right-hand logical operator respectively (R). Each

replica of L is directly connected to each of the replicas of R. The communication pattern

is defined by two policies assigned to a logical operator: the dispatch policy and the gather

policy. The dispatch policy does not apply to the sink and the collector operators, as they

do not have a next operator to dispatch their tuples. There are four dispatch policies:

• Forward: this policy is always applied when R has a parallelism degree equal to

one. Each replica of L sends the tuple directly to the replica of R.

• RoundRobin: this policy has two different modes, namely a blocking and a non-

blocking mode.In the blocking mode, tuples are dispatched in a circular order, mean-

ing that the first tuple is sent to the first operator replica, the next tuple to the

second operator replica, and so on. With the non-blocking mode, tuples are still

dispatched in a circular order, but if the destination replica is not capable to pro-

cess the tuple, it is dispatched to the next available operator replica following the

circular ordering.

• KeyBy: this policy is used by operators that maintain a local state. A user-provided

function extracts a key attribute from the tuple, and the tuple is transmitted to the

operator replica responsible for receiving all the tuples with that key attribute.

• Broadcast: this policy is used to dispatch a copy of the tuple to each replica of the

next operator.

The gather policy does not apply to the source and to the generator operators as

they do not have a preceding operator to gather tuples. As already explained with the

40

Left Op. Right Op.

1
1
1

2

2

2

3

3

3

…

…

…

(a) Forward dispatch

Left Op. Right Op.

… 1

2
5

2

…

3

…

3

…

6

1

…

5
6

4

4

…
8

9

8
9

7

7

(b) RoundRobin dispatch, Blocking mode

Left Op. Right Op.

… 2

3
4

1

…

2

…

3

…

5

1

…

6
6

4

5

…
9

9

8
8

7

7

(c) RoundRobin dispatch, Non-Blocking mode

Left Op. Right Op.

…

…

…

…

…

…

(d) KeyBy dispatch

Figure 2.4: Dispatch policies

RoundRobin dispatch policy, the gathering of tuples can happen in blocking or non-

blocking mode. With the blocking mode semantics, each R replica waits for a tuple from

the first replica of L, then from the second replica, and so forth. If the L operator has

a parallelism degree equal to one, this is the default policy. The non-blocking mode

semantics is very similar to the RoundRobin dispatching policy described earlier. In this

case, each replica of R tries to receive a tuple from the first replica of L. If the tuple is

not immediately available, the replica will try to receive a tuple from the next L replica

following the circular ordering (therefore executing a polling of the input channels).

These policies can be implemented in many ways. For example, we have an appli-

cation consisting of a pipeline of operators with parallelism degree equal to one. In this

case the dispatch policy of each operator is Forward, and the gather policy is blocking.

41

A possible implementation consists of controlling the flow of messages between FPGA

operators by the host program via global memory. Suppose that a host thread is assigned

to each operator: the thread waits for a global memory pointer from the previous operator

and then launches its assigned FPGA kernel by passing the received pointer. Once the

operator finishes the computation, it sends the global memory pointer of the computed

result to the next thread of the pipeline (e.g., using any communication mechanism avail-

able between host threads such as lock-free data structures to host addresses to shared

data structures [14]). After the operator has finished the computation, the last thread

(associated with the sink operator of the pipeline) reads the tuple from the global buffer

and frees or recycles the pointer.

This procedure requires a lot of synchronizations between threads and FPGA opera-

tors, which could lead to a massive overhead. Furthermore, reading and writing to global

memory buffers is costly as the bandwidth is low and shared among all the kernels access-

ing to it. This can cause a lot of contention on global memory, and hence, the latency of

each access operation on global memory could be huge.

Our implementation, instead, is based on the Intel Channel Extension, which provides

mechanisms to perform inter-kernel communications directly on FPGA, without the need

of the host program to control the flow of messages exchanged between operators, and

so by reducing contention on global memory. Such channels are implemented as FIFO

buffers directly on the FPGA fabric. Hence, the host program has less interaction with

the operator replicas, meaning less code and no need for expensive synchronizations.

Furthermore, the logic of the dispatch and gather policies is part of the operator replicas

only, since the host is not involved. Indeed, tuples can be directly sent and received by

means of channels, without storing them in global memory and by providing immediate

access to the new tuples to process by the next operator of the application. Consequently

to this choice, latency is drastically reduced as there is no synchronization overhead and

no store in global memory that is very costly.

To control the termination of the streaming application on the FPGA, we wrap each

tuple in a special wrapper message encapsulating the tuple itself and a boolean flag named

EOS (end-of-stream). A wrapper data structure is declared for each pair of connected

logical operators, since each operator can emit its own tuple data type which can be

different from the input one. The wrapper type name is obtained by concatenating the

42

names of the L and R operators. The following Listing 2.5 represents an example of a

wrapper data type with its definition:

Listing 2.5: Wrapper data structure for channel communication
1 typedef struct {
2 <tuple_type > data;
3 bool EOS;
4 } <left >_<right >_t;

where <tuple_type > is the tuple data type exchanged between the <left > and the

<right > logical operator (L and R). The EOS is a boolean value used to signal the end of

the stream to the receiving operator replica so that the replica can terminate its execution.

Channels involved in the communication of two subsequent logical operators have to

be declared as global scope variables, and they use right wrapper data type. They can

be declared with the C array notation. In the following listings, the value of N is the

parallelism degree of the L operator and the value M is that of the R operator.

Now, we present the dispatch policy implementations in the Listing 2.6, showing the

first replica of the L operator with the unique identifier 0. In the Forward dispatch policy

implementation, we need only one call to the write_channel_intel () primitive on the

channel ch indexed with the unique identifier of the replica.

Listing 2.6: Forward Dispatch policy with right-hand side with parallelism degree = 1

1 <left >_<right >_t ch[N];
2 ...
3 __kernel void <left >_0(...) {
4 const uint idx = 0;
5 ...
6 while (!done) {
7 // gather component
8 <left >_<right >_t out;
9 // call of the computing function

10 write_channel_intel(ch[idx], out);
11 }
12 ...
13 }

In the RoundRobin dispatch policy, both in blocking and non-blocking mode, we

introduce a switch −case statement to generate a more efficient hardware with respect

to the single indexing. The w variable keeps track of the last used channel. It is initialized

with the unique identifier, instead of 0, to avoid contention on channels, especially in

the blocking mode version. After a write on a channel, this variable is incremented as

w = (w + 1) % M. We do not show the update code of w for readability purposes, as it

is implemented with 4 lines of code to instruct the offline compiler to generate efficient

hardware. We implement the RoundRobin dispatch policy as in the Listing 2.7.

43

Listing 2.7: RoundRobin dispatch policy in blocking mode with right-hand side with

parallelism degree > 1

1 <left >_<right >_t ch[N][M];
2 ...
3 __kernel void <left >_0(...) {
4 const uint idx = 0;
5 uint w = idx;
6 ...
7 while (!done) {
8 // gather component
9 <left >_<right >_t out;

10 // call of the computing function
11 switch (w) {
12 case 0: write_channel_intel(ch[idx][0], out); break;
13 case 1: write_channel_intel(ch[idx][1], out); break;
14 ...
15 case M−1: write_channel_intel(ch[idx][M−1], out); break;
16 }
17 // update `w`
18 }
19 ...
20 }

For the RoundRobin dispatch policy in non-blocking mode, we have to check if a write

is executed successfully as shown in the Listing 2.8.

Listing 2.8: RoundRobin dispatch policy in non-blocking mode with right-hand side with

parallelism degree > 1

1 <left >_<right >_t ch[N][M];
2 ...
3 __kernel void <left >_0(...) {
4 const uint idx = 0;
5 uint w = idx;
6 ...
7 while (!done) {
8 // gather component
9 bool success = false;

10 <left >_<right >_t out;
11 // call of the computing function
12 do {
13 switch (w) {
14 case 0: success = write_channel_nb_intel(ch[idx][0], out); break;
15 case 1: success = write_channel_nb_intel(ch[idx][1], out); break;
16 ...
17 case M−1: success = write_channel_nb_intel(ch[idx][M−1], out); break;
18 }
19 // update `w`
20 } while (! success);
21 }
22 ...
23 }

For the KeyBy dispatch policy, the developer has to provide a mechanism to extract

a key from the received tuple. We calculate the index of the destination operator replica

by taking the remainder of the integer division of the extracted key and the parallelism

degree of the next logical operator as shown at line 10 of the Listing 2.9.

Listing 2.9: KeyBy dispatch policy with right-hand side with parallelism degree > 1

1 <left >_<right >_t ch[N][M];
2 ...
3 __kernel void <left >_0(...) {

44

4 const uint idx = 0;
5 ...
6 while (!done) {
7 // gather component
8 <left >_<right >_t out;
9 // call of the computing function

10 const uint w = tuple_get_key(out.data) % M;
11 switch (w) {
12 case 0: write_channel_intel(ch[idx][0], out); break;
13 case 1: write_channel_intel(ch[idx][1], out); break;
14 ...
15 case M−1: write_channel_intel(ch[idx][M−1], out); break;
16 }
17 }
18 ...
19 }

With respect to the Gather policies, we must point out that the call of the computing

function and the dispatch component are injected into the gather component implemen-

tation. If a EOS is received, it has to be handled properly. It keeps track of the EOS

of each preceding operator replica and updates the done variable with true once all the

channels are closed. Moreover, the r variable is initialized with the unique identifier of

the operator replica and incremented as r = (r + 1) % N. For the sake of brevity, we

are not going to show the code related to the handling of the EOS messages.

If the L operator has parallelism degree equal to 1, the gather policy implementation

is in blocking mode and needs only one call to read_channel_intel () indexed with

the unique identifier of the replica, as shown in the Listing 2.10.

Listing 2.10: Gather policy in blocking mode with left-hand side with parallelism degree

= 1

1 <left >_<right >_t ch[M];
2 ...
3 __kernel void <right >_0 (...) {
4 const uint idx = 0;
5 ...
6 while (!done) {
7 <left >_<right >_t in = read_channel_intel(ch[idx]);
8 if (in.EOS) {
9 // handle EOS

10 } else {
11 // call of the computing function
12 // dispatch component
13 }
14 ...
15 }
16 ...
17 }

Otherwise, if the L operator has a parallelism degree greater than 1, a different im-

plementation is needed and it is shown in the Listing 2.11. A boolean array is needed

to keep track of the EOS received by each replica to avoid the kernel to be blocked on a

closed channel. For each case of the switch −case statement, we check if a replica has

completed its computation and closed the communication before calling the read on the

45

corresponding channel.

Listing 2.11: Gather policy in blocking mode with left-hand side with parallelism degree

> 1

1 <left >_<right >_t ch[N][M];
2 ...
3 __kernel void <right >_0 (...) {
4 const uint idx = 0;
5 uint r = idx;
6 bool EOS[N];
7 ...
8 while (!done) {
9 bool valid = false;

10 <left >_<right >_t in;
11 switch (r) {
12 case 0: if (!EOS[0]) {in = read_channel_intel(ch[0][idx]); valid = true;} break;
13 case 1: if (!EOS[1]) {in = read_channel_intel(ch[1][idx]); valid = true;} break;
14 ...
15 case N−1: if (!EOS[N−1]) {in = read_channel_intel(ch[N−1][idx]); valid = true;} break;
16 }
17
18 if (valid) {
19 if (in.EOS) {
20 // handle EOS
21 } else {
22 // call of the computing function
23 // dispatch component
24 }
25 ...
26 // update `r`
27 }
28 }
29 ...
30 }

In the non-blocking version, instead, we do not need to keep track of the EOS received

for each replicas. The non-blocking read primitive of Intel channels, which is defined

as read_channel_nb_intel (), requires a boolean variable valid that states if the

returned value of the primitive is meaningful or not. So, after the read, the valid

variable is checked before proceeding into the computation, as shown at line 17 in the

Listing 2.12.

Listing 2.12: Gather policy in non-blocking mode with left-hand side with parallelism

degree > 1

1 <left >_<right >_t ch[N][M];
2 ...
3 __kernel void <right >_0 (...) {
4 const uint idx = 0;
5 uint r = idx;
6 ...
7 while (!done) {
8 bool valid = false;
9 <left >_<right >_t in;

10 switch (r) {
11 case 0: in = read_channel_nb_intel(ch[0][idx], &valid); break;
12 case 1: in = read_channel_nb_intel(ch[1][idx], &valid); break;
13 ...
14 case N−1: in = read_channel_nb_intel(ch[N−1][idx], &valid); break;
15 }
16
17 if (valid) {
18 if (in.EOS) {
19 // handle EOS

46

20 } else {
21 // call of the computing function
22 // dispatch component
23 }
24 }
25 ...
26 // update `r`
27 }
28 ...
29 }

2.4 Managing Streams

Accelerators usually perform computations once all the data is located in their own mem-

ory hierarchy. As a first step, the host program copies the required data to the memory

of the accelerator, then instructs the accelerator to process the data, and finally copies

back the results on the host memory.

Due to the characteristics of stream processing applications, data is not available

immediately as it arrives during the computation. In an ideal scenario, each input tuple

should be processed as soon as it arrives (one-at-a-time processing [5]). In case of using

an accelerator such as an FPGA with its own memory, incoming tuples have to be copied

to the FPGA memory.

Each memory access has a fixed cost and a variable one. The fixed cost is usually

due to the initialization of the memory communication protocol,while the variable cost is

proportional to the data size transferred. In case of small/medium size tuples (i.e., less

than some KB), the individual copy of each tuple to the FPGA memory can be quite

costly since the fixed cost dominates.

In our implementation, we adopted a micro-batching data processing approach already

used in the literature for similar purposes [5]. The host program is in charge of collecting

input tuples from incoming streams to form micro-batches of a predefined size. Then, each

complete micro-batch is provided to the FPGA which processes it. Outgoing streams of

results produced by the FPGA are managed with the micro-batch as well. Sink operators

gather tuples and buffers them to form a micro-batch, which will be stored in global

memory as soon as it is filled completely or the incoming streams end (by receiving the

EOS message from all the preceding replicas).

47

2.5 Host ↔ Device Communication

The host ↔ device communication is an important aspect concerning the use of acceler-

ators. The host program is in charge of providing tuples to the source operator, which

reads them from global memory buffers. Furthermore, the sink operator will make the

received tuples available to the host program by means of global memory buffers.

Communication overheads can have a significant impact on the overall application

throughput: for example, applications with fine-grained computations are not able to

hide the communication latency entirely. Another aspect that can play a significant role

is the available hardware capabilities: for example, an FPGA connected through the PCI-

Express interconnect needs to copy tuples from the host memory to the device one. In

hardware configurations based on System-on-Chip (SoC), a small multicore and an FPGA

are integrated on the same chip and they share the physical memory of the system. In

this scenario, the use of zero-copy techniques can significantly reduce or possibly minimize

communication latencies.

The host ↔ device communication is necessary to provide the micro-batches to the

Source operator, as well as to extract the processed tuples from the Sink operator. In the

first case, the host collects the tuples needed to create a micro-batch and makes them

available to the Source operator on the FPGA through a global memory object. Subse-

quently, it launches the Source operator kernel and waits for its completion to provide a

new micro-batch. In the second case, the host launches the Sink operator kernel, which

collects the processed tuples from the preceding operators on the device, and makes them

available to the host, which might be waiting for them.

To reduce the impact of the communication overhead, we provide two implementations:

the first makes use of the standard functions provided by OpenCL, while the second one

aims at reducing the communication overhead by exploiting the shared memory between

CPU and FPGA with a custom synchronization protocol.

The first implementation is based on the generalization of the double-buffering tech-

nique, known as the N-Buffering technique. This technique allows the execution of kernels

that occur in parallel to the transfers of micro-batches between the host and the device,

improving the performance of the application. Without using this technique, the micro-

batch transfer would occur between kernel executions if the transfer time is shorter than

the computation time: this means that there would be a gap in time between one kernel

48

execution and the next one, which we refer to as kernel downtime. By using this technique,

Figure 2.5: Single-Buffering transfer implementation diagram

Kernel 1 Kernel 2 Kernel 3 Kernel 41 1 2 2 3 3 44

Kernel Downtime Kernel Downtime Kernel Downtime

Transfer Time

Kernel Computation
Waiting for Tuples

for example using N = 2 buffers, we can overlap the execution of the kernels with the

transfer time, so that the kernels can be executed back-to-back with minimal downtime.

In cases where tuples arrive with a variable frequency, the overall time to consider is the

Figure 2.6: Double-Buffering transfer implementation diagram

Kernel 1 Kernel 2 Kernel 3 Kernel 4

1 1

2 2

3 3

44

Kernel Downtime

Buffer 1

Buffer 2 Transfer Time

Kernel Computation
Waiting for Tuples

transfer time plus the time it takes to collect enough tuples to form a micro-batch. In this

case, the use of N buffers is recommended, as it allows to maintain a lower downtime than

using the double-buffering technique. The implementation of this technique makes use of

Figure 2.7: N-Buffering transfer implementation diagram with N = 3

Kernel 1 Kernel 2 Kernel 3 Kernel 4

1 1

2 2

3 3

44Buffer 1

Buffer 2

Buffer 3 Transfer Time

Kernel Computation
Waiting for Tuples

N global memory buffers, which are recycled in a circular fashion. For buffer management

and dependency enforcement, we make use of OpenCL events, which allows us to enforce

dependencies between kernel execution and buffer access; in addition, we employ multiple

command queues to perform micro-batch transfers and kernel executions in parallel. The

following Listing 2.13 shows an example of the implementation of this technique using N

buffers.

Listing 2.13: Host implementation of the N-Buffering technique

49

1 cl_event source_event[N];
2 cl_mem buffer_device[N];
3
4 void push(const tuple_t ∗ buffer_host , const size_t buffer_size) {
5
6 const size_t curr_it = it % N;
7 cl_event write_event;
8
9 if (iteration < N) {

10 clEnqueueWriteBuffer(buffer_queue , buffer_device[curr_it], CL_FALSE , 0,
11 buffer_size , buffer_host ,
12 0, NULL , &write_event);
13 clFlush(buffer_queue);
14 } else {
15 clEnqueueWriteBuffer(buffer_queue , buffer_device[curr_it], CL_FALSE , 0,
16 buffer_size , buffer_host ,
17 1, &source_event[curr_it], &write_event);
18 clFlush(buffer_queue);
19 }
20
21 clSetKernelArg(source_kernel , 0, sizeof(cl_mem), &buffer_device[curr_it]);
22
23 clEnqueueTask(source_queue , source_kernel ,
24 1, &write_event , &source_event[curr_it]);
25 clFlush(source_queue);
26 iteration ++;
27 }

The second to last parameter of the OpenCL functions clEnqueueWriteBuffer and

clEnqueueTask is event_wait_list , which allows us to specify one or more event that

needs to be completed before executing the function. An event is then associated with each

write and launch operation of a kernel, which are used to keep track of the dependencies.

The first N micro-batches are written to the buffer devices without any dependency,

because the buffer devices are initially empty and no kernel has been previously launched

to process them. Then, the device buffers are recycled and the micro-batch is copied with

the clEnqueueWriteBuffer function, specifying the event associated with the launch

of the oldest kernel, namely the kernel that has been launched to process the targeting

buffer. The kernel is launched by specifying the event associated to the write the buffer

call, to ensure that the buffer has been completely written. The clFlush () function is

necessary to make sure that the previous commands have been submitted.

The second implementation is designed to take full advantage of SoC configurations

where a physical shared memory exists between the host and the FPGA. Intel specifically

states not to use the calls to clEnqueueReadBuffer and clEnqueueWriteBuffers in

this case, but rather to use the clEnqueueMapBuffer function to map the shared memory

to the host, which can directly use the pointer returned by the function for read and

write accesses. Since the CPU and FPGA can access the shared memory simultaneously,

we designed a proper synchronization protocol, which makes use of two shared memory

buffers: one is used to exchange headers, while the other is used to exchange micro-

50

batches. The header is a 32-bit unsigned integer, where bit 31 is the close flag, which

indicates whether the communication is terminated; bit 30 is the ready flag to indicate

that the micro-batch is ready for read/write accesses; lastly, the remaining bits are used

to specify the size of the micro-batch. Both buffers are implemented as circular buffers

Figure 2.8: Representation of header_t

31 30 29 28 27 26 2 1 0

close ready batch_size

with size N. The headers buffer is an array of header_t items, each one referring to each

micro-batch contained in the second buffer. The micro-batches can have a variable size in

terms of tuples, with a maximum size set by the developer. Support functions have been

defined for header management and we present them in the following Listing 2.14:

Listing 2.14: Host and Device supporting functions for shared memory communication

protocol
1 inline bool header_close(const header_t h) {
2 return (h >> 31);
3 }
4
5 inline bool header_ready(const header_t h) {
6 return (h >> 30) & 1;
7 }
8
9 inline uint header_size(const header_t h) {

10 return (h & 0x3FFFFFFF);
11 }
12
13 inline header_t header_new(const bool close , const bool ready , const unsigned int size) {
14 return (header_t)((close << 31) | (ready << 30) | (size & 0x3FFFFFFF));
15 }

In the following Listing 2.15 we present the implementation of the push function that the

host uses to make a new micro-batch available to the Source operator.

Listing 2.15: Host implementation of push() function using shared memory protocol
1 // Host −side
2 void push(const tuple_t ∗ batch , const size_t batch_size , const bool close) {
3 // busy waiting on the ready flag
4 while (header_ready(headers[id])) {};
5 // once the ready flag is false , copy micro −batch
6 memcpy(buffers[id], batch , batch_size ∗ sizeof(tuple_t));
7 // ensure all writes are completed
8 WRITE_MEMORY_BARRIER ();
9 // update the header (close , ready , batch_size)

10 headers[id] = header_new(close , true , batch_size);
11 // point to the next header
12 id = (id + 1) % N;
13 }

51

The host performs a busy-waiting loop on the ready flag of the header pointed by the id

variable. Once the ready flag is set to false, the host copies the micro-batch on the shared

buffer and then the header is updated specifying the number of tuples in the micro-batch,

then it sets the ready flag to true and the close flag with the close parameter. We

inserted a write memory barrier between the copy of the micro-batch and the writing of

the header, in order to guarantee that the writes are executed in the same order as written

in the code. Without the write memory barrier, the compiler could reorder the writes and

so the header could be written before the copy of the micro-batch has finished. Finally,

the id variable is incremented modulo N.

In the following listing we have an example of the Source operator on the device.

Listing 2.16: Implementation of Source base operator on FPGA using shared memory

communication protocol
1 // Device −side
2 __kernel source(__global volatile header_t ∗ restrict headers ,
3 __global const volatile tuple_t ∗ restrict batches) {
4 uint id = 0;
5 bool done = false;
6 ...
7 while (!done) {
8 header_t h;
9 // busy waiting on the ready flag

10 while (! header_ready(h = headers[id]));
11
12 const uint batch_size = header_size(h);
13 for (uint i = 0; i < batch_size; ++i) {
14 // read tuples from batches and dispatch them
15 }
16 // update done variable
17 done = header_close(h);
18 // point to the next header
19 id = (id + 1) % N;
20 // ensure all reads completed
21 mem_fence(CLK_GLOBAL_MEM_FENCE | CLK_CHANNEL_MEM_FENCE);
22 // update the header (close , ready , batch_size)
23 headers[id] = header_new(false , false , 0);
24 }
25 ...
26 }

Within the main loop, the operator performs a busy-waiting loop on the ready flag of the

header pointed by the id variable. Once the ready flag is set to true, the actual size of

the micro-batch is extracted and the tuples of the micro-batch are read and dispatched;

the done variable is then updated with the close flag of the header and the id variable

is incremented modulo N. Finally, the header is updated to make it available to the host.

Before writing the header, we have a mem_fence () that guarantees the order of the writes

to both the channels and the global memory.

For the sake of completeness, we show the listings of the Sink operator that makes the

gathered tuples available to the host.

52

Listing 2.17: Implementation of pop() function using shared memory protocol
1 // Host −side
2 void pop(tuple_t ∗ batch , size_t ∗ batch_size , bool ∗ close) {
3 // busy waiting on the ready flag
4 while (! header_ready(headers[id])) {};
5 // update close and batch_size parameters
6 ∗close = header_close(h_ptr[idx]);
7 ∗batch_size = header_size(h_ptr[idx]);
8 // copy processed tuple to the provided buffer
9 memcpy(batch , buffers[id], ∗batch_size ∗ sizeof(tuple_t));

10 // ensure all reads are completed
11 LOAD_MEMORY_BARRIER ();
12 // update the header (close , ready , batch_size)
13 headers[id] = header_new(false , false , 0);
14 // point to the next header
15 id = (id + 1) % N;
16 }

Listing 2.18: Implementation of Sink operator on FPGA using shared memory communi-

cation protocol
1 // Device −side
2 __kernel sink(__global volatile header_t ∗ restrict headers ,
3 __global volatile tuple_t ∗ restrict data)
4 {
5 uint id = 0;
6 bool done = false;
7 ...
8 while (!done) {
9 // busy waiting on the ready flag

10 while (header_ready(headers[id])) {};
11 bool read_done = false;
12 while (! read_done) {
13 // gather tuples and write them to the micro −batch buffer
14 }
15 // ensure all writes completed
16 mem_fence(CLK_GLOBAL_MEM_FENCE);
17 // update the header (close , ready , batch_size)
18 headers[id] = header_new(done , true , n);
19 id = (id + 1) % N;
20 }
21 }

53

Chapter 3

Code Generation

As shown in the previous chapter, writing a DSP application in OpenCL targeting an

FPGA device from scratch could be a complex task as there is the necessity to write

repetitive code and manage the interaction between host and device properly. The host

program needs to prepare the OpenCL context, initialize the device providing the bit-

stream, create the global memory buffers and fill them, launch and manage the kernel ex-

ecution, and manage the FPGA input streams and output streams. Most of the OpenCL

host code is boilerplate code and should be adapted to the application needs and the

targeting device; in addition, operator replicas should be properly engineered for their

replication and state management. Both dispatch and gather policies implementation

must be properly designed taking into account the number of replicas, in order to gener-

ate efficient hardware and to avoid stalls. For these reasons, the FSP framework uses a

code generation approach to produce efficient code starting from a high-level representa-

tion of a DSP application written in Python, and generating optimized code tailored for

FPGAs.

3.1 FPS framework

The FSP framework enables a quick development of DSP applications targeting FPGA

devices. It provides High-Level APIs to describe the application in a Python script that

generates the host and the device application code. Furthermore, the host generated

code presents supporting APIs to manage the application and the operator states. We

have been employed the templating engine Jinja 2.11 to implement a code generation

54

approach.

The code generation approach has many advantages for both the application devel-

oper and the framework developer. Application developers should be focused only on

the implementation of their applications without having to consider problems related to

the implementation of the operators on the FPGA, the host runtime support and data

transfers. Starting from the same high-level description, different versions of the applica-

tion can be generated by changing some parameters, e.g., the parallelism degree, memory

implementation of the state, and dispatching policies. From a framework developer point

of view, the framework presents a building-blocks structure that allows new components

(i.e. base operators, memory transfer protocols) to be added or modified to enable op-

timizations. The code generation technique overcomes many of the limitations of the

OpenCL language. For example, some implementations described in the previous chapter

could be implemented using macro expansions, but this approach turns out to be poorly

maintainable as it is error prone and not very flexible from many points of view.

In order to develop an application with our framework, the developer has to follow the

workflow depicted in Figure 3.1. Its application must be described by creating a Python

script using the Python APIs, which we describe in depth in the following sections, and

it has to implement the operator phase functions generated by the framework. Once the

Developer

Application
Description (Python) Operator Functions

FSP

Device

Common

Host

FPGA Compiler (aoc)

C++ Compiler

FPGA Bitstream

Host Program HOST

FPGA

Figure 3.1: FSP Workflow.

script is executed, the FSP framework generates both the host and the device code. The

generated host code is written in C/C++ and includes: the code for the management of

the OpenCL environment; a class for each logical operator of the application that manages

replica kernels and their state; a class for the management of the pipeline of operators on

the FPGA. The generated device code is written in OpenCL for the Intel FPGA SDK and

55

includes: a file containing the operator replica kernels, channel declarations and kernel

scoped constants and variables; a file for each logical operator containing the function

signatures of the three phases; a file containing the structures necessary to define the

specified tuples In addition, a Makefile is generated to compile the host program and the

device code in emulator mode, as well as for the generation of the bitstream for both

debug and release purposes.

3.2 Use case: Spike Detection

In this section, we will show how to use our FPS framework to implement the Spike

Detection (SD) application. This application is a good example of a DSP application

where data from a multitude of sensors is processed in an IoT scenario. Several sensors

produce information regarding temperature, humidity, voltage, and other factors which

the SD application analyzes in order to check for anomalies in real time. For each received

value, its deviation from the average computed until that moment is calculated. The mean

of the values received by that sensor is updated with each new value. An anomaly, called

a spike, is detected when the deviation of that value exceeds a given threshold.

Let us suppose that our application needs to process values coming from temperature

sensors. The minimum information we need is:

• device_id : a unique identifier of the device that produced the value;

• temperature : the temperature value perceived by the sensor.

This information represents the input tuple of our application.

The Data-Flow graph of our application will be a pipeline of 4 stages, as shown

in the figure: We want to offload the pipeline computation entirely onto the FPGA.

Figure 3.2: FPGA Data Flow graph of Spike Detection

FPGA

Source Average
Calculator

Spike
Detector Sink

HostHost

The Source operator receives the tuples from the host, which could read them from the

56

network or, as in our case, from a file. The tuples are sent by the Source operator to the

Average Calculator operator with a KeyBy dispatch policy where device_id represents

the distribution key. The Average Calculator operator is responsible for computing the

moving average over the input data. The average is calculated over a window of tuples, so

the Average Calculator operator has to maintain a state for each distribution key. A new

tuple is defined, which contains all the information of the input tuple and the computed

average. The resulting tuple is sent to the Spike Detector operator with a non-blocking

RoundRobin dispatch policy. The Spike Detector operator checks the following predicate:

|xn − µn| > (threshold ∗ µn) (3.1)

If it is False the tuple is dropped, otherwise the operator keeps it and sends it to the Sink

operator with a RoundRobin dispatch policy in non-blocking mode. Finally, the Sink

operator gathers the tuples and delivers them to the host program.

3.2.1 FSP Python APIs

To create the structure of this application using our framework, we need to describe each

operator as follows:

Listing 3.1: FNode Python constructor
1 node = FNode(name , # The name of the operator
2 par , # The parallelism degree of the operator
3 kind , # The base operator to be implemented
4 gather_policy , # The gather policy
5 dispatch_policy , # The dispatch policy
6 datatype = None , # The output tuple datatype
7 channel_depth = 0, # The FIFO size of the output channels
8 begin_function = False # True if it has a begin phase , otherwise False
9 compute_function = False , # True if it has a compute phase , otherwise False

10 end_function = False) # True if it has an end phase , otherwise False

The parameter kind specifies which base operator the developer chooses to implement,

selecting it from the following enum:

Listing 3.2: FNodeKind Python enumerator
1 class FNodeKind(Enum):
2 SOURCE
3 GENERATOR
4 FILTER
5 MAP
6 SINK
7 COLLECTOR

The parameter gather_policy specifies the gather policy that the operator has to

utilize to receive tuples, including the two policies described in the previous chapter and

57

the NONE policy, which has to be utilized by the Source base operator as it does not have

preceding operators.

Listing 3.3: FGatherPolicy enumerator
1 class FGatherPolicy(Enum):
2 NONE
3 BLOCKING
4 NON_BLOCKING

The parameter dispatch_policy specifies the dispatch policy that the operator has

to utilize to send tuples to the next operator replicas, including the policies described

in the previous chapter and the NONE policy which has to be utilized by the Sink base

operator as it does not have subsequent operators.

Listing 3.4: FDispatchPolicy Python enumerator
1 class FDispatchPolicy(Enum):
2 NONE
3 FORWARD
4 RR_BLOCKING
5 RR_NON_BLOCKING
6 KEYBY
7 BROADCAST

The parameter datatype is an optional parameter, which specifies the datatype of

the output tuple from the operator. If this parameter is omitted or is set to None, the

datatype of the outgoing tuple will be the same as the input tuple.

The parameter channel_depth is an optional parameter and specifies the size of the

FIFO buffer of the channels adopted in the implementation of the dispatch policy. If this

parameter is omitted or it is set to 0, the offline compiler will choose the optimal size of

these channels.

Lastly, the parameters begin_function , compute_function and end_function

are optional parameters and can be set to True to enable the begin, compute and end

phases respectively to the operator. The Map and the Filter operators have this parameter

set to True by default, the other operators have to specify to them when declaring the

corresponding FNode.

In the following listings we are going to show the declaration of each operator to

compose the application pipeline.

In the declaration of the Source operator, which receives tuples from the host program,

we have to set the gather policy to NONE. The dispatch policy has to be KEYBY as we want

to distribute tuples of the incoming stream by device_id as a key. We do not specify

the datatype of the outgoing tuple here, as this operator is used only to distribute tuples

58

provided by the host program.

Listing 3.5: Declaring the Source operator of the Spike Detection application
1 source_node = FNode('source ',
2 source_par ,
3 FNodeKind.SOURCE ,
4 FGatherMode.NONE ,
5 FDispatchMode.KEYBY ,
6 channel_depth =16)

The Average Calculator operator is implemented as a Map base operator, as it applies a

one-to-one transformation of the input tuples. The operator emits a tuple of type tuple_t

that will contain the value of the calculated average along with the values present in the

received tuple. The gather policy is set in non-blocking mode, as the previous logical

operator will send tuples in KeyBy fashion and we want to be sure that this operator

does not get blocked on a channel connected to a previous operator replica. Indeed,

a Source operator replica might not send tuples to an Average Calculator replica for a

certain amount of time, even if the incoming stream has a uniform distribution of tuples.

We choose to apply the RoundRobin dispatch policy in blocking mode and the channels

with a depth of 16 elements. Furthermore, we set the begin_function to True as we

want to implement the begin phase in which we properly initialize the operator state.

Listing 3.6: Declaring the Average Calculator operator of the Spike Detection application
1 avg_node = FNode('average_calculator ',
2 avg_par ,
3 FNodeKind.MAP ,
4 FGatherMode.NON_BLOCKING ,
5 FDispatchMode.RR_BLOCKING ,
6 'tuple_t ',
7 begin_function=True)

The Spike Detector operator is implemented with the Filter base operator and it is in

charge of removing or keeping tuples on the stream by checking the predicate mentioned

above. Only outlier tuples will be sent to the Sink operator. Both the gather and the

dispatch policies are set in non-blocking mode and the output tuple datatype is not

specified.

Listing 3.7: Declaring the Spike Detector operator of the Spike Detection application
1 spike_node = FNode('spike_detector ',
2 spike_par ,
3 FNodeKind.FILTER ,
4 FGatherMode.NON_BLOCKING ,
5 FDispatchMode.RR_NON_BLOCKING)

Lastly, we declare the Sink operator that will receive tuples in non-blocking mode and

no dispatch policy is specified.

59

Listing 3.8: Declaring the Sink operator of the Spike Detection application
1 sink_node = FNode('sink',
2 sink_par ,
3 FNodeKind.SINK ,
4 FGatherMode.NON_BLOCKING ,
5 FDispatchMode.NONE)

We declare some constants that we will need both for declaring the state of Average

Calculator and for implementing operator functions in OpenCL.

Listing 3.9: Declaring the constants of the Spike Detection application
1 win_dim = 16 # window size
2 max_keys = 64 # max num. of keys in total
3 avg_keys = round_up(max_keys // avg_par) # max num. of keys per replica
4 threshold = 0.025 # temperature threshold
5 constants = {'WIN_DIM ': win_dim ,
6 'THRESHOLD ': threshold ,
7 'MAX_KEYS ': max_keys ,
8 'AVG_KEYS ': avg_keys}

As shown above, the mean value is calculated over a window with a size of 16 items,

and with a presumed maximum number of devices, and therefore of keys, of 64. Since

the Average Calculator operator will be replicated according to its parallelism degree

avg_par, and the stream is partitioned among replicas, the state size of each replica

will be proportional to the number of keys in the stream. Thus, the number of windows

to maintain will be exactly max_keys divided by avg_par. For efficiency purposes the

number of windows is rounded to the next power of two. We then set the value of the

threshold used by the Spike Detector operator to 0.025. Finally, we group these constants

into a dictionary by specifying the name that each of these constants should have in the

generated code.

Now, we present how to add the state to an operator. The following listings present

the class functions of FNode that enable to add private, local and global state to an

operator.

Listing 3.10: FNode class function to add a private buffer
1 def add_private_buffer(self ,
2 datatype ,
3 name ,
4 size = 1,
5 value = None ,
6 ptr = False ,
7 attributes = None)

A private memory state is declared using the class function add_private_buffer () and

has the following parameters:

• datatype: it is a string which specifies the datatype of the buffer. The datatype

60

can be a basic datatype or a developer-defined data structure.

• name: it is a string which specifies the name of the buffer.

• size: if it is set to 1, the resulting private buffer is a scalar; if it is set to a value > 1,

the resulting private buffer is a unidimensional array; if its datatype is a Python

Tuple or a Python List, the resulting private buffer is a multidimensional array.

• value: if it is passed as a string, it can be used to initialize the buffer with a

constant or with a string; if it is passed as a python tuple or a python list, it can

be used to initialize the private buffer with a multidimensional array of values.

• ptr: if the size parameter is set to 1, and this parameter is set to False, the

resulting private buffer is passed to the phase functions as value, otherwise it is

passed as a pointer. If the size parameter is > 1, this parameter is ignored.

• attributes : it is a Python dictionary and it is used to declare memory attributes

that customize the on-chip memory architecture. For example it can be used to

force the offline compiler to implement a private buffer in registers. Refer to Memory

Attributes for Configuring Kernel Memory Systems on the Intel Programming Guide

[15] on page 177 for more details about attributes.

A local memory state is declared using the class function add_local_buffer () and

it has the same parameters of the add_private_buffer () class function, except for

the ptr parameter as a local memory buffer is always passed by pointer to the phase

functions.

Listing 3.11: FNode class function to add a local buffer
1 def add_local_buffer(self ,
2 datatype ,
3 name ,
4 size = 1,
5 value = None ,
6 attributes = None)

A global memory state is declared using the class function add_global_buffer (),

as shown in the following listing:

Listing 3.12: FNode class function to add a global buffer
1 def add_global_buffer(self ,
2 datatype ,
3 name ,
4 size = 1,

61

5 access = FBufferAccess.READ_ALL ,
6 ptr = True):

The datatype, name and size parameters have the same semantics of the corresponding

parameters of the previous two functions. The access parameters specifies the visibility

of the declared global buffer and it can set to:

• READ: each replica has its own buffer in read mode. It could be used to make a

partitioned state available to each replica.

• WRITE: each replica has its own buffer in write mode. It could be used to store

updated information to the host program without performing reads on it.

• READ_WRITE : each replica has its own buffer in read-write mode. It could be used

to a private global storage to implement a data structure.

• READ_ALL: all replicas share the same buffer in read mode. It could be used to

make a global state available to all replicas, or it could be partitioned manually.

• WRITE_ALL all replicas share the same buffer in write mode. It could be used by

all replicas to store updated information for the host program.

• READ_WRITE_ALL : all replicas share the same buffer in read-write mode. It could

be used to implement a global shared memory data structure.

The ptr parameter specifies the implementation of the global buffer: it is implemented in

global memory if the parameter is set to True, otherwise the global buffer is implemented

as a scalar kernel parameter. This is could be useful when a scalar value or a developer

defined data structure has to be passed as a value to the kernel and its value is known at

runtime only.

The class functions shown above allow us to declare the state of the Average Detector

operator, which is composed of two Direct Address Tables: one implemented as an array of

integers in private memory to keep track of the number of tuples present in each window,

and one to store the tuples contained in each window. The latter is implemented as

a matrix of float numbers as we need to keep track only of the temperature value. It

has a number of rows equal to the map_keyes value and a number of columns equal to

win_dim.

62

Listing 3.13: Adding a private and a local state to the Average Calculator operator of the

Spike Detection application
1 avg_node.add_private_buffer('int', 'sizes', size=avg_keys)
2 avg_node.add_local_buffer('float', 'windows ', size=(avg_keys , win_dim))

To declare the operator pipeline, we need to create an object of the class FPipe that

has the following parameters:

• dest_dir: it is a string which specifies the directory where the generated host and

device code is placed.

• datatype: it is a string which specifies the datatype of the stream tuples that the

host manage and sends to the Source operator.

• codebase: it is a string which specifies the directory where the operator files con-

taining already implemented phase functions are stored.

• constants : it is a Python dictionary containing constants provided by the de-

veloper, which will be declared in both the host and device code. The constants

related to the parallelism degree of each operator are generated by the framework

and identified with __<OPERATOR_NAME >_PAR, e.g., __SOURCE_PAR .

• transfer_mode : accepts TransferMode.COPY and TransferMode.SHARED. The

former is set by default and will generate the host and the device code implementing

the N-Buffering technique. The latter is optional and will generate the host and the

device code implementing the data transfers with the protocol for shared memory

presented in previous chapter.

The FPipe class has the following class functions to add operators:

• add_source(node): to add a Source base operator to the pipeline.

• add(node): to add any node to the pipeline, except for Source and Sink base

operators.

• add_sink(node): to add a Sink base operator to the pipeline.

Furthermore, the FPipe class has the following class functions to finalize the pipeline

and generate the host and the device code:

63

• finalize (): this function must be called before generating the code and performs

the followings: it checks the operator names and verifies that they are unique; it

infers and assigns the datatype of the input and the output tuples to operators; it

properly constructs the channels used by the gather and dispatch policies imple-

mentation; it creates the necessary folders to contain the generated code.

• generate_device (): it is the function in charge of generating the device code,

including: a file containing constants and functions used by the framework; a file

containing data structures definitions necessary to the gather and dispatch policies

implementation; a file containing the definition of datatypes specified by the devel-

oper in the FNode constructors; a file for each defined operator that will contain the

definition of the selected phase functions; a file containing the actual device code,

where operators are implemented as OpenCL kernels.

• generate_host (): it is the function in charge of generating the host code, includ-

ing: some files containing wrapper functions of the OpenCL API; a file containing

the runtime support for the management of the application; an example file where

the application is launched.

We can finally declare our pipeline and add the previously declared operators. First,

we create an FPipe object specifying the directory where to store the generated code, the

tuple datatype of the stream provided to the Source operator, and the constants declared

so far. Then, we add the operators to the pipeline by following the order depicted in the

Figure 3.2.

Listing 3.14: Declaring and populating an FPipe to describe the Spike Detection appli-

cation
1 pipe = FPipe('./ spikeDetection ', 'input_t ', constants=constants)
2 pipe.add_source(source_node)
3 pipe.add(avg_node)
4 pipe.add(spike_node)
5 pipe.add_sink(sink_node)

Finally, we call the function finalize () and the two functions to generate the device

and host code.

Listing 3.15: Generating the device and the host code of the Spike Detection application
1 pipe.finalize ()
2 pipe.generate_device ()
3 pipe.generate_host ()

64

3.2.2 FSP Host and Device code

Starting from the description of the high-level Python application presented above, the

framework generates the application implementation files in the directory specified by the

developer. These files are distributed within the following directories:

• common: it contains supporting files for the host program implementation.

• device: it contains supporting files for the device program implementation, includ-

ing a file for each operator that contains the signatures of the phase functions, and

a the device.cl file containing the operator kernels.

• host: it contains an example file to show how to use the API generated by the

framework to manage and to interface with the device operators.

• includes: it contains a file with the API generated by the framework for manag-

ing the application, and a file containing the datatype definitions specified by the

developer in the constructors of the FNode operators.

In addition, the framework generates a Makefile that allows you to compile the host and

device program.

3.2.3 Device Code

To actually implement the application, the developer has to provide the business logic of

the operators by implementing the operator phase functions and completing the definition

of the declared tuple datatypes. Inside the folder ./ device/nodes, we find a file for each

operator containing the signatures of the declared phase functions and an implementation

example for each of them. Inside the folder ./ includes, we find the file tuples.h where

a struct is defined for each tuple datatype.

Moving forward with the SpikeDetection running example, we first complete the def-

initions of the datatype structs. Inside the file tuples.h we find the following code:

Listing 3.16: Tuples definitions generated by the FSP framework
1 typedef struct {
2 uint key;
3 float value;
4 } input_t;
5
6 inline uint input_t_getKey(input_t data) {
7 return data.key;

65

8 }
9

10 typedef struct {
11 uint key;
12 float value;
13 } tuple_t;
14
15 inline uint tuple_t_getKey(tuple_t data) {
16 return data.key;
17 }

This is the code that the framework autogenerated, which presents the two datatype

definitions that we specified in the description of the operators: input_t and tuple_t.

In addition, we find the function <datatype >_getKey () for each defined datatype, which

allows us to implement the key extraction from the tuple needed by the KeyBy dispatch

policy implementation. For the implementation of our application, we are going to modify

the code as follows:

Listing 3.17: Tuples definitions customized for the Spike Detection application
1 typedef struct {
2 uint device_id;
3 float temperature;
4 } input_t;
5
6 inline uint input_t_getKey(input_t data) {
7 return data.device_id;
8 }
9

10 typedef struct {
11 uint device_id;
12 float temperature;
13 float average;
14 } tuple_t;
15
16 inline uint tuple_t_getKey(tuple_t data) {
17 return data.device_id;
18 }

The struct input_t has two fields: the information about the unique identifier of

the device and the temperature value. We then implement the key extraction function

by simply returning the value of the device id. The struct tuple_t, as we specified

earlier, contains the same fields of the input_t, to which we add the average field to

store the average calculated by the Average Calculator operator.

Now, we are going to show how to implement the business logic of the application op-

erators. We find the average_calculator.cl file that contains the begin and the com-

pute phase functions of the Average Calculator operator, and the spike_detector.cl

file containing the compute phase function of the Spike Detector operator. The files of

the Source and Sink operators are not present because we have not specified any phase

function in their Python description.

In the following Listing 3.18 we show the signatures of the Average Calculator operator

66

phase functions that we generated:

Listing 3.18: Average Calculator phase functions generated by the FSP framework
1 inline void average_calculator_begin(__private int sizes[AVG_KEYS],
2 __local float windows[AVG_KEYS][WIN_DIM])
3 {
4 // initialize the operator state
5 }
6
7 inline tuple_t average_calculator_compute(input_t in,
8 __private int sizes[AVG_KEYS],
9 __local float windows[AVG_KEYS][WIN_DIM])

10 {
11 // apply the computation function to 'in' and store result to 'out'
12 tuple_t out;
13 return out;
14 }

Both functions allow the state of the operator that we declared in the Python description

to be accessed. Inside the begin phase function, we initialize each item of the array sizes

with zeros. We do not initialize the array windows because, as we are going to show in

the implementation of the compute function, it is not useful for our purposes.

Listing 3.19: Average Calculator begin phase function implementation for the Spike De-

tection application
1 inline void average_calculator_begin(__private int sizes[AVG_KEYS],
2 __local float windows[AVG_KEYS][WIN_DIM])
3 {
4 #pragma unroll
5 for (int i = 0; i < AVG_KEYS; ++i) {
6 sizes[i] = 0;
7 }
8 }

We specify the directive pragma unroll because the number of elements in the array is

small and allows us to initialize the whole array in one clock cycle.

We have to keep in mind that the compute phase function must calculate the average

over a moving window of the last received WIN_DIM tuples. A possible implementation is

as follows:

Listing 3.20: Average Calculator compute phase function implementation for the Spike

Detection application
1 inline tuple_t average_calculator_compute(input_t in,
2 __private int sizes[AVG_KEYS],
3 __local float windows[AVG_KEYS][WIN_DIM])
4 {
5 const uint idx = in.device_id / __AVERAGE_CALCULATOR_PAR;
6 const float val = in.temperature;
7
8 if (sizes[idx] == WIN_DIM − 1) {
9 sizes[idx] = WIN_DIM;

10 } else {
11 sizes[idx] += 1;
12 }
13
14 float sum = 0.0f;
15 #pragma unroll

67

16 for (uint i = 0; i < WIN_DIM − 1; ++i) {
17 windows[idx][i] = windows[idx][i + 1];
18 sum += windows[idx][i];
19 }
20 windows[idx][WIN_DIM − 1] = val;
21 sum += val;
22
23 tuple_t out;
24 out.device_id = in.device_id;
25 out.temperature = in.temperature;
26 out.average = sum / sizes[idx];
27
28 return out;
29 }

We define two support variables:

• idx: it stores the corresponding index of the device on the Direct Address Table

implemented in local memory and identified by windows parameter. We calculate

its value by dividing the value of device_id by the parallelism degree of the Average

Calculator operator.

• val: it stores the temperature value of the input tuple.

In lines 8-12 we update the number of tuples received for that particular key within

the array sizes. We declare the variable sum to accumulate the values of the window

and use the shift-register pattern on the window at position idx. All values of the

window are shifted to the left, thus eliminating the first element of the window that is

the oldest inserted tuple, and the value of the current tuple is stored at the last position

of the window. During this procedure, the accumulation of the values in the window is

performed. On the following lines, the output tuple with datatype tuple_t is declared

and populated with the values of the input tuple and the average calculation. Lastly, the

new tuple is returned.

We compiled the device code with this implementation and we found that, in the

Throughput Analysis/Fmax II report section of the report, the II is 2 and thus

the replication operator is able to process a tuple every 2 clock cycles. Moreover, we

found in the System Viewers/Kernel Memory Viewer section that the array sizes

has been implemented as BRAM by the offline compiler. To solve these two problems, we

can specify the register attribute on the sizes array to force the offline compiler to

implement the array using registers. Recompiling the code with this change, the report

shows that, indeed, the array sizes is implemented in registers and the II is now 1.

Unfortunately, the Fmax value has dropped to about 194 compared to 240 which is the

target value we usually aim for. Another option is to change the datatype of the array from

68

int to char since new datatype can store the maximum value WIN_DIM. We recompiled

again and we get the implementation of the array in registers and II = 1, but again Fmax

= 194.

The implementation of the Spike Detector operator is straightforward as it is necessary

to specify the predicate seen earlier in the Equation 3.1:

Listing 3.21: Spike Detector compute phase function implementation for the Spike De-

tection application
1 inline bool spike_detector_function(tuple_t in)
2 {
3 return (fabsf(in.temperature − in.average) > (THRESHOLD ∗ in.average));
4 }

For the sake of completeness, we show how to add a Random Number Generator

(RNG) to the Generator base operator, which we use in our benchmark tests. We im-

plemented a Random Number Generator, as shown in the Listing 3.22, based on the

Linear-feedback shift register (LSFR) algorithm and we provide one function to generate

an integer number and one to generate a floating point number.

Listing 3.22: Random Number Generator implementation
1 typedef union {
2 unsigned int i;
3 float f;
4 } rng_state_t;
5
6 inline unsigned int next_int(rng_state_t ∗ s)
7 {
8 s−>i = (s−>i >> 1) | (((s−>i >> 0) ^ (s−>i >> 12) ^ (s−>i >> 6) ^ (s−>i >> 7)) << 31);
9 return s−>i;

10 }
11
12 // Generates a float random number in the range [1.0, 2.0[
13 inline float next_float(rng_state_t ∗ s)
14 {
15 rng_state_t _s;
16 s−>i = (s−>i >> 1) | (((s−>i >> 0) ^ (s−>i >> 12) ^ (s−>i >> 6) ^ (s−>i >> 7)) << 31);
17 _s.i = ((s−>i & 0x007fffff) | 0x3f800000);
18 return _s.f;
19 }

Both functions take a pointer to a rng_state_t . The next_int () returns an integer

number, while the next_float () function returns a floating point number between 1.0

included and 2.0 excluded.

To enable a random number generator, the developer has to add a RNG state to the

Generator base operator in the Python description of the application as shown in the

Listing 3.23.

Listing 3.23: Add a Random Number Generator state to the Generator base Operator
1 generator_node = FNode (...)

69

2 generator_node.add_rng_state('rng')

The developer can specify more than one RNG state. We strongly suggests to use a RNG

state for each number generator function call, as it is a lightweight component and this

way it does not cause memory dependencies.

Host Code

The listings that we are going to show concern the host program API generated by the

FSP framework that is used to interact with the operators on the device. Each operator

defined in the Python application description is implemented as a C++ struct in the

host program containing specialized functions to interact with the operator replicas on

the device and with its state. In the host operator implementation we find all the OpenCL

objects needed to launch the replicas kernels, some buffers to maintain the operator state,

and the support functions for writing and reading the state of each replica.

Listing 3.24: Host operator implementation
1 struct <operator_name >
2 {
3 std:: string name;
4 size_t par;
5 ...
6 <operator_name >(const std:: string name , const size_t par)
7 : name(name), par(par) {
8 // For each replica
9 for (size_t i = 0; i < par; ++i) {

10 // Create a 'cl_command_queue '
11 // Create a 'cl_kernel '
12 }
13 // Create 'cl_mem ' and 'cl_command_queue ' for each global buffer (except scalars)
14 }
15
16 // Declare a "write" function for each global scalar
17 void write_ <buffer_name >(const <buffer_datatype > value ,
18 [const size_t replica_id]) {
19 // Set the value to the corresponding scalar
20 }
21
22 // Declare a "write" function for each global buffer with write access
23 void write_ <buffer_name >(const <buffer_datatype > ∗ buffer ,
24 const size_t buffer_size ,
25 [const size_t replica_id]) {
26 // Copy host data pointed by 'buffer ' to the corresponding device buffer
27 }
28
29 // Declare a "read" function for each global buffer with read access
30 <buffer_datatype > ∗ read_ <buffer_name >([const size_t replica_id]) {
31 // Copy back data from device buffer
32 }
33
34 void launch_kernels () {
35 // For each replica
36 for (size_t i = 0; i < par; ++i) {
37 // Set kernel arguments to the corresponding kernel
38 // Launch the kernel calling clEnqueueTask () function
39 }
40 }
41
42 void finish () { /∗ Wait until all kernels complete the computation ∗/ }

70

43 void clean () { /∗ Release all OpenCL stuff ∗/ }
44 };

In particular, within the operator definition, a function is generated for each global scalar

and for each global buffer to manage write and read operations on them. These functions

have the parameter replica_id used to specify the replica on which to perform the

write and read operations. If a global buffer has been declared with <access >_ALL

access mode, the replica_id parameter is not generated because only one global buffer

is created for all replicas.

The Source and Sink host operators start with the same implementation of the List-

ing 3.24, and are augmented with the necessary data structures and functions to imple-

ment a push operation of the new micro-batch by the Source operator and a pop operation

to fetch a computed micro-batch. The implementation of the push() function is based

on the implementation of the Listing 2.15, and has been modified to support the push of

a new micro-batch on a specific replica of the Source base operator. The signature of this

function is as follows:

Listing 3.25: pop() signature function of the Host Sink base operator
1 void pop(const <buffer_datatype > ∗ batch ,
2 size_t ∗ batch_size ,
3 const replica_id ,
4 bool ∗ close)

Once all host operators are defined, the struct FPipe representing the host-side

application is created. In the constructor, the parameter aocx_filepath specifies the

bitstream to use. The two parameters, source_batch_size and sink_batch_size ,

specify the size of the micro-batches adopted by the Source and the Sink operators re-

spectively. Furthermore, if the developer has set TRANSFER_COPY to manage the commu-

nication between the host and the device, the parameter number_of_buffers is gener-

ated and so it is possible to define the number of buffers to be used for the N-Buffering

technique. The functions push() and pop() are wrappers of the respective functions of

the Source and Sink host operators.

Listing 3.26: Host FPipe implementation
1 struct FPipe {
2
3 std:: string aocx_filepath;
4 size_t source_batch_size;
5 size_t sink_batch_size;
6 // Declare all operators
7 ...
8

71

9 FPipe(const std:: string aocx_filepath ,
10 const size_t source_batch_size ,
11 const size_t sink_batch_size ,
12 [const size_t number_of_buffers])
13 : aocx_filepath(aocx_filepath)
14 , source_batch_size(source_batch_size)
15 , sink_batch_size(sink_batch_size)
16 // Construct all operators
17 ...
18 {}
19
20 void start () { /∗ Call the function launch_kernels () on each operator ∗/ }
21
22 // Wrapper of the 'push()' function of the Source node
23 void push (...) { ... }
24
25 // Wrapper of the 'pop()' function of the Sink node
26 <buffer_datatype > ∗ pop (...) { ... }
27
28 void wait_and_stop () { /∗ Call the 'finish()' function on each operator ∗/ }
29
30 void clean () { /∗ Call the 'clean()' function on each operator ∗/ }
31 };

The framework also generates a host file example showing the use of FPipe:

Listing 3.27: Host file example
1 ...
2 int main(int argc , char ∗ argv []) {
3 ...
4 FPipe pipe(acox_filepath , source_batch_size , source_buffers , N);
5 // Prepare all buffers for all internal nodes
6 // e.g. pipe.filter.write_constant (42);
7 pipe.start ();
8 // Create a thread for each Source operator replica to manage input streams
9 // Create a thread for each Sink operator replica to manage output streams

10 pipe.wait_and_stop ();
11 pipe.clean ();
12
13 return 0;
14 }

In the main function, an object of type FPipe is declared with specified attributed such

as the filepath of the bitstream, the size of the micro-batches of the Source and Sink

operators, and the number of buffers to be used for N-Buffering communication. In the

following lines, we show how to use the functions to initialize the state of an operator.

The start() class function is called on the pipeline to start the device computation. A

number of threads equal to the number of replicas of the Source operator are created to

handle the input streams. The same is done for the Sink operator to handle the output

streams coming from the device. Then the wait_and_stop () function is called, which

pauses the main thread until the computation is complete. Lastly, the clean() function

is called. It releases all OpenCL resources created by the host program.

72

Chapter 4

Evaluation

4.1 Test Applications

In this last part of the thesis, we discuss some benchmarks based on the Spike Detection

application presented in the previous chapters. Furthermore, we discuss the results of some

additional tests that show the potential of our framework and the use of the FPGA for

stream processing applications. We implemented three different versions of the application

targeting the FPGA:

• Base: this version has the same implementation described in the previous chapters

except for the Average Calculator operator, which uses an optimized compute phase

function resulting in II = 1 that can be found in the Listing A.1 of the Appendix.

The transfer_mode is set to TRANSFER_COPY and we set the number of buffers to

4 for the N-Buffer technique.

• Shared: this version is the same as the Base one except for the transfer_mode ,

which is set to TRANSFER_SHARED .

• Skeleton: this version uses a Generator operator in place of the Source Operator,

which is in charge of generating tuples directly on the device instead of continuously

transfer them through the global memory in batches. Similarly, the Sink operator

has been replaced with a Collector operator in order to avoid writing results to the

global memory in order to be used by the host. The Average Operator and the

Spike Operator implementations are unchanged. With this application, we test the

peak theoretical performance of the pipeline implemented on the FPGA without

73

any global memory interaction and without any interaction with the host except for

the kernel launches.

In addition, we execute some rests with the Spike Detection application implemented

using the WindFlow library, which we use to compare our results on the FPGA against

the one obtained on a shared-memory server machine.

4.2 Results

We evaluate our applications targeting FPGA on a Intel Arria 10 SoC FPGA that features

a dual-core ARM Cortex-A9 MPCore Hard Processor System, 660K Logic Eleements,

250K Adaptive Logic Modules (ALM), 1M Registers, 42, 620 M20K, 5, 788 MLAB, 1687

variable-precision DSPs and 1GB on-board DDR4-2400. The host program is compiled

with the arm −linux −gnueabihf −g++ cross-compiler with −O2 optimizer flag. To compile

the device program, we use the Intel FPGA SDK for OpenCL Offline Compiler aoc with

−g0 flag, which removes source information from the compiler reports and source code

and customer IP information from the bitstream file.

We adopt the boardtest benchmark tool provided by Intel to test the Host-to-

Memory bandwidth [16] on the SoC FPGA, and we measured a top write speed of 104

MB/s and a top read speed of 62 MB/s.

We evaluate the WindFlow version on a machine equipped with two CPUs AMD

EPYC 7551 with 128GB of RAM. Each CPU has 32 cores (64 hard-ware threads) with

groups of four cores sharing an L3 cache of 8MB. Each core has a clock rate of 2.4 GHz

and an L2 of 512KB. The WindFlow version is compiled with the gcc 9.0.1 compiler

with −O3 optimizer flag.

The Base, the Shared and the WindFlow applications process the same dataset [17],

whereas in the Skeleton application the Generator base operator generates tuples by using

the RNG engine provided by the framework. Each run of the Base and the Shared appli-

cation is launched with 4096 micro-batches varying the micro-batch size. Each benchmark

of the WindFlow version is executed for 60 seconds.

We run the Base application in different configurations in terms of parallelism degree

and we conclude that replicating the Source operator is not useful because the Host-to-

Memory bandwidth is a bottleneck. Moreover, in terms of tuples per second, by replicating

74

the Average Calculator and the Spike Detector operators we obtain the same results that

we would by not replicating them; therefore, we advise to spare the hardware resources

and avoid replication.

For the Shared application we also run different configurations in terms of parallelism

degree, and we conclude that replicating the Source operator more than twice does not

improve the performance as we expect, as the Host-to-Memory bandwidth is still a bottle-

neck. As shown in Figure 4.1, with two or four replicas of the Source operator we obtain

a better bandwidth compared to the one with only one replica. With micro-batches of

1024 elements we reach a peak of 132 MB/s, that is even more than the one measured

with the boardtest benchmark tool, but increasing the micro-batch size the performance

only degrades: in this case as well, replicating the Average Calculator and the Spike De-

tector operators more than the Source operator parallelism degree does not improve the

performance.

16 64 256 1024 4096 16384

4 · 106

8 · 106

12 · 106

16 · 106

Micro-Batch size

Tu
pl

es
/s

ec

Shared (1)
Shared (2)
Shared (4)

Figure 4.1: Results of the Shared application with Source operator with different paral-

lelism degrees.

We collect the bandwidth measurements of the Base and the Shared applications in

terms of tuples per second by varying the micro-batch sizes. The results are shown in

Figure 4.2.

We test the Base and the Shared versions of the application with the Source operator

replicated 1 and 2 times. For the Base application we can see that as the size of the

micro-batch increases, the bandwidth increases as well in both configurations. This is not

75

16 64 256 1024 4096 16384

0

4 · 106

8 · 106

12 · 106

16 · 106

Micro-Batch size

Tu
pl

es
/s

ec

Base (1)
Base (2)

Shared (1)
Shared (2)

Figure 4.2: Comparison between the N-Buffer technique and Shared Memory protocol

with different micro-batch sizes.

a surprising behavior since the communication overhead becomes less and less important

as the size of the micro-batches to be transferred increases. Furthermore, as the data

available to the FPGA increases, the performance of the device computation increases

correspondingly. Indeed, with a micro-batch of size 16384 we can compute almost 9M

tuples per second. The performance with small sized micro-batches is poor because the

communication overhead dominates and can not be entirely overlapped by the compu-

tation. In the Share application with Source with parallelism degree 1, we note that

it performs quite well with small sized micro-batches, managing to compute about 4M

tuples per second with a batch size of 16 tuples. With batches of 64 tuples and higher,

the number of computed tuples does not increase and reaches a maximum of 7M tuples

per second. By replicating the Source operator twice, we observe a peculiar trend: using

micro-batches of 16 tuples, we obtain just over 8M tuples per second, dropping to 7M

tuples per second with a batch of size 256. With a batch of size 1024 we get the peak of

the bandwidth, which is around 17M tuples per second, and as the batch size increases

the bandwidth obtained decreases.

From these considerations, we can state that the Shared Memory Protocol performs

much better than the N-Buffer technique for small sized micro-batches. This aspect is

particularly important since in real applications the use of oversized batches would require

very high input rates (to maintain acceptable latency), and this is not always justifiable.

76

Since in our tests we are limited by the memory bandwidth between the host and

the FPGA, we run the benchmarks with the Skeleton application to show the potential

capability of the code generated by our framework. In a configuration where the operators

Source and Sink have a degree of parallelism set to 1 and the operators Average Calculator

and Spike Detector have a degree of parallelism set to 2, we get a maximum bandwidth

of about 200M tuples per second. If we increase the number of replicas of all operators

except the Sink, and set the degree of parallelism to 4, we get a bandwidth of about

500M tuples per second. These are ideal results with no access to global memory, as

the tuples are generated directly by the Generator operator on the FPGA. These results

are remarkable, because the code generated by the framework has great potential and

the implementation is only limited by Host-to-Memory bandwidth of the considered SoC

used for the experiments. In a scenario where the bandwidth is much higher than the

one we measured, or the tuples of the streams come from a network interface (such as a

10GB Ethernet) we could exploit the full capabilities of the FPGA computation for DSP

applications generated by our framework.

In Figure 4.3 we show the results of the WindFlow implementation of the Spike De-

tection application by varying the size of the micro-batches. The results are obtained

by choosing the best parallel configuration on that machine: the Source operator has a

parallelism degree set to 17, and the Average Calculator, the Spike Detector and the Sink

operators are chained so that they form a single operator which is replicated 12 times,

with a total number of 29 threads. From these results we note that, as the size of the

micro-batches increases, the number of tuples per second computed increases as well.

Figure 4.4 shows a comparison of the best results obtained by the versions of Spike

Detection implemented using both our framework and the WindFlow library. As we can

observe, the Base and Shared applications are about 4.3 and 2.3 times slower than the

WindFlow one. With regards to the results of the Skeleton application, however, we note

that there is a lot of room for improvement even using only one replica for the Source

operator, in the scenario of having no limits on the memory bandwidth. We also note

that the WindFlow version is about 5 times slower and about 10 times slower than the

Skeleton application, with respectively 1 and 4 parallelism degree for the Source operator.

As a last point, we perform a test to verify the necessity of operator replication.

77

1 2 4 8 16 32 64

1 · 106

15 · 106

20 · 106

25 · 106

30 · 106

35 · 106

40 · 106

Micro-Batch size

Tu
pl

es
/s

ec

WindFlow

Figure 4.3: Results of the WindFlow implementation of Spike Detection by varying the

micro-batch size.

W
ind

Flow Base

Sh
are

d

Sk
ele

ton
(1)

Sk
ele

ton
(4)

100

101

102

103

38.5

8.7
16.8

191

482.8

M
ill

io
ns

of
Tu

pl
es

/s
ec

Figure 4.4: Comparison between the best results of all the Spike Detection versions.

We implemented the Average Calculator operator in an inefficient way and with data

dependencies such as write-after-read dependency. This has the general goal of mimicking

a situation that could happen during the development of real-world complex codes for the

FPGA. Indeed, it might be possible that, due to the complexity of the code or due to the

inexperience of the high-level programmer, the operator business logic compilation does

78

not result in optimized FPGA code with low II. The report shows that the operator

is compiled with II = 22, and consequently it is able to compute a tuple every 22 loop

iterations. In the Figure 4.5 we show the results of two inefficient configurations: one

with all operators replicated only once, the other with the Average Calculator operator

replicated 4 times. Comparing the results we obtain a speedup of 3, that is lower than the

16 64 256 1024 4096 16384 65536
0

5 · 105

10 · 105

15 · 105

20 · 105

25 · 105

Micro-Batch size

Tu
pl

es
/s

ec

Inefficient (1)
Inefficient (4)

Figure 4.5: Results of the Inefficient version with Average Calculator operator replicated

4 times and with II = 22.

ideal one of 4. Therefore, the operator replication proves useful at least in cases where it

is not possible to develop the operators’ business logic code such that the offline compiler

reaches II = 1.

79

Chapter 5

Conclusions

The aim of this project was to provide a solid foundation to the development of DSP

application targeting FPGA. Within this work we introduced the components necessary

to implement streaming application on FPGA. Among these components, we focused on

the proper implementation of operators, on the communication between the host and the

device, the inter communication between operators running on the FPGA, and so on.

We developed a set of Python APIs to describe a DSP application and to generate the

host and the device OpenCL code, to which developers can add the business logic code

of operators. We used a running example to introduce the APIs step by step, while also

explaining the reasons for the solutions we implemented. We showed the OpenCL code

that our framework generated starting from the description of the example application

Spike Detection.

Finally, we performed some benchmarks of the application produced by our framework.

We evaluated the two implementations we proposed for the communication between host

and device: the N-Buffering technique that makes use of the OpenCL API, and the

share memory protocol we designed. We then compared it with the Spike Detection

application implemented with the WindFlow library, and we observed that the bandwidth

obtained by our implementations on the FPGA are respectively 4.3 and 2.3 times slower.

From these tests, we noticed that the Host-to-Memory bandwidth is the bottleneck of

our implementations. For this reason, we developed a new version in which we put the

Generator operator in place of the Source operator, in order to generate the tuples inside

the device and to prevent the operators on the FPGA from interacting with the host

program. This version showed the potential of using our framework to target FPGAs for

80

streaming applications, obtaining up to 10 times the bandwidth reached by the application

developed with the WindFlow library.

Considering the results achieved in this study, we aim to further develop this frame-

work by providing new base operators such as the FlatMap operator which applies a

user-defined transformation on each received tuple producing zero, one or more output

tuples. In addition, we believe it would be useful to provide APIs to directly implement

windowed operators, which execute a windowed query on key based streams partitions.

We would also like to further improve the Share Memory Protocol we developed, in order

to reduce the overhead of the busy waiting approach we adopted. Furthermore, there

would be a need to test more applications and run them on different hardware configu-

rations to consolidate the results collected so far. Finally, we believe we could achieve

optimal results using autorun kernels to implement our dispatch policies, with the aim to

improve performances and reduce usage of hardware resources.

81

Appendices

82

Appendix A

Average Calculator optimized

compute phase function

Listing A.1: Average Calculator compute phase function optimized (II = 1) implemen-

tation for the Spike Detection application
1 inline tuple_t average_calculator_compute(input_t in,
2 __private int sizes[AVG_KEYS],
3 __local float windows[AVG_KEYS][WIN_DIM])
4 {
5 const uint idx = in.device_id / __AVERAGE_CALCULATOR_PAR;
6 const float val = in.temperature;
7
8 float N = 0.0f;
9 #pragma unroll

10 for (uint i = 0; i < WIN_DIM; ++i) {
11 if (sizes[idx] == ((1 << i) >> 1)) N = 1.0f / (i + 1);
12 }
13
14 if (sizes[idx] & (1 << (WIN_DIM − 2))) {
15 sizes[idx] = (1 << (WIN_DIM − 2));
16 } else {
17 sizes[idx] = (sizes[idx] == 0 ? 1 : sizes[idx] << 1);
18 }
19 float sum = 0.0f;
20 #pragma unroll
21 for (uint i = 0; i < WIN_DIM − 1; ++i) {
22 windows[idx][i] = windows[idx][i + 1];
23 sum += windows[idx][i];
24 }
25 windows[idx][WIN_DIM − 1] = val;
26 sum += val;
27
28 tuple_t out;
29 out.device_id = in.device_id;
30 out.temperature = in.temperature;
31 out.average = sum ∗ N;
32 return out;
33 }

83

Bibliography

[1] Apache Storm: Distributed and Fault-Tolerant Real-Time Computation. url: https:

//storm.apache.org.

[2] Apache Flink: Scalable Batch and Stream Data Processing. url: https://flink.

apache.org.

[3] Gabriele Mencagli et al. “WindFlow: High-Speed Continuous Stream Processing

with Parallel Building Blocks”. In: IEEE Transactions on Parallel and Distributed

Systems (2021), pp. 1–1. doi: 10.1109/TPDS.2021.3073970.

[4] Jinja 2.11.x. url: https://jinja.palletsprojects.com/en/2.11.x/.

[5] Henrique C. M. Andrade, Bugra Gedik, and Deepak S. Turaga. Fundamentals of

Stream Processing: Application Design, Systems, and Analytics. 1st. USA: Cam-

bridge University Press, 2014. isbn: 1107015545.

[6] Gabriele Mencagli and Tiziano De Matteis. “Parallel Patterns for Window-Based

Stateful Operators on Data Streams: An Algorithmic Skeleton Approach”. In: Inter-

national Journal of Parallel Programming 45 (Apr. 2017). doi: 10.1007/s10766-

016-0413-x.

[7] Brian Babcock et al. “Models and Issues in Data Stream Systems.” In: June 2002,

pp. 1–16. doi: 10.1145/543613.543615.

[8] Wenhong Tian and Yong Zhao. “2 - Big Data Technologies and Cloud Computing”.

In: Optimized Cloud Resource Management and Scheduling. Ed. by Wenhong Tian

and Yong Zhao. Boston: Morgan Kaufmann, 2015, pp. 17–49.

[9] Marco Aldinucci et al. “Fastflow: High-Level and Efficient Streaming on Multicore”.

In: Programming multi‐core and many‐core computing systems. John Wiley & Sons,

Ltd, 2017. Chap. 13, pp. 261–280. isbn: 9781119332015. doi: https://doi.org/

84

https://storm.apache.org
https://storm.apache.org
https://flink.apache.org
https://flink.apache.org
https://doi.org/10.1109/TPDS.2021.3073970
https://jinja.palletsprojects.com/en/2.11.x/
https://doi.org/10.1007/s10766-016-0413-x
https://doi.org/10.1007/s10766-016-0413-x
https://doi.org/10.1145/543613.543615
https://doi.org/https://doi.org/10.1002/9781119332015.ch13
https://doi.org/https://doi.org/10.1002/9781119332015.ch13

10.1002/9781119332015.ch13. eprint: https://onlinelibrary.wiley.com/

doi/pdf/10.1002/9781119332015.ch13. url: https://onlinelibrary.wiley.

com/doi/abs/10.1002/9781119332015.ch13.

[10] Gabriele Mencagli. WindFlow: a C++17 Data Stream Processing Parallel Library

for Multicores and GPUs. url: https://paragroup.github.io/WindFlow/.

[11] Khronos Group. OpenCL™. url: https://www.khronos.org/opencl/.

[12] Intel. Intel® FPGA SDK for OpenCL™ Pro Edition - Best Practices Guide. url:

https : / / www . intel . com / content / dam / www / programmable / us / en / pdfs /

literature / hb / opencl - sdk / archives / aocl - best - practices - guide - 19 -

1.pdf.

[13] Da Tong, Shijie Zhou, and Viktor K. Prasanna. “High-Throughput Online Hash

Table on FPGA”. In: 2015 IEEE International Parallel and Distributed Processing

Symposium Workshop. 2015, pp. 105–112. doi: 10.1109/IPDPSW.2015.149.

[14] Scott Schneider and Kun-Lung Wu. “Low-Synchronization, Mostly Lock-Free, Elas-

tic Scheduling for Streaming Runtimes”. In: SIGPLAN Not. 52.6 (June 2017),

pp. 648–661. issn: 0362-1340. doi: 10 . 1145 / 3140587 . 3062366. url: https :

//doi.org/10.1145/3140587.3062366.

[15] Intel. Intel® FPGA SDK for OpenCL™ Pro Edition - Programming Guide. url:

https : / / www . intel . com / content / dam / www / programmable / us / en / pdfs /

literature/hb/opencl-sdk/archives/aocl_programming_guide-19-1.pdf.

[16] Intel. Intel® FPGA SDK for OpenCL™ Pro Edition - Custom Platform Toolkit User

Guide. url: https://www.intel.com/content/dam/www/programmable/us/en/

pdfs/literature/hb/opencl-sdk/ug_aocl_custom_platform_toolkit.pdf.

[17] Intel Berkeley Research lab. url: http://db.csail.mit.edu/labdata/labdata.

html.

85

https://doi.org/https://doi.org/10.1002/9781119332015.ch13
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119332015.ch13
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119332015.ch13
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119332015.ch13
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119332015.ch13
https://paragroup.github.io/WindFlow/
https://www.khronos.org/opencl/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/aocl-best-practices-guide-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/aocl-best-practices-guide-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/aocl-best-practices-guide-19-1.pdf
https://doi.org/10.1109/IPDPSW.2015.149
https://doi.org/10.1145/3140587.3062366
https://doi.org/10.1145/3140587.3062366
https://doi.org/10.1145/3140587.3062366
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/aocl_programming_guide-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/aocl_programming_guide-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/ug_aocl_custom_platform_toolkit.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/ug_aocl_custom_platform_toolkit.pdf
http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html

	Introduction
	Background
	Data Stream Processing
	Apache Storm
	Apache Flink
	WindFlow
	Field Programmable Gate Array (FPGA)
	OpenCL
	Intel FPGA SDK for OpenCL

	Data Stream Processing on FPGA
	Operator implementation
	Operator State
	Shift Registers using Private or Local memory
	Direct Address Table using Local Memory

	Operator Dependencies
	Managing Streams
	Host <-> Device Communication

	Code Generation
	FPS framework
	Use case: Spike Detection
	FSP Python APIs
	FSP Host and Device code
	Device Code

	Evaluation
	Test Applications
	Results

	Conclusions
	Appendices
	Average Calculator optimized compute phase function

