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Abstract—Medical internet of things leads to revolutionary im-
provements in medical services, also known as smart healthcare.
With the big healthcare data, data mining and machine learning
can assist wellness management and intelligent diagnosis, and
achieve the P4-medicine. However, healthcare data has high spar-
sity and heterogeneity. In this paper, we propose a Heterogeneous
Transferring Prediction System (HTPS). Feature engineering
mechanism transforms the dataset into sparse and dense feature
matrices, and autoencoders in the embedding networks not only
embed features but also transfer knowledge from heterogeneous
datasets. Experimental results show that the proposed HTPS
outperforms the benchmark systems on various prediction tasks
and datasets, and ablation studies present the effectiveness of
each designed mechanism. Experimental results demonstrate the
negative impact of heterogeneous data on benchmark systems
and the high transferability of the proposed HTPS.

Index Terms—heterogeneous data, transfer learning, health-
care

I. INTRODUCTION

ITH the continuous development of Medical Internet of

Things (MIoT), MIoT has revolutionary improvements
in medical services, known as smart healthcare [3]. Smart
healthcare involves the development of smart hospitals, IoT
sensing, and diagnosis assisting. Digital information assists
hospitals in management decision-making and nursing pro-
cess improvement, and virtualized services are exhibited in
the fields of remote clinics and medical consultation, which
increase the supply and alleviate the demand for medical
services [5]. MIoT sensing could monitor respiration, heart
rate, blood pressure, and even mental stress and mood through
home medical instruments and wearable devices (such as
smartphones and smartwatches). With the big healthcare data,
artificial intelligence (AI) technologies of data mining and
machine learning can assist wellness management and in-
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telligent diagnosis, and achieve the P4-medicine (preventive,
participatory, predictive, and personalized) [6].

However, healthcare data has high sparsity and heterogene-
ity because of different users, devices, and frequencies. For
example, ICU patients, hospitalized patients, and healthy users
have different health conditions, and different instruments
may be used to measure indicators in time frequencies. In
addition, healthcare data collection is limited by various issues;
therefore, a single source could only collect limited data.
Therefore, how to make full use of heterogeneous healthcare
data is still an unsolved problem.

To ease the issues, we propose a Heterogeneous Transferring
Prediction System (HTPS). The feature engineering mecha-
nism of HTPS transforms the dataset into sparse and dense
feature matrices, which are inputs of the designed sparse and
dense embedding networks, respectively. The autoencoders in
the dense embedding networks not only embed the features
but also transfer knowledge from heterogeneous models with
different datasets and prediction tasks. The contributions of
this paper can be summarized as follows:

1) Feature engineering mechanism extracts feature-based
information (dense feature matrix) and time-series-based
information (sparse feature matrix).

2) Embedding networks not only embed features but also
enhance regularization as multi-task learning.

3) Heterogeneous transfer learning mechanism transfers
knowledge from source model with different datasets,
features, and prediction tasks.

We evaluate the proposed HTPS on various prediction tasks
and datasets, which outperforms the benchmark systems. Ab-
lation studies are executed to present the effectiveness of each
designed mechanism in HTPS. Experimental results demon-



strate the negative impact of heterogeneous data on benchmark
systems and the high transferability of the proposed HTPS.

II. LITERATURE REVIEW

In this section, we review the literature on smart healthcare
in Section II-A. Section II-B introduces the heterogeneous
data.

A. Smart Healthcare

Smart healthcare aims to provide people with convenient
and personalized services through the technologies of artificial
intelligence [10]. The research of smart healthcare includes
smart hospitals, MIoT sensing, and diagnosis assisting.

With the approach of a super-aged society, the demand
for healthcare services has grown gradually, which triggers
discussions on smart hospitals [4]. Digital information assists
hospitals in management decision-making and nursing process
improvement. Virtualized services are exhibited in the fields of
remote clinics and medical consultation. During the COVID-
19 epidemic, virtualized medical services have greatly allevi-
ated the soaring medical demand [5], [11]. In addition, remote
medical services require low-latency and secure communica-
tion, leading to discussions of communication standards and
algorithms for healthcare applications [12].

MIoT sensing could monitor respiration, heart rate, blood
pressure, and even mental stress and mood through home
medical instruments and wearable devices, and enables non-
critical patients to recover outside the hospital. Through data
mining analysis and machine learning prediction, smart and
wearable devices can suggest human living habits, making
IoT go beyond monitoring, but wellness management and
intelligent diagnosis. For example, predictive data mining
methods can diagnose heart disease and diabetes [13], and
deep neural networks can assist in identifying and classifying
various cancers [14]. However, as more healthcare data are
collected and decision-making recommendations are provided,
privacy and security issues should be given great attention, and
could be alleviated by distributed learning algorithms.

B. Heterogeneous Data

Besides learning from horizontally and vertically distributed
data, data is heterogeneous if it is collected from different
populations with different distributions. Since heterogeneous
data have different sizes, distributions, and feature types, it can
negatively impact model performance for distributed learning,
such as prediction ability [15] and convergence [16]. To
make full use of knowledge from heterogeneous data, several
algorithms for heterogeneous data are proposed based on meta-
learning [17] and personalized federated learning [18].

III. PROPOSED HETEROGENEOUS TRANSFERRING
PREDICTION SYSTEM (HTPS)

In this section, the proposed HTPS is introduced, includ-
ing three mechanisms of feature engineering, neural network
prediction, and heterogeneous transferring, detailed in Sec-
tions III-A to III-C.

A. Feature Engineering

Traditional machine learning algorithms take features at
time-series t1,t2,...,ty as input, and any pair of two ad-
jacent timestamps has the same distance. However, healthcare
data has high sparsity because not all features are measured
and collected at the same time-frequency. Unstable and sparse
features have a negative impact on neural network predictions.
To deal with the sparsity, the feature engineering mechanism
in the HTPS transforms the healthcare data into a sparse and
a dense feature matrix.

In the feature engineering mechanism, the timestamp does
not depend on a constant time slot but on the feature collected
order. Suppose there are M records for a user, sorted by
collected time. Each record has only a value of a specific
feature, and there are N + 1 different features in total (1
predicted target and N predicted features). All the sparse and
dense feature matrices are in the shape of W x N, where W
is the window size.

The sparse feature matrices for records, Ry,..., Ry, are
generated as follows. For each record R, the algorithm
extracts the record as feature type F'T" and feature value F'V,
where F'T € {0,...,N} and the prediction target has a F'T
of 0. If FT # 0, the record R; is transformed to a sparse
record SR by Sparse(-), which generates an N-dimensional
zero vector with the F'T-th dimension being F'V. The last
W sparse records are stored in SRL. If FT = 0 and SRL
contains W sparse records, generate a new sparse feature
matrix, and add it to the list of sparse feature matrices SF M.
Furthermore, the corresponding label (prediction target) F'V is
added to the label list L. After traversing all records R;, the
algorithm finally outputs the list of sparse feature matrices
SFM and the corresponding label list L. To sum up, the
sparse feature matrices store the last W measurements, and
only contain W values in a W x N matrix.

The dense feature matrix for records, Ri,...,Rp;, are
generated as follows. For each record R;, the algorithm
extracts the record as feature type F'IT" and feature value F'V.
If F'T' # 0, the value F'V is stored in the F'T-th dimension of
the dense record list D RL. Similarly, D RL only stores the last
W values of each feature. If F'T' = 0 and all N dimensions of
DRL are W, generate a new dense feature matrix, and add it
to the list of dense feature matrices SD M. The corresponding
label (prediction target) F'V is also added to the label list L.
After traversing all records R;, the algorithm finally outputs
the list of dense feature matrices SDM and the corresponding
label list L. In summary, the dense feature matrices store the
last W measurement information of all N features.

B. Neural Network Prediction

The flow chart of the designed network is presented in
Fig. 1, including 3 sub-networks of dense embedding net-
work, sparse embedding network, and prediction network. The
dense embedding network embeds information of /N features
separately (for heterogeneous transferring), while the sparse
embedding network embeds time-series information in the last
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Fig. 1: Schematic diagram of the HTPS network design

Algorithm 1 Sparse Feature Matrix

Algorithm 2 Dense Feature Matrix

1: SFM, L, SRL=11,11,1]
2: fort=1,..., M do

3: FT, FV = extract(R¢)
4 if FT =0 & len(SRL) = W then
5 SFM += SRL

6: L+=FV

7: if F'T" # 0 then

8: SRL += Sparse(F'T, FV)

9: Save the last W records

0:

10: Return SFM, L

1: DFM, L, DRL =[], [1, [[1 x N]
2: fort=1,...,M do

FT, FV = extract(R¢)

4 if FT =0 & Vi, len(DRL[i]) = W then
5 DFM += DRL

6: L+=FV

7: if F'T" # 0 then
8

9

0:

(95}

DRL[FT] += FL
: Save the last W records

10: Return DF M, L

W records. The prediction network collects embedding vectors
to make predictions.

In the dense embedding network, there are /N autoencoder
networks for IV features, respectively. The autoencoders have
symmetric pairs of encoder and decoder, which consists of
fully connected layers), as shown in Fig. 2. An encoder takes
a feature in the dense feature matrix as (W -dimensional)
input, and embeds it into a 1-dimensional vector. The decoder

takes the 1-dimensional vector as input to reconstruct the W-
dimensional feature. We adopt mean absolute error (MAE, L1
loss) to evaluate the performance of autoencoders. To sum
up, the dense embedding network takes W x N-dimensional
dense feature matrix as input, and splits the matrix into NV
W -dimensional vectors for embedding, and transmits the N
embedded vectors to the prediction network.

The sparse embedding network is designed as fully con-
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Fig. 2: Autoencoder

TABLE I: Details of networks design

Dense Network - Encoder Dense Network - Decoder

Layer Neurons Layer Neurons
Linear w Linear 6
LeakyReLU LeakyReLU

Linear 32 Linear 256
LeakyReLU LeakyReLU

Linear 256 Linear 32
LeakyReLU LeakyReLU

Linear 6 Linear w
LeakyReLU

Linear 1

Sparse Embedding Network Prediction Network

Layer Neurons Layer Neurons
Linear N Linear N+ W
LeakyReLU LeakyReLU

Linear 32 Linear 32
LeakyReLU LeakyReLU

Linear 256 Linear 256
LeakyReLU LeakyReLU

Linear 6 Linear 6
LeakyReLU LeakyReLU

Linear 1 Linear 1

nected layers with an input size of N and an output size of 1.
The sparse embedding network splits the sparse feature matrix
into W NN-dimensional vectors, sequentially fed into the layers
to obtain I 1-dimensional embedded vectors. To sum up, the
sparse embedding network embeds time-series information in
the last W records.

The prediction network collects N 1-dimensional embed-
ded vectors from the dense embedding network and W 1-
dimensional embedded vectors from the sparse embedding
network as input, and predicts the target value through fully
connected layers. In the HTPS, there are N + 1 losses, which
are N MAE of autoencoders in the dense embedding network
and a mean square loss (MSE) of the final predicted value.
The numbers of neurons of layers and networks are listed
in Table I. Note that the number of neurons may be slightly
adjusted to match the number of parameters of the benchmark
system.

C. Heterogeneous Transferring

Datasets from different sources may have different features.
How to transfer knowledge between heterogeneous datasets is
a critical issue in healthcare research. To make full use of het-

erogeneous datasets, a heterogeneous transferring mechanism
is designed in this section.

Let the source domain be the knowledge (dataset and model)
transferred from, and the target domain be the knowledge
transferred to. Also, let the source model M be the model
(in Section III-B) trained on the source dataset. The designed
heterogeneous transfer learning mechanism aims to transfer
the knowledge in M® to the target model M as initialization.

There may be a different number of features in the source
dataset and target dataset, resulting in a different number
of autoencoders in the dense embedding network. Therefore,
model weights cannot be transferred (copied) directly. We
design a feature matching mechanism as follows. Suppose
there are N° and N7 features (autoencoders) in the source
and target dataset. For each feature in the target dataset, the
corresponding vectors in the dense feature matrices are fed to
the N autoencoders in M* to obtain N MAE losses. The
feature will match the autoencoder in M® with the lowest
MAE error, which’s weights are transferred (copied) to the
corresponding autoencoder in M7 as initialization. The feature
matching mechanism is applied to all N7 features in the
target dataset and only on the training set. In summary, the
heterogeneous transferring finds the autoencoder in M* with
the lowest reconstruction error for each feature in the target
dataset and transfer weights of autoencoders in M* to M7,

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the dataset usage and benchmark systems are
introduced in Section IV-A. Section IV-B then presents the
prediction evaluation, and Section IV-C present the ablation
studies.

A. Dataset Usage and Benchmark Systems

In this paper, MIMIC-III clinical database [19] is adopted
to evaluate the effectiveness in the following experiments.
MIMIC-III is provided by PhysioNet [20], and is a free
database that collects health-related data from hospitals.
MIMIC-III contains data collected from two systems of Care-
vue and Metavision, which have different characteristics and
are treated as heterogeneous datasets.

In the following experiments, we select SpO2, respiratory
rate (RR), and mean arterial blood pressure (BP) as prediction
targets (3 separate prediction tasks). For the prediction fea-
tures, we select heart rate, respiratory rate, arterial BP mean,
NBP mean, and temperature in the Carevue dataset (N = 5),
and select heart rate, respiratory rate, non-invasive BP mean,
and arterial BP mean in the Metavision dataset (N = 4). For
real-life implementation, we only select indicators that could
be measured by wearable devices as prediction features.

We filter out data of users obtaining less than 5 records of
the prediction target, and the number of users in each dataset
and prediction task is listed in Table II. In addition, we divide
the dataset into training (60%), validation (20%), and testing
(20%) based on the number of users, and the numbers of data
instances are also listed in Table II.



TABLE II: Numbers of users and data in each dataset and
prediction task

Carevue
Target Users Training | Validation | Testing
SpO2 | 114,119 | 119,441 36,557 33,528
RR 107,084 | 119,305 36,546 32,814
BB 82,606 98,737 29,996 27,469
Metavision
Target Users Training | Validation | Testing
SpO2 | 229,620 | 299,705 78,766 86,854
RR 233,646 | 304,312 78,458 86,070
BB 89,826 194,460 50,049 45,449

TABLE III: MSE of systems on the Carevue dataset

Task MLP BIBE HTPS

SpO2 | 57.90 14.74 12.38
RR 47.65 44.55 44.26
BB 567.18 | 395.75 | 329.44

In this paper, 3 benchmark systems are adopted for com-
parison, including the multi-layer perceptron (MLP) and the
state-of-the-art systems BIBE [21]. BIBE [21] designed a
convolutional neural network (CNN) based feature extractor
with a semi-supervised pre-training mechanism to predict
SpO2. All benchmark systems take dense feature matrices as
inputs. For a fair comparison, we make all systems have a
similar number of parameters in the neural network. In the
following experiments, the window size W is set to 3, and
each experiment is repeated 10 times to obtain the average
performance. All systems are trained for 100 epochs with L2
loss (MSE) and Adam optimizer (learning rate 0.01). The save-
best mechanism is adopted to save the model with the lowest
MSE on the validation set. The codes are written in python
3.8.12 with the PyTorch library, and are executed on Intel(R)
Core(TM) i17-9700 CPU @ 3.00GHZ with 16GB RAM and
an NVIDIA GeForce RTX 2080 Ti with 11GB GDDR®.

B. Prediction Evaluation

Table III lists the testing MSE of systems predicting SpO2,
RR, and BP on the Carevue dataset. Experimental results
show that the proposed HTPS outperforms the benchmark
systems among all tasks, and has the lowest prediction errors,
especially in SpO2 and BP. In SpO2 prediction, the proposed
HTPS reduces MSE by 78.6% and 16.0% compared to MLP
and BIBE. In BP prediction, the proposed HTPS reduces MSE
by 41.9% and 30.2% compared to MLP and BIBE.

Table IV illustrates the testing MSE of systems predicting
SpO2, RR, and BP on the Metavision dataset. Experimental
results show that the benchmark systems perform the worst in
SpO2 prediction, and obtain extremely large testing MSEs of
252.97 and 6257.39, respectively. Contrarily, HTPS obtains a
low and stable MSE of 29.72. In RR prediction, the proposed
HTPS reduces MSE by 57.0% and 3.1% compared to MLP
and BIBE. In BP prediction, the proposed HTPS reduces MSE
by 3.1% and 1.8% compared to MLP and BIBE.

In summary, state-of-the-art BIBE systems perform well
on almost all tasks and datasets, but sometimes perform

TABLE IV: MSE of systems on the Metavision dataset

Task MLP BIBE HTPS

SpO2 | 25297 | 6257.39 29.72
RR 82.02 36.40 35.28
BB 3055.18 | 3011.89 | 2959.16
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Fig. 3: Ablation studies on the Metavision dataset

poorly with extremely large testing MSEs. On the other hand,
HTPS achieves outstanding and stable performance under all
prediction tasks and datasets, and can reduce the testing MSE
at most by 78.6% and 30.2% compared to MLP and BIBE, re-
spectively. This phenomenon demonstrates that heterogeneous
data has a negative impact on convergence, aligned with ob-
servation of [16], while the proposed HTPS prevents the issue
and achieves stable convergence and excellent performance in
heterogeneous data.

C. Ablation Studies

In this section, we execute ablation studies to evaluate
the effect of each module in the HTPS. We compare four
versions of HTPS, including MLP, AE, AEDS, and AEDST.
MLP is a baseline model that shares similar fully-connected
layers with the prediction network of the HTPS. DEN is an
MLP system with the proposed dense embedding network,
while DSEN is a DEN system with the sparse embedding
network. DSENT is the full version of HTPS, including dense
embeddings, sparse embeddings, and prediction networks with
heterogeneous transferring.

Experimental results demonstrate that as more networks and
mechanisms are applied, the MSEs of all prediction tasks
gradually decrease on the Metavision dataset, as shown in
Fig. 3. Experimental results show that the dense embedding
network contributes the most to the improvement. Transferring
knowledge from the Carevue to the Metavision dataset can
improve predictions.

V. CONCLUSION

Medical Internet of Things (MIoT) leads to revolutionary
improvements in medical services, involving the development
of smart hospitals, IoT sensing, and diagnosis assisting, also
known as smart healthcare. With the big healthcare data, data



mining and machine learning can assist wellness management
and intelligent diagnosis, and achieve the P4-medicine. How-
ever, healthcare data has high sparsity and heterogeneity. How
to make full use of heterogeneous healthcare data is still an
unsolved problem. In this paper, we propose a Heterogeneous
Transferring Prediction System (HTPS). Feature engineering
in HTPS transforms the dataset into sparse and dense feature
matrices, which are inputs of the designed sparse and dense
embedding networks. Autoencoders in the dense embedding
networks not only embed the features but also transfer knowl-
edge from heterogeneous models and datasets. Experimen-
tal results show that the proposed HTPS outperforms the
benchmark systems on various prediction tasks and datasets.
Ablation studies are executed to present the effectiveness
of each designed mechanism in HTPS. Experimental results
demonstrate the negative impact of heterogeneous data on
benchmark systems and the high transferability of the pro-
posed HTPS. In the future, we will employ federated learning
to improve efficiency and will apply the proposed system in
various research fields.
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