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Understanding Data Motion in the Modern HPC
Data Center
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Abstract—The utilization and performance of storage, com-
pute, and network resources within HPC data centers have
been studied extensively, but much less work has gone toward
characterizing how these resources are used in conjunction
to solve larger scientific challenges. To address this gap, we
present our work in characterizing workloads and workflows
at a data-center-wide level by examining all data transfers that
occurred between storage, compute, and the external network
at the National Energy Research Scientific Computing Center
over a three-month period in 2019. Using a simple abstract
representation of data transfers, we analyze over 100 million
transfer logs from Darshan, HPSS user interfaces, and Globus
to quantify the load on data paths between compute, storage, and
the wide-area network based on transfer direction, user, transfer
tool, source, destination, and time. We show that parallel I/O from
user jobs, while undeniably important, is only one of several
major I/O workloads that occurs throughout the execution of
scientific workflows. We also show that this approach can be used
to connect anomalous data traffic to specific users and file access
patterns, and we construct time-resolved user transfer traces to
demonstrate that one can systematically identify coupled data
motion for individual workflows.

Index Terms—data movement, storage, workflows

I. INTRODUCTION

High-performance computing (HPC) has historically been
dominated by modeling and simulation workflows whose I/O
needs are largely driven by checkpoint/restart. However, the
role of HPC is rapidly expanding to include large-scale data
analysis as a result of both increased data generation rates
from modern scientific instruments and the emergence of
artificial intelligence as a technique to rapidly extract insight
from large volumes of data [1]–[5]. Hence, characterizing the
requirements and performance of I/O in modern HPC centers
now requires a more holistic examination of data movement.

A large body of knowledge exists on data motion between
compute and storage from the perspectives of both applications
and systems [6]–[11] because this form of I/O blocks forward
progress on running jobs. However, data-driven workflows rely
on data movement not only between compute and storage
systems, but also between storage systems and between storage
and external networks as depicted in Figure 1. Today’s HPC
facilities may have three or more tiers of storage for hot,
warm, and cold data, and data moves between these tiers
as an integral part of scientific workflows [12]–[17]. These
workflows may also utilize a diversity of resources across
multiple facilities as different stages of data processing require
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Fig. 1. Data sources and sinks in scientific computing (nodes) and the transfer
vectors along which data moves between them (edges).

computational resources that are better suited for accelerators
or processors not deployed universally.

The end result of this architectural diversity is a wide range
of data paths that are of growing importance to the overall
time to solution for modern scientific workflows. Historically,
most research has focused on the data path between the
primary compute and hot storage tier, and systematic studies
of secondary storage systems have examined such systems in
isolation. For example, the ways in which users interact with
archival tape systems was found to vary widely over time
and defy a singular definition of steady-state workload that
holds true at multiple time scales [18]. More recent analysis
of NCAR’s tape archive established a methodology by which
the archive’s user recall rate and internal data movement
workloads informed an optimal ratio of disks to tapes [19].
In both cases, however, the motivations behind the observed
user behavior were not explored in the greater context of
scientific workflow, and transfers originating from within their
respective data centers were not systematically distinguished
from transfers originating from the outside. As a result, such
studies of secondary storage tiers have not clearly defined how
their findings can be applied to optimize entire workflows that
operate throughout the data center.

The performance of transfers between storage and the wide-
area network (WAN) have also been studied with increas-
ing enthusiasm as networking technologies and methodolo-
gies [20] have advanced to the point where geographically dis-
tributed workflows and large, public datasets are now enabling
new scientific discovery [2], [3], [21]. Globus, GridFTP-based
transfer tools, and bbcp are ubiquitous high-performance data



transfer tools used to this end [1]–[3], and characterizing the
ways in which Globus and GridFTP are used in multisite
workflows and distributed HPC environments is the subject
of growing interest [12], [22], [23]. As with the efforts to
characterize user interactions with archival storage systems,
however, studies of wide-area data transfers have explored
only the storage-WAN and WAN-storage components of data
transfer.

In this work, we take a holistic approach to understanding
data motion and illustrate how data moves through the entire
data center—storage, compute, and WAN. We present several
methods that allow us to infer how data moves along the
data transfer vectors illustrated in Figure 1 using readily
available tools. We then identify gaps in existing monitoring
data that, if addressed, will enable a complete understanding
of how data moves throughout the execution of scientific
workflows. Using data transfer records from the National
Energy Research Scientific Computing Center (NERSC) and
the Energy Sciences Network (ESnet) between May 1, 2019
and August 1, 2019, we demonstrate new insights that arise
from resolving data transfers on the basis of data ownership,
data source and destination, and time.

II. METHODS

A. Model for Data Motion

Rather than approaching data movement by examining the
storage systems at one or both ends of a transfer, we describe
all movement of data in terms of data transfers. Each data
transfer can be represented as a transfer record, a simple
abstraction that possesses several essential attributes:

1) Source storage target, source host(s), and source site
2) Destination storage target, destination host(s), and desti-

nation site
3) Start and end time
4) Volume of data moved
5) Protocol or tool used to moderate the data transfer
6) Owner of the data being transferred
We define sources and destinations in terms of three com-

ponents: storage target (a persistent storage system), host
(a network endpoint that controls access to a target), and
site (a collection of hosts) because not all transfers occur
between two well-defined storage systems. For example, a
standard job checkpoint operation has one or more source
hosts (compute nodes), but the source target is DRAM and
not a storage system; in such cases, the source target would
be undefined despite the source host being defined. These three
components are collectively used to determine the transfer
vector to which each transfer record belongs. For example, we
assert that a transfer involving two different sites must be a
WAN transfer, and transfers that involve a tape controller host
must involve a tape storage target. Defining the heuristics that
map targets/hosts/sites to transfer vectors requires knowledge
of how different storage systems and hosts are connected to
form data paths within a data center, and this map will be
different for each data center.

B. System Descriptions

We examine data transfers between a variety of systems
within the NERSC data center as well as transfers to the
outside world, all of which map to nodes and edges in Figure 1.

Cori is the principal computing platform at NERSC and
is comprised of over 12,000 compute nodes tightly coupled
on a high-speed network (HSN). Cori has twelve login nodes
into which users can log in, submit jobs, and initiate data
transfers to and from other storage systems. Data transfers
originated within the HSN can reach the center-wide network
through ten software-defined networking (SDN) nodes [24].
Cori is the only compute system considered in this study, and
all compute-storage and storage-compute transfers discussed
hereafter come from or go into this system.

Cori is directly attached to three large-scale storage systems:
a 27 PiB Lustre file system (“cscratch”) that is mounted only
on Cori nodes and data transfer nodes, a 15 PiB Spectrum
Scale file system (“project”) that is mounted throughout the
center, and a 1.6 PiB DataWarp burst buffer that is directly
integrated into Cori’s HSN. An additional home file system is
also mounted center-wide, but users are limited to a 40 GiB
quota on this file system, and it is neither a high-capacity nor
high-performance storage resource.

NERSC also provides a tape-based HPSS [25] archive
(named “archive”) that was provisioned with 390 PB of slot
capacity at the time of this study. Although the vast majority
of the archive capacity is tape based, there is a 4 PiB hard
disk drive cache to which writes are buffered before being
written to tape. User access to this archive system occurs
through an HPSS gateway node that provides four interfaces
(hsi, htar, ftp, parallel ftp), and users can transfer data to/from
the archive from both internal NERSC systems or from the
wide-area network. The archive also allows users to store and
retrieve data directly from the WAN using Globus, but this
specific set of transfers was not included in this study, and the
resulting error is quantified in Section III-B.

For parallel data transfers managed by Globus and user-
provided parallel copy tools, NERSC maintains a pool of
ten data transfer nodes (DTNs). A subset of these nodes
are accessible for user login, and all DTNs are capable of
transferring files between NERSC’s file systems (storage-
storage) or to/from the outside world (storage-WAN and WAN-
storage). NERSC also provides service nodes as part of Spin,
its container-as-a-service platform. This platform allows users
and staff to deploy services in support of workloads both
internal (such as providing databases for workflows) and
external (such as science gateways) to the center. Because
these containers are user managed, however, their role in data
movement is not well defined; hence, no transfer logs from
these systems were included in this study.

C. Data Sources

Transfer records were created from a variety of systems
within the NERSC data center:



• Globus transfer log files from the ten data transfer nodes
were used to generate storage-WAN, WAN-storage, and
storage-storage transfer records.

• HPSS hsi, htar, ftp, and parallel ftp logs from the HPSS
gateway node were used to generate storage-WAN, WAN-
storage, and storage-storage transfer records.

• Darshan logs from Cori were used to derive compute-
storage and storage-compute transfer records.

We defined the mapping between log file entries and transfer
records such that each file transfer that appeared in Globus and
HPSS logs generated to a single transfer record. However,
each Darshan log corresponds to a single invocation of an
MPI application that may access many files over time, so
for each such log, we generated a single transfer for each
unique file path and transfer direction (read or write). Parallel
I/O operations (where multiple nodes were all performing I/O
to the same file) were aggregated into a single transfer. The
transfer volume was the sum of all bytes read or written to
that file during that job by the application, and the transfer’s
start and end times were defined as the times at which the first
and last read or write operation were issued by the application.
Therefore, some I/O may have been overstated if application
I/O was able to make use of node-local page cache, and
repeatedly opening and closing a file of the same name still
generated only a single transfer record per direction.

To quantify the amount of data that was not captured
by the transfers studied here, we also collected ground-truth
measurements of data in and out of each storage system
directly. The absolute number of bytes read from and written to
the storage systems was obtained using the Lustre Monitoring
Tool for Lustre, mmperfmon for Spectrum Scale, and HPSS
daily reporting for HPSS. The ground-truth data volumes for
the burst buffer were measured using NERSC’s daily smartctl
monitoring data.

The burst buffer’s ground-truth data does contain addi-
tional reads and writes attributed to file system-level metadata
updates because smartctl returns host-initiated, block-level
counters rather than user-initiated, file-level measurements.
Similarly, the ground-truth values for external transfers were
collected from ESnet’s SNMP REST API [26] and include pro-
tocol framing overheads that are transparent to users. However,
we do not expect these overheads to amount to a significant
volume of data relative to user-initiated data transfers in
either the burst buffer or WAN ground-truth values. The size
distribution of files at rest was obtained for the cscratch and
project file systems by using the Robinhood database and
Spectrum Scale’s Information Lifecycle Management (ILM)
policy manager, respectively.

All transfers at NERSC between May 1, 2019 and August
1, 2019 were included in this study, resulting in a total
of 194,019,683 transfer records reflecting 78.6 PiB of data
moved. This choice of time reflects our desire to analyze a
representative amount of the NERSC workload while balanc-
ing the computational cost of rapidly prototyping different
analysis techniques. We used the pytokio library [11] and its
connector interfaces for Darshan, LMT, mmperfmon, HPSS
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Fig. 2. Directed graph generated from transfers between May 1, 2019 and
August 1, 2019. Edges whose daily I/O rates are less than 1.0 TiB/day are
dashed; edges whose sources or destinations could not be precisely determined
are not drawn. “Science Gateways” are service nodes that may host internally
or externally facing services for users. “Cori” includes compute nodes, login
nodes, and SDN nodes.

logs, smartctl, and the ESnet SNMP REST API to convert the
diversity of data sources into uniform transfer records or scalar
ground-truth values. This data processing and analysis was
implemented using the Dask distributed analysis library [27].

III. RESULTS AND DISCUSSION

A. Transfer Directionality

Because we define transfers in terms of both data volume
and directionality, they naturally form a directed graph when
edges sharing common sources and destinations are aggre-
gated. Figure 2 shows the result of this process using all
transfers observed during this study and represents a concrete
example of the notional graph shown in Figure 1. All edges be-
tween Cori (blue hexagon) and storage systems (red cylinders)
represent storage-compute and compute-storage transfers, and
all edges connected to the outside world represent storage-
WAN and WAN-storage transfers. The remaining edges are
paths followed by storage-storage transfers, which, unlike the
other transfer vectors, may take multiple hops. For example,
a heavily used data path exists between Cori and the HPSS
gateway, but the true storage-storage transfers underpinning
this path may involve data transferring from cscratch to Cori,
from Cori to the HPSS gateway, and then from the HPSS
gateway to the archive system itself. Such a transfer would
contribute to all three graph edges.

The visualization of aggregate transfer paths in Figure 2
reveals a number of interesting patterns:

• The home file systems, which are not designed for
high performance, are used sparingly on a volume basis.
This usage indicates that efforts to limit its load (user
education and policies) are effective.



• Similarly, the project file systems (intended to store
important data persistently) are subject to a much higher
read workload, suggesting that users are indeed using
these file systems to store important datasets that are
analyzed by multiple jobs.

• The burst buffer appears to be more read-heavy than
write-heavy as well, counter to the intuition that it is a
write-heavy storage system.

• The tape archive exchanges data predominantly with Cori
itself rather than the DTNs, suggesting that the benefits
of using a dedicated data transfer node to archive data
are not worth the small added effort for users.

This graph-based representation of data motion illustrates
both the critical data paths throughout the data center and
lightly used data paths that may represent poorly configured
services, misinformed users, or areas in need of increased
architectural attention.

B. Identifying Gaps in Transfer Data

This transfer-based approach to understanding I/O provides
new insights by enabling sources and destinations of data flows
to be chained together, but the approach has several limita-
tions as it was applied to create Figure 2. For example, the
data sources used to construct transfer records may attribute
different semantic meaning to data volume metrics and make
it impossible to distinguish a user-level representation of a
data transfer (e.g., writing two 4 KiB pages) from a network-
level data transfer (e.g., issuing a single 8 KiB RPC) due to
intermediate caching. Furthermore, not all mechanisms used
to transfer data are logged or loggable; for example, a data
transfer that used the cp or rsync command would not have
been captured in any of the data used in this study and would
not be represented in Figure 2.

Acknowledging this inability to completely account for ev-
ery byte transferred leads us to quantify the amount of missing
data so that we can better gauge the accuracy of conclusions
drawn from this data. Comparing the data transferred to and
from each node in Figure 2 with ground-truth data derived
from the system-centric (rather than transfer-centric) moni-
toring data available on each system yields Figure 3, which
shows the amount of bytes into and out of each storage system
relative to these ground-truth average daily I/O volumes.

Most transfers to and from the three file systems (cscratch,
project, and the burst buffer) follow the storage-compute
and compute-storage motif, and we rely on Darshan logs to
quantify these transfers. As a result, the degree to which jobs at
NERSC generate Darshan logs limits how accurately we can
represent storage system traffic along these vectors. Studies
have shown that only 40% of core-hours are captured by
Darshan logs at NERSC [28] as a result of users opting out
of Darshan, not using MPI, or not calling MPI_Finalize,
and we expect these factors to underrepresent the true volume
transferred along these paths. Development and administrative
efforts are underway to improve future Darshan coverage [29]
to address this issue.
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Fig. 3. Completeness of data volumes reported in Figure 2 calculated by
comparing the sum of all edges into and out of each node to the ground-truth
bytes into and out of each storage system.

Conversely, workloads that make heavy use of client-local
page cache may result in spuriously high transfer volumes
since Darshan is unable to distinguish I/O that results in a
local cache access from I/O that requires a network RPC to the
storage system. Thus, while Darshan logs accurately reflect the
directionality of transfers, supplementing Darshan logs with an
OS-aware tool such as RUR [30], procmon [31], or LDMS [32]
could allow a more accurate representation of bytes transferred
over the network by quantifying the I/Os that result in both
hits and misses of the page cache. For this study, however, it
is difficult to assert how much overrepresentation of transfer
volume from caching effects offsets underrepresentation of
transfer volume from incomplete Darshan coverage.

The burst buffer storage system does not implement client
page cache by default, so its transfer volume should not
be susceptible to cache-related overrepresentation. However,
we find its fraction of missing transfer volume to be even
greater than that of cscratch; the reason is that the DataWarp
software does not expose detailed logging of its asynchronous
data staging activity in any straightforward way. Because
DataWarp’s asynchronous staging API is the principal mecha-
nism by which users efficiently transfer data between their
burst buffer allocation and a persistent storage system, we
expect that this lack of staging transfers contributes to the
large fraction of missing transfer volume for the burst buffer.
In addition, this contributes to some of the lost coverage in
cscratch, since cscratch is the only file system that the burst
buffer’s asynchronous staging transfers can target.

Of similarly low coverage are data transfers to the outside
world. Because we capture only external transfers that use
Globus or an HPSS interface, the fact that we can account for
only between 5% and 25% of the external transfer volume
provides strong evidence that a significant amount of data
transferred to and from NERSC are either not file based (e.g.,
use the external-compute/compute-external vector) or do not
involve using Globus or HPSS. This fraction is surprisingly
low compared with the 40%–65% Globus coverage estimated
across all U.S. Department of Energy laboratories [22], but
it may reflect NERSC’s workload diversity which includes



several key experimental workflows that use third-party (non-
Globus) tools to transfer data to and from NERSC [1], [12],
[33]. Quantifying the degree to which these tools are being
used to transfer data is possible by sampling network activity,
but such techniques are insufficient to precisely construct
discrete transfer records. It would be advantageous to adapt
existing tools such as Darshan to provide always-on profiling
of the wide-area transfer tools that users are employing in
addition to Globus.

Transfers involving the archive are the most completely
captured transfers largely because HPSS does not expose data
to users through a standard file system interface. Thus, users
must interact directly with data transfer daemons, all of which
log every file transfer, and the totality of missing transfer
volume shown in Figure 3 can be attributed to HPSS transfers
that used a specific protocol (Globus) along a specific transfer
vector (storage-external) that was not included in this study.
Furthermore, the semantics of the HPSS interfaces all map
well to a transfer-based model of I/O since they generally do
not allow random or partial access to the data objects they
store. Object stores’ PUT/GET object semantics are similar,
and hence object stores would fit well into this transfer-based
analysis of data motion. That said, object semantics pose a
usability barrier since they limit the ways in which users
can access and manipulate data, and any hierarchical storage
management interfaces that provide file-based semantics for
object-backed data will likely reduce our ability to identify
every discrete object transfer event.

By comparing the data volume into and out of each node,
we can also identify nodes in the data path where transfer
records are missing. We define the incongruency of each node
through which data can transfer as follows:

∆ =
|Vin − Vout|

0.5 · (Vin + Vout)
(1)

where Vin and Vout are the bytes into and out of each node,
respectively. This is a figure of merit designed to enable
relative comparisons among nodes that handle different data
volumes in such a way that larger values indicate that more
data is entering the node than leaving it (i.e., the node is a
data sink) or, conversely, more data is leaving the node than
is entering it (the node is a data source). Incongruency is a
particularly meaningful quantity for nodes that are expected
to be conservative by virtue of the fact that they moderate
data transfers instead of sourcing or sinking data. For these
conservative nodes, the incongruency should be zero, and
deviations from this reflect errors due to uncaptured transfers
or data being generated or stored by the node.

Figure 4 shows these incongruencies for non-storage nodes;
unsurprisingly, the Cori node is nonconservative because,
despite not being a storage system, jobs generate and consume
data in inequal proportions. The slight incongruency of HPSS
is consistent with the fact that we know that we are missing
a subset of HPSS transfers as shown in Figure 3, and the
small incongruency for the data transfer nodes indicates high
self-consistency in the Globus logs produced by those nodes.
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Fig. 4. Incongruency of nodes for stateless components in the data path
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Science gateways’ high incongruency is unexpected, though;
although the absolute volume of data flowing to and from these
nodes is small, as shown in Figure 2, the high incongruency of
these nodes indicates that they are the source or sink of data
that is only partially captured by our transfer records. While
this is not entirely unexpected given the wide diversity of
roles these nodes play, it does indicate that NERSC’s science
gateways are not exclusively passive moderators of internal
data transfers. Thus, determining whether incongruency is the
result of missing records or unexpected data generation or
storage requires an understanding of node usage that is not
captured by transfer records alone, and further work is required
to account for all sources of incongruency.

C. Site-wide Transfer Behavior

Given the known limitations caused by incomplete coverage
of data transfers described in Section III-B, we can still
draw new insight from the data. For example, we now have
a quantitative basis to compare storage-storage and storage-
external transfers with compute-storage transfers. Figure 5
contrasts the absolute volumes of each storage vector and
is obtained by mapping every edge in Figure 2 to a storage
vector. It quantifies the qualitative observation from Figure 2
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that storage-compute transfers (i.e., compute jobs reading data
from a file system) constitute the majority of bytes transferred
within NERSC.

Less obvious from Figure 2 is the fact that storage-storage
transfers are of comparable volume to compute-storage trans-
fers. This shows that the need to move data between storage
tiers can be as data-intensive as compute jobs themselves
are and that storage-storage transfers consume a significant
amount of time and network resources in the context of the
entire data center. It further highlights the potential benefits of
eliminating storage tiers to minimize unnecessary data motion
and, combined with the high asymmetry of the compute-
storage and storage-compute vectors (6×), challenges con-
ventional wisdom as to the write-intensiveness of HPC I/O.
Write-intensive defensive checkpoint I/O is not necessarily the
primary driver of storage system traffic. Our study suggests
that no canonical I/O workload for HPC applications exists;
rather, HPC data center traffic depends on the precise workload
mix and storage tiers available.

This conventional view of I/O workloads in HPC has
resulted in compute-storage/storage-compute transfers being
the subject of considerable optimization. As such, we ex-
pect compute-storage transfers to generally demonstrate I/O
patterns that are well suited to parallel file systems. Given
the relative importance of the other transfer vectors shown in
Figure 5, however, storage-storage, storage-WAN, and WAN-
storage vectors may warrant an equally critical examination.

Because storage-storage and storage-WAN transfers tend to
be nonblocking (e.g., Globus transfers are “fire and forget,”
burst buffer staging happens asynchronously, and HPSS data
movement is managed through a batch queue at NERSC), we
hypothesize that users may have less incentive to follow best
practices for high-performance parallel I/O and instead initiate
small-file transfers that are known to cause suboptimal end-
to-end performance [5], [23].

We investigated this hypothesis by calculating the cumula-
tive distribution of data transfer sizes for each transfer type,
and the result is shown in Figure 6. Compute-storage transfers

generally target larger files, with 50% of all such transfers
being of 1.8 MiB or larger. Globus transfers show similar
behavior, with 50% of transfers being 720 KiB or larger,
suggesting that data typically transferred via Globus may be
subjected to minimal reduction, aggregation, or manipulation
between the time it is accessed by parallel applications and the
time it is transferred elsewhere. Notably, this median transfer
size is an order of magnitude larger than the transfer data
presented by Liu et al [22], suggesting either a significant
coarsening of wide-area transfer granularity in the past year
or a marked deviation between the NERSC workload and the
greater national workload.

By comparison, the majority of HPSS transfers target files
that are 46 MiB or larger. This may be a reflection of general
user sophistication or experience; HPSS presents an object-
like interface, and small-file access to HPSS can be orders of
magnitude slower than a disk-based file system. Alternatively,
these results may be limited by absolute performance, since
it is impossible to read a significant amount of small-file data
from HPSS in a fixed period of time because of the high
latency of tape retrieval. Of the 10.5 PiB of data transfers in-
volving HPSS, however, 60% were writes on average. Because
HPSS uses a high-bandwidth disk cache to buffer incoming
data, the relative absence of small transfers in Figure 6 is likely
the result of user intent, not absolute performance limitation.

When compared with the file size distribution on the file
systems at NERSC, Figure 6 shows a sharp contrast between
the files that users move and those that remain resident
on the storage systems: half of the total files on the file
system are smaller than 31 KiB. This may be the result of
NERSC’s capacity-focused data management policy that does
not incentivize users to clean up small files; because NERSC
storage systems are generally constrained by capacity rather
than inodes, purging, deleting, or migrating large files is the
most effective way to stay under allocated resource limits.
In addition, the nontrivial number of 0-byte and 1-byte files
suggests that many tiny files are kept resident not for the
data they store but perhaps as file-based metadata markers
or accidental files that have no value. The cost of transferring
these tiny files is likely to outweigh the cost of regenerating
them on other storage systems, so users are less likely to
consciously transfer them to other storage systems.

D. Understanding Overall User-level Activity

We have demonstrated the value of differentiating transfer
vectors to determine the relative importance of different data
paths and areas for potential optimization. In addition to
this center-wide characterization of data movement, however,
we can attribute individual transfers to the users who own
them, and we can develop an understanding of how individual
users affect the aggregate behavior presented in Section III-C.
To this end, Figure 7 shows the cumulative distribution of
per-user data volume along with the protocols used. Of the
991 unique users who were observed, we can see that the
majority of volume transferred can be attributed to just three
users (labeled Amy, Bob, and Carol) and the remaining 988
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users transfer diminishingly small amounts of data overall. All
three top users’ transfers use the storage-compute/compute-
storage vector, as evidenced by their exclusive appearance
in Darshan files. Furthermore, the contributions of all three
appear at relatively large transfer sizes, indicating that they
are all transferring multiple gigabytes per file.

Our finding that there is an unusually high storage-compute
(read) workload (Figure 5) and that most of the transferred
volume is owned by Amy, Bob, and Carol (Figure 7) can
be further enhanced by decomposing all data transfers by
a combination of user and storage system. Figure 8 shows
this breakdown and reveals that the overwhelming majority of
daily traffic along the storage-compute and compute-storage
vectors targets the cscratch file system, countering an intuitive
belief that these high read rates may reflect heavy use of
the burst buffer. Furthermore, the user-level breakdown of
transfers by transfer vector direction shows that the abnormally
high transfer volumes owned by Amy, Bob, and Carol are

restricted to read (storage-compute) transfers. By comparison,
the overall write (compute-storage) transfer volume is more
evenly distributed, with Amy, Bob, and Carol representing a
minority of transfer volume along that vector.

From this drill down, we have determined that the 6× asym-
metry between storage-compute and compute-storage transfers
qualitatively illustrated in Figure 2 and quantitatively shown
in Figure 5 is indeed anomalous to the degree that it is the
result of a small number of users’ workflows that are read-
intensive and target one specific storage system; the presence
or absence of those users on the system will dramatically affect
the observed read/write imbalance on any given day.

We can also leverage fine grained data analysis to gain
greater insight into the behavior of the largest data consumers.
By knowing that Amy, Bob, and Carol are exclusively using
compute-storage transfers and that those transfer records are
derived from Darshan logs, we can capitalize on the fact that
Darshan stores both the total number of bytes read and written
to every file and the maximum offset within each file to which
I/O was issued. Comparing the count of total bytes read with
the maximum offset read for each file read by each user, we
find that Amy, Bob, and Carol were rereading the same files
140, 50, and 580 times on average, respectively.

Whether this excessive rereading of the same files was
intentional or not is unclear, but the combination of high reread
activity and the knowledge that these I/Os were targeting a
Lustre file system indicates that these workflows were making
heavy use of the Lustre client page cache. Hence, some com-
ponent of the high read skew shown in Figure 8 probably did
not require network transfers, and the resulting load on the file
system was only a fraction of the transfer workload observed
by Darshan. However, the ground-truth data in Figure 4 shows
a similarly disproportionate read coverage, and therefore some
component of the heavy read workload from these users did
reach the cscratch storage system itself despite the availability
of client caching.

E. Tracing Data within Workflows

In addition to identifying the largest users of a single
transfer vector, the transfer data also allow us to trace how
a single user’s data moves throughout the data center over
time. Figure 9 shows all the different data transfers attributed
to another individual user over time; we generate this time
series by assuming a constant transfer rate over the duration
of each transfer and applying its transfer volume over the entire
length of time that transfer was active. In this case, the user
demonstrates an intuitive pattern of data movement during a
workflow that involves coupling data movement between tiers
to reading from and writing to the compute system.

Although not explicitly resolved in Figure 9, the shaded
region at higher temporal resolution reveals that this user al-
ways performs a storage-storage data movement before issuing
compute-storage and storage-compute transfers of comparable
volume. This indicates that the workflow is moving data from
a colder tier to a warmer tier before being analyzed. The
ratio of data volumes transferred reflects a 2:1 read:write ratio
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during computation, further suggesting that this workflow is
performing a data reduction.

The Pearson correlation between transfers occurring along
each of the three vectors shown in Figure 9 is high during
the shaded region (R = 0.778). However, the correlation
between daily compute-storage and storage-storage transfers
diminishes considerably (R = 0.360) for this same user when
calculated over the full three-month window. Thus, while the
components of this user’s workflow that involve compute-
storage and storage-compute transfers are tightly coupled to
storage-storage transfers, other pieces of the larger end-to-
end workflow involve storage-storage transfers that are not
followed by computation. This lack of predictability over
longer time scales is likely a reflection of a human in the
loop of an otherwise highly regular workflow.

To determine whether this workflow regularity is the rule
or the exception for user behavior, we can generalize our
correlation analysis to all users by calculating correlation
coefficients between each vector for each user (as demon-
strated in Figure 9) and then taking the mean of those vector-

pair correlations on a per-user basis. We call this the “mean
user transfer correlation,” and it is a figure of merit that
describes how often a user transfers data along two or more
transfer vectors within a single day—or, broadly speaking,
how tightly coupled a user’s data transfers are throughout
the data center. Of the 1,562 unique users that transferred
data during the time studied, 439 transferred data only along
one vector and therefore could not be attributed a mean user
transfer correlation. Of the remaining 1,123 users, only 486 of
them showed any statistically significant correlation between
any of the transfer vectors they employed, indicating that the
relatively strong correlation shown by the user in Figure 9 is
not the typical case.

Of those 486 users, a significant number (75%) showed
strong mean user transfer correlations, as shown in Figure 10.
However, decomposing these mean user transfer correlations
into correlations between individual vector pairs reveals that
the strongest correlations for most of these users occurred
between compute-storage and storage-compute transfers. In
the context of application workflow, this result is not sur-
prising; we expect that applications that perform compute-
storage transfers (i.e., write data) will also perform storage-
compute transfers (i.e., read data) within the same day. When
we omit the compute-storage:storage-compute pair when cal-
culating mean user transfer correlations, however (also shown
in Figure 10), we find that only 44 users of the total 486 show
strongly correlated behavior between different transfer vectors.

We thus establish that users generally do not exhibit high
regularity over long periods of time outside of the intuitive cor-
relation between users’ applications reading and writing on the
same calendar day. This unpredictability in data transfers along
different vectors suggests a high degree of user interactivity
in initiating data transfers outside of any automated processes
that may be moderating data transfers between individual jobs.

IV. CONCLUSION

Characterizing the I/O demands of scientific workflows
using data transfers enables new insights into the ways in
which scientific workflows utilize resources across the entire
data center. Users structure data transfers in markedly different
ways from how they retain data at rest in that data transfers
tend to involve larger files while data at rest comprise many
smaller files. The amount of data transferred between storage
tiers is also significant; during the three months examined,
the amount of data moved between storage tiers outside of
jobs was approximately equal to the volume of data written
from HPC jobs to file systems. These results indicate the need
for better I/O monitoring of data transfer tools that operate
between jobs within scientific workflows.

Users also read far more data than they wrote from their
compute jobs during this time, defying the notion of HPC
I/O workloads being characteristically write-heavy; this un-
expectedly high read-write ratio was found to be the result
of three extremely read-intensive users rereading their files
dozens to hundreds of times. Moreover, time-resolved tracing
of data motion between tiers revealed that one can identify



strong correlations between users running data-intensive com-
putational jobs and staging data in a highly predictable way,
but the majority of users do not operate exclusively in this
mode. Rather, transfer traces suggest that tightly coupled data
transfers and compute jobs are interspersed with data transfers
that are indicative of a human in the loop, suggesting that few
workflows at NERSC are automated at present.

We made several notable observations in the course of this
study, but it is difficult to determine how generally applicable
they are due to the amount of unaccounted transfer data. In
future work, we plan to increase the breadth of our telemetric
coverage so that we can compare trends over longer periods
of time and across multiple data centers.
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