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Abstract—Large scale simulation performance is dependent on
a number of components, however the task of investigation and
optimization has long favored computational and communication
elements above I/O. Manually extracting the pattern of I/O
behavior from a parent application is a useful way of working
to address performance issues on a per-application basis, but
developing workflows with some degree of automation and
flexibility provides a more powerful approach to tackling current
and future I/O challenges. In this paper we describe a workload
replication workflow that extracts the I/O pattern of an applica-
tion and recreates its behavior with a flexible proxy application.
We demonstrate how simple lightweight characterization can be
translated to provide an effective representation of a physics
application, and show how a proxy replication can be used as a
tool for investigating I/O library paradigms.

I. INTRODUCTION

The challenge of understanding and capitalizing on data in-
put/output (I/O) performance is complex, yet increasing in
importance as HPC systems continue to grow in scale. A
persisting trend in this growth is computational power over-
shadowing I/O and data storage. Departure from traditional
programming models and architectures has the potential to
further this disparity should I/O techniques fail to adapt to
match the way in which future applications will operate.

Following an I/O operation becomes burdensome as calls
are translated down through high level libraries, middleware
and parallel file systems. As a result, it becomes less obvious
where to focus efforts for optimization and how to tune each
layer in the software stack to reduce any apparent performance
bottlenecks. Moreover, with many institutions deploying their
own libraries to support in-house data models and ensure
consistency, I/O practices can be dictated by design decisions
and not by current best practices.

In efforts to gain some insight into I/O performance,
applications can be instrumented to monitor the operations
that occur during a simulation with their corresponding pa-
rameters. Doing so on a per-application basis however is a
time consuming task, hence lightweight profiling and tracing
libraries have been invaluable for capturing the data required to
demonstrate what is happening during execution. Performing
multiple repetative runs of full scale applications to experiment
with potential performance improvements is largely inefficient
and cumbersome and highlights the requirement of a more
streamlined approach for replicating application workloads.

Proxy applications are invaluable tools for uncovering op-
timizations in production applications, notably showcased by
the highly successful Mantevo project [1]. The clear benefit
being a smaller representative code base with which to apply
changes and assess new software libraries. Performance im-
provements uncovered while working with these proxies can
then be integrated back into the original parent application.

While benchmarks exist representing I/O workloads of a
small number of applications, they can become outdated with
regards to their parent application, or are not updated to
keep pace with changes to high level libraries. For example,
prominent I/O benchmarks such as MADbench2 and Chombo
I/O were last updated in 2006 and 2007 respectively. It is
this situation that motivates the use of proxy applications to
represent the behavior and performance of a wide range of
production applications.

In this paper, we demonstrate a process for replicating the
I/O workload of an application through the use of the Multi-
purpose, Application Centric, Scalable I/O proxy application
(MACSio). We have developed tools to translate Darshan
characterization logs to a set of MACSio input parameters,
which represent a target application. To enable replication of
applications using the TyphonIO high level library, we have
developed a plugin that allows MACSio to use the library
to perform file I/O. Finally, we present a case study of our
replication workflow mimicking the behavior of a physics
application, which is used to investigate a parallel performance
feature of the underlying high level I/O library.

The remainder of this paper is organized as follows: Section
II describes related work; Section III provides background
information of the MACSio proxy application and the Ty-
phonIO library; Section IV outlines our replication workflow,
from execution of a target application to replication with the
MACSio proxy; Section V provides a case study of our work-
flow replicating the Bookleaf application and a performance
observation made from this replication; finally, the conclusion
of the paper is given in Section VI along with an outline of
plans for future work.

II. RELATED WORK

With I/O representing increasing proportions of application
runtime, investigation into its intricacies has been carried out
at a system level on representatively large scale machines. It



has been established that mixed Workloads often struggle to
reach peak performance and vary drastically with the use of
different I/O libraries and specific tuning parameters [2].

Snyder et al. propose interesting workload generation tech-
niques and identify three classes of I/O workload repre-
sentations: traces, synthetic and characterization [3]. Trace
workloads refer to those generated using snapshots of in-
dividual I/O operations along with associated timing data.
Tools such as Recorder [4], RIOT [5] and ScalaIOTrace [6]
capture the required granularity of information at multiple
levels in the software stack. With such high fidelity data
collection, it is possible to translate application traces into
a representative proxy using auto-generation tools, such as
the Replayer tool [7]; however these require refinement and
there are questions as to how much of an effect intensive data
collection has on the application behavior we are monitoring.

Synthetic workloads are manually defined using a domain
specific language to exercise a desired pattern on a storage sys-
tem. An example being the CODES I/O language [8], which
has been used to demonstrate performance improvements of
burst buffer systems for some user interpreted workloads [9].

Characterizing I/O activity uses a technique similar to that
of tracing, however compact high level statistics are produced
rather than comprehensive trace logs. Darshan [10] has been
used to produce characterization data of this form, and is
effective due to its lightweight instrumentation and suitability
for continuous machine wide deployment. Vitally, the data
produced is still rich enough to study I/O behavior at the
demands of petascale machines [11].

A common technique among I/O benchmarks, such as
FLASH-IO, MADBench2 [12], Chombo I/O and S3D-IO, is
to manually extract important kernels from an application.
FLASH-IO focuses on write performance of the Flash su-
pernova code, while MADBench2 attempts to gain a more
complete picture through the inclusion of both read and write
operations for the same simulation. This approach attempts
to bridge the gap between a stand-alone benchmark and the
applications it attempts to model. While highly effective at
providing insight for a single application, there is a lack of
flexibility for handling a wider range of I/O paradigms.

IOR [13] is a synthetic parametrized benchmark derived
from workload analysis of applications used at the US National
Energy Research Scientific Computing Center (NERSC). This
work attempts to cover two of the common shortfalls of I/O
benchmarks: a lack of representative access patterns and the
inconsistent use of parallel libraries. With diverse configu-
ration options, the authors claim to be able to reconstruct
the behavior of an application to within 10%. Whilst this
behavioral prediction is only achievable with a very specific
selection of parameters, with careful use, IOR can be an
effective benchmarking tool. We adopt a similar parametrized
approach, attempting to focus on the performance of high level
libraries.

A different approach taken to application benchmarking,
demonstrated by the Skel [14], [15] and APPrime [16] tools,
automatically generates I/O kernels based on application

traces. Skel uses two mark-up based configuration files, a
parameter file and descriptor file, to dictate the structure and
behavior of its kernels. The simplicity of the Skel approach
comes from leveraging the existing parametrization of the
ADIOS high level library. The transport method used by
ADIOS can be varied in a configuration file, requiring no
source recompilation, and hence is valuable for comparing
the performance of different I/O paradigms. Currently the
focus of Skel is the deployment of ADIOS for experimentation
purposes and extension to use alternative high level libraries
is not possible. Similarly, APPrime auto-generates benchmark
code to represent applications, but does so based on statistical
‘trace’ data taken from execution of the original target appli-
cation. Initial evaluation of this technique suggests recreation
of applications with a degree of accuracy; however, the ability
to configure these applications forin depth analysis has yet to
be demonstrated.

III. BACKGROUND

The work makes use of MACSio and TyphonIO. MACSio
was developed by Lawrence Livermore National Laboratory.
TyphonIO is an I/O library developed by AWE.

A. MACSio Proxy Application

MACSio [17] was developed to fill a long existing void in
co-design proxy applications that allow for I/O performance
testing as well as evaluation of tradeoffs in data model
interfaces and parallel I/O paradigms for multi-physics, HPC
applications. Two key design features of MACSio set it apart
from existing I/O proxy applications and benchmarking tools.
The first is the level of abstraction at which MACSio is
designed to operate and the second is the degree of flexibility
MACSio is designed to provide in driving an HPC I/O work-
load through parameterized, user-defined data objects and a va-
riety of parallel I/O paradigms and I/O interfaces. Combined,
these features allow MACSio to closely mimic I/O workloads
for a wide variety of real HPC applications, in particular,
multi-physics applications where data object distribution and
composition vary dramatically both within and across parallel
tasks. These data objects are then marshaled between primary
and secondary storage according to a variety of application
use cases (e.g. restart dump or trickle dump). Using one
or more I/O interfaces (plugins) and parallel I/O paradigms,
allows for direct comparisons of software interfaces, parallel
I/O paradigms, and file system technologies with the same set
of customizable data objects.

B. TyphonIO Parallel I/O Library

TyphonIO is a library of routines that perform I/O for scientific
data in applications. The library provides C/C++ and Fortran90
APIs to write and read TyphonIO-format files for restart or
visualization purposes and are completely portable across HPC
platforms. The library, which is based on HDF5 [18] provides
the portable data infrastructure. The way TyphonIO has been
designed means that it would be possible to replace HDF5



with an alternative library implementation without having to
make any code changes to applications using TyphonIO.

The TyphonIO file format is a hierarchical structure of dif-
ferent objects, with each object corresponding to a simulation
or model feature, like those found in scientific or engineering
applications. Each object is designed to hold the data and
associated metadata for each feature and some of these objects
are chunked. Due to the way TyphonIO is designed, it is
straightforward to add more objects in future and expand the
format to cover more models.

IV. WORKFLOW COMPONENTS

In general there are four steps to the replication process: data
collection on representative runs of an application to serve as
an input to the generation tools; processing and translation of
I/O characterization logs to a set of parameters; development
of a plugin for MACSio to replicate the I/O pattern of the
target application with a parallel I/O library; adaptation of the
MACSio replication to investigate I/O behavior by exploration
of library tuning and variation of I/O paradigms.

A. Profiling

As discussed in Section 2, there are three methods of obtaining
representations of application I/O activity. For the purpose of
this work, we choose to adopt the workload characterization
approach using Darshan. We believe the lightweight data
collection performed by Darshan is best suited for recording
I/O activity without introducing the overheads seen with the
more comprehensive tracing techniques. A simple evaluation
of the total runtime for an example application with Darshan
enabled shows that there is no observable overhead introduced.
At single node scale, the average instrumented runtime is
307.43 seconds compared to 309.25 seconds uninstrumented,
demonstrating profiling overhead is effectively indistinguish-
able from the impact of machine load. To verify this is the
case at scale, we increase the node count to 64, observing an
average runtime of 352.29 seconds (instrumented) compared
to 352.33 seconds (uninstrumented).

Another benefit of this technique is the characterization
of commercially sensitive applications, allowing transfer to a
non-sensitive environment through recording individual func-
tion call parameters. This portability of application logs under
sensitive conditions is seen as a necessary requirement for our
future working goals.

A point of note is the level of the I/O software stack that
Darshan monitors. At this time, it is possible to intercept
POSIX and MPI-IO library calls, providing execution statistics
from the middleware and serial I/O layers of the stack. As
of version 3.0.0 the design of Darshan has become modular
allowing for characterization data to be collected for additional
interfaces, making it possible to produce information at the
HDF5 level. Currently, this capability is not yet complete, but
its future inclusion is predicted to extend the scope of our
workflow’s abilities without warranty or representation.

B. Parameter Generation

Extraction of execution data from the compressed Darshan
logs is handled firstly by the darshan-parser utility, and then
through a series of Python utility scripts. As an intermediate
step, the text generated by the parser is translated to a YAML
file, from which an I/O access diagram can be generated to
demonstrate the pattern of activity for the target application.

Following the creation of the log characterization YAML
file, we can map the recorded application data to a set of usable
input parameters for MACSio. To complete this mapping, a
supervised generation tool is used to incorporate the collected
I/O behavior statistics with any available user input. This
provides a more accurate set of parameters than would be
possible through a purely automatic translation process.

C. MACSio Library Plugin

An important requirement for any application we wish to
replicate is the ability to demonstrate comparable behavior
using the same elements of the I/O software stack. Develop-
ing plugins for the same high level libraries used in target
applications makes the process of verifying the replication
process possible, in addition to forming the basis of tuning
and optimization that can be applied to the original appli-
cation implementation. Furthermore, the development of a
range of plugins capable of replicating similar underlying
I/O patterns is what gives MACSio flexibility to investigate
different paradigms and implementation features.

To demonstrate a unique process of workload replication,
we have implemented a plugin for MACSio that operates with
the TyphonIO library interface, introduced in Section III-B.
This implementation ensures that the parallel performance
elements of TyphonIO are included in the MACSio replication,
specifically the chunking and parallel shared file capability
of the library. Additionally, the plugin has been constructed
to demonstrate a multiple independent file approach, an al-
ternative approach to that generally observed in TyphonIO
applications.

V. WORKLOAD REPLICATION

To illustrate our workflow acting as a proxy for the I/O pattern
of real applications, we have completed the process of char-
acterization and replication for the Bookleaf mini application,
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which supports the TyphonIO library [19]. Bookleaf is a 2D
unstructured Lagrangian hydrodynamics application, making
use of a fixed check-pointing scheme that produces initial and
final output files covering the complete dataset.

Bookleaf solves four physics problems: Sod, Sedov, Saltz-
mann and Noh. The different inputs vary the computational
aspect, but execution will remain the same with regards to I/O
characteristics. For the purposes of our work, we use the Noh
problem [20] input deck, in part due to its larger problem size
providing a greater volume of data to handle.

For this study, the ARCHER supercomputing platform was
used. ARCHER is a 4920 node Cray XC30 comprising two
12-core Ivy Bridge processors per node, giving a total of
118,080 processing cores. The system is backed by three
Lustre filesystems, access to which is load balanced meaning
users will be given access to one of the three filesystems based
on project allocation. The file system used for our experimen-
tation contains 12 OSSs, each with 4 OSTs. Each OST is
spread across 10 4TB Seagate disks in RAID6 configuration,
ensuring failure tolerance. One MDS is used per filesystem
with a single MDT comprised of 14 600GB Seagate disks
in RAID1+0. Finally, the filesystem is accessed via 10 LNet
Router nodes in overlapping primary and secondary paths.

The general I/O pattern of Bookleaf outputs two distinct
checkpoint files, at the beginning and end of the computation
sequence, representing 125 MB datasets for the Noh large
problem size. Each dataset is structured as an object hierarchy
with the unstructured mesh object and nine associated mesh
variables contained within a state object container. Notably,

Nodes Part Size (Bytes) Wait Time (s)

1 404 320 266
2 202 205 120
4 101 148 53
8 50 619 22

16 25 355 11
32 12 723 7
64 6407 5

TABLE I
MACSIO INPUT PARAMETERS USED TO REPLICATE BOOKLEAF RUNS ON

ARCHER

TyphonIO operations in Bookleaf are issued from all processes
and write to a single shared file independently, meaning there
is no collective buffering or data aggregation enabled.

Due to the fixed problem size, scaling the application
changes the distribution of the dataset across the available
processors and hence reduces the size of the data chunk on
each rank. As a result, the parameters controlling the dataset
chunk size per rank and the length of the time between
checkpointing vary in relation to the scale of execution.

From the characterization of Bookleaf, the parameters
shown in Table I were extracted using our processing and
generation tool. By modeling the relationship between the
size of a data file and the composition of the dataset when
using MACSio, it is possible to construct Equation 1. In
this equation, F is the filesize, Pr is processor count, PS
is the part size, V ars is the number of dataset variables
and α, β, γ, δ, ψ and η are constants. The determination of
these constants is calculated automatically from MACSio file
generation trials. Taking this expression and substituting the
known checkpoint file size for Bookleaf and the processor
count as the application scales, we have generated the data
chunk sizes given in the second column of the parameter table.

F = Pr(PS(αV ars+ β) + γV ars+ δ) + ψV ars+ η (1)

The third column in Table I is the wait time, which rep-
resents the measured time buffer between I/O actions during
execution. Determining this value is straightforward using the
operation timestamps recorded by Darshan for the beginning
and end of I/O operations on each file. The final configura-
tion option required to mimic Bookleaf accurately requires
disabling the collective buffering behavior handled by HDF5.
The absence of recorded collective reads and writes in the
Bookleaf log files is used to indicate that a purely independent
I/O strategy has been adopted and thus, this is something that
our replication should adopt to verify correctness.

The execution diagram in Figure 1 demonstrates the periods
when file writing actions are recorded for both Bookleaf
and MACSio. Comparing the access patterns for the two
applications shows that checkpointing operations are offset and
identifies a latency period at the beginning of the Bookleaf ex-
ecution for simulation setup. The setup overhead for MACSio
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is smaller and the addition time is not currently factored in
to MACSio’s time buffers. This initial latency period is not
something that will change the overall I/O behavior and we
did not feel it would be necessary to make changes to MACSio
to reflect it. Accounting for the additional 50 second latency
period at the beginning of the MACSio execution pattern, the
remaining access patterns align between the two applications,
indicating that they have similar execution patterns.

Analyzing write times for each file, there is a clear linear
increase as the number of nodes scales. Importantly, the write
times for Bookleaf and MACSio are similar for both of the
output files produced. Figure 2 shows the similarity between
the write times for the two applications, suggesting that
each file write action performed has a similar I/O footprint.
Furthermore, the cumulative write time across all ranks shown
in Figure 2, and similarities between slowest MPI-IO write
operation in Figure 3, adds confidence to the two applications
demonstrating similar behavior during their I/O phases.

We can increase our confidence in the behavioural simi-
larity by considering further parameters taken from Darshan
log files. Firstly, comparing the number of independent I/O
operations intercepted at the MPI-IO layer, the counters vary
consistently by a value of 8 for all node counts representing
a difference of 1.5% for the smallest run of a single node.
Similarly, the number of sequencial writes differs by a value
of 7 for the smallest run and then maintains a consistent
difference of a single operation for all other node counts.

Knowing that the sizes of files being generated are consis-
tent in our MACSio replication and coupling the uniformness
in execution times we can verify that the applications exhibit
the same pattern of behavior. We can now demonstrate the
flexibility of the proxy application replication by adjusting the
way in which the TyphonIO and HDF5 libraries are performing
their I/O operations. From characterization of Bookleaf, we
identified that the collective I/O mode is not used, and hence
there is no aggregation of data before performing writes.
Figure 3 shows how the write times change when our MACSio
plugin is reconfigured to use collective I/O operations for
the Bookleaf workload instead of the default independent
approach. The performance of the workload can be seen to
be consistently better when using the collective strategy over

independent, which is due to a reduction in the amount of
data requests made through aggregation on a subset of the
processors performing the simulation. Performing this change
requires a simple configuration change to the MACSio input
parameters, something that would require code changes and
recompilation in the original application. With a simple library
tweak, we have identified a possible performance improvement
when running Bookleaf with the file system configuration
deployed on ARCHER. It may however be the case that a
different file system configuration does not offer the same
speedup, making our proxy useful for justifying a collective
I/O strategy without needing to port the original application.

VI. CONCLUSION AND FUTURE WORK

We have presented a workflow demonstration to replicate the
I/O activity of HPC applications using characterization and a
configurable proxy application. Using an open source mini-
application, we have conducted preliminary tests to show that
our approach can identify and mimic the pattern of execution
with a reasonable degree of accuracy.

We have suggested a number of advantages to using auto-
characterization as a way of representing I/O workflows. First,
capturing execution statistics with a lightweight method is a
worthwhile trade-off between manual descriptors and in depth
tracing. The application logs recorded can be mined to extract
pertinent data elements and form a representation of the I/O
behavior, which is bolstered by user knowledge of the target
application. Finally, a recreation can be achieved using the
generated parameter set to exercise one of a number of library
plugins, such as the TyphonIO plugin we have produced to
enable optimization work to be carried out using MACSio.

As part of our future work, we plan to adapt the replication
capability used here to handle more complex output file
combinations and validate this across a breadth of applications.
For example, it is often the case that checkpoint dump files are
accompanied by visualization data files, usually containing a
subset of the simulation data and following a slightly different
I/O strategy. Factoring in differently structured data files into
our I/O workload would add an extra degree of complexity
to the log extraction and representation process, but would
increase the variety of potential workload replications.

Benchmarking is often used to give a projection of the
performance achievable from new platforms and tools, some-
thing that can be invaluable when procuring new systems or
experimenting with different software components. With this
in mind, we hope to apply our workload replication to a real
world procurement exercise to understand how new systems
will perform under actual application workloads.
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