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Abstract

This paper describes a probabilistic approach to 

global localization within an in-door environment with 
minimum infrastructure requirements. Global localization 

is a flavor of localization in which the device is unaware 

of its initial position and has to determine the same from 
scratch. Localization is performed based on the Received 

Signal Strength Indication (RSSI) as the only sensor 
reading, which is provided by most off-the-shelf wireless 

network interface cards,. Location and orientation 

estimates are computed using Bayesian filtering on a 
sample set derived using Monte-Carlo sampling. 

Research leading to the proposed method is outlined 

along with results and conclusions from simulations and 
real life experiments. 

1. Introduction 

The boom in wireless networks over the past few years 

has given rise to a large number of available mobile tools, 

and their applications are becoming more and more 

sophisticated by the year. Wireless networks have 

become a critical part of the networking infrastructure and 

are available in most corporate environments, airports, 

shopping malls, hotspots. There is even talk of WiFi 

enabled cities, with Paris, France, being one of the first 

targets (see [8]). The fact that wireless networking 

enables mobility is a key in building “intelligent” mobile 

devices to perform many routine tasks. Smart devices and 

homes that are capable of adjusting themselves to provide 

maximum comfort to a user are slowly becoming reality. 

With growing demand for the deployment of such 

systems, network researchers have to address a 

fundamental and well-known problem in the field of 

robotics: determining the physical position of a mobile 

node using uncertain sensors (localization). Location 

awareness also plays an important role in the 

development of ubiquitous computing environments with 

tremendous potential in personal navigation and security, 

health-care, disability aids, etc. 

Many commercial and residential establishments are 

already equipped with off the shelf wireless access-points 

(WiFi: IEEE 802.11b, for example) and most 

off-the-shelf mobile devices today are wireless enabled. 

Most of these devices are capable of measuring signal 

strength of received data as part of their standard 

operation. This paper outlines our research towards using 

this signal strength, the Receive Signal Strength 

Indication (RSSI), to reliably determine the location and 

orientation of a device. One of the significant 

contributions of this paper is to show that reasonable 

estimates may be achieved using RSSI readings from a 

small number of access points, and potentially even a 

single access point, depending on the structural symmetry 

and location of the access point in the environment. 

2. Localization Techniques 

Many popular location estimation techniques like 

RADAR (RAdio Detection And Ranging) and GPS 

(Global Positioning Systems) [12] have been in service 

for several years or decades now. Both these techniques 

rely on measuring the time taken by radio waves to 

propagate, and a fairly precise location estimate (relative 

to the location of the tracking device) may easily be 

determined by calculating differences in this propagation 

times. Other methods to determine the location of mobile 

bodies include LASER (Light Amplification by 

Simulated Emission of Radiation) and SONAR (Sound 

NAvigation and Ranging) [13] based techniques. These 

methods are also widely used in commercial and 

industrial equipment to estimate the location of mobile 

bodies indoors, underwater, or in other places. 

Many of these approaches rely on proprietary 

techniques and either require the use of additional 
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equipment for deployment or rely on some distinguishing 

characteristics specific to the environment in which the 

system is deployed. Furthermore, they require that the 

targets to be detected are more or less within the 

receivers’ line of sight. This factor prevents, or at least 

restricts, the use of such systems in populated areas where 

such a line of sight may not be available. This limitation 

severely reduces the feasibility of successful deployment 

in a ubiquitous computing environment where mobile 

devices (targets) may be wearable or implanted and 

cannot remain within the receivers' line of sight. RSSI 

readings from a Radio Frequency (RF) device, on the 

other hand, are available from the device without the need 

for a line of sight. While RF waves are capable of 

penetrating many physical boundaries or structures, these 

do affect the RSSI reading, albeit in a somewhat 

predictable fashion. This predictability makes it possible 

to map RSSI readings from a fixed access point to a 

region, and thus makes localization using RSSI readings 

feasible. In addition, these techniques can be easily 

combined with outdoor-specific techniques to achieve the 

best possible estimates. For example, cellular phones may 

use GPS systems integrated into the mobile terminals or 

use signal strength measurements to trilaterate or 

triangulate their position relative to fixed base stations 

[9,10]. 

2.1. RSSI Based Localization Approaches 

Due to the boom in wireless networking and high 

demand for wireless networking infrastructure, several 

products that enable wireless networking using IEEE 

802.11x, Bluetooth, and other technologies are available 

and can be fitted to almost any mobile device available 

today. Furthermore, we can expect wireless networks to 

play a significant role in the future of ubiquitous 

computing. As a consequence, techniques to derive 

location estimates from Received Signal Strength 

Indication (RSSI) of wireless signals are rapidly gaining 

popularity. 

RSSI based localization techniques generally consist 

of two phases: A training phase and an estimation phase. 

In the training phase, a mapping between wireless signal 

strength and various predefined positions in the 

environment is established. This is typically achieved by 

collecting RSSI samples at the predefined locations. In 

most cases, the environment is divided into cells in order 

to define these locations. In the estimation phase, an 

estimate of the target’s location is computed using the 

signal strength mapping (a.k.a. wireless map) via 

probabilistic or deterministic techniques. 

RSSI based location estimation techniques are broadly 

divided into deterministic and probabilistic techniques. 

For the use of a deterministic technique, the physical area 

making up the environment is first divided into cells. 

Next, the training is performed in which readings are 

taken from several fixed, known access points. Finally, 

localization is performed by executing a determination 

phase in which the most likely cell is selected by 

determining which cell the new measurement fits best 

[2,14,17]. 

Probabilistic methods, on the other hand, construct a 

probability distribution over the target’s location for the 

physical area making up the environment. In order to 

estimate the location of the target, different statistics like 

the mode of the distribution or the area with highest 

probability density may be used. While probabilistic 

techniques provide more precision, a trade-off between 

computational overhead and precision is introduced. 

An extended Kalman filter [1] based approach is 

presented in [9], in which an attempt is made to estimate 

the intra cell position of a cellular device using RSSI 

readings from base stations. This estimate, in combination 

with movement pattern data and velocity vectors, is used 

to estimate the next cell crossing. 

A Bayesian filter based approach is proposed in [16], 

in which the authors utilize a Bayesian belief network to 

derive a posterior probability distribution over the target’s 

location. The state-space over all possible locations of the 

target node is discretized and then used to develop a 

Bayesian belief network, given: 1) the conditional 

probabilities of an RSSI reading being measured at each 

possible location and, 2) an a-priori probability 

distribution of the node being at a different location. The 

posterior distribution is then derived by inverting this 

Bayesian network. The computational overhead involved 

in this technique is very high. Another similar proposition 

([15]) consists of developing the Bayesian estimate based 

only on the strongest subset of access points rather than 

all of them. 

3. Particle Filters 

The technique described in this paper is a probabilistic 

approach using recursive Bayesian filters based on 

Sequential Monte Carlo Sampling (a.k.a. particle 

filtering). The proposed technique computes a posterior 

distribution of the target’s location using Sequential 

Monte-Carlo Sampling, which is capable of using an 

arbitrary a-priori distribution to compute a posterior 

distribution. This method is less computationally 

intensive and is suited to an indoor wireless enabled 

environment where standardized distributions of RSSI 

readings may not be available. 

3.1. Recursive Bayesian Filters 

We model the localization problem as a stochastic 

process in which estimates of location and orientation are 

represented as probability distributions. I.e. if sn and dn
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denote the state of the system and the RSSI measurement 

at time t = n t, respectively, where t is the sampling 

interval, we are trying to estimate the evolving state sn

given (d1, d2, …, dn). A Bayesian filter is an algorithm 

that produces such an estimate, p(sn|d1, …, dn), given a 

model of the measurements, p(dn|sn), and the previous 

estimate, p(sn-1|d1, …, dn-1). This posterior distribution can 

then be used to compute any statistic of sn.

A recursive Bayesian filter algorithm imposes the 

constraint that the estimate of p(sn| d1, …, dn) should be 

generated using only the previous posterior density 

p(sn-1| d1, …, dn-1) and the most recent measurement dn.

This conveniently avoids storing the entire measurement 

sequence and reduces the amount of computation 

performed. Recursive Bayesian filtering requires that the 

following constraints are imposed on the system: 

Markov System: The motion of the mobile node is 

dependent only on its current state and not on any of it’s 

prior states: p(sn|s0, …, sn-1) = p(sn|sn-1)

Memory-less channel: An RSSI value obtained in a 

given state is independent of those obtained in any other 

state: p(d1, …, dn| s1, …, sn) = p(di|si)

After applying these constraints, filtering is performed 

by iterating the following steps: 

Prediction (Model update): Here, an attempt is made 

to predict all possible locations to which the node may 

have moved from its previous location: 

1
111111 ,,,,

ns
nnnnnnn dsddspsspddsp

Measurement update: Using the new RSSI 

measurement, we are now attempting to predict the exact 

location into which the node has moved: 

11

11

1
,,

,,
,,

nn

nnnn

nn
dddp

ddspsdp
ddsp

The prediction model above is of the form 

I(f) = f(s)·p(s|d)ds. The solution to this is easily rendered 

computationally infeasible for non-standard distributions 

p(s|d). Therefore, instead of seeking an analytic solution, 

we propose the use of Monte-Carlo integration techniques 

([3]), which sample the state space at random, 

independent of the number of dimensions ([4]). In these 

techniques, samples are drawn from a Proposal 

distribution g(s|d) rather than the original p(s|d), where 

g(s|d) p(s|d) ([6]). The integration technique used in this 

paper is Sequential Importance Sampling, a.k.a. particle 

filtering, a brief discussion of which follows.  

3.2. Sequential Importance Sampling 

Importance sampling permits the derivation of I(f) by 

sampling from an arbitrary proposal distribution, g(s|d),

given that g(s|d) > 0 whenever p(s|d) > 0 (to guarantee 

that samples can be drawn for all states for which p(s|d) is 

non-zero). The discussion in this section draws upon 

work presented in [5]. 

We can rewrite I(f) = f(s)·p(s|d)ds as 

dsdsgswsffI   (1) 

where:
dsg

dsp
sw

Now, Np independent samples {s(i)} can be drawn 

according to g(s|d) to approximate I(f) using Monte Carlo 

integration as 

p

p

N

i

ii

p

N wsf
N

fI
1

1
, where: 

w(i) w(s(i))

This set w(i) = {w(1), w(2), …, w(Np)} is referred to as the 

importance weights. This equation may be rewritten 

as

p

i
p

N

i
s

i

N dsswsffI
1

, where: 

i

s
sssi  is the Dirac Delta function.

If the empirical (random) measure generated by 

samples s(i) drawn from g(s|d) is denoted by dsp
pN

then: 

p

i
p

N

i
s

i

N swdsp
1

  (2) 

Using this, Equations 1 and 2 may be related as 

dsdspsfdsdspsffI
pp NN

where the approximation improves as Np , i.e. as the 

number of samples chosen increase. The generated 

random measure represented by Equation 2, dsp
pN ,

not only contains a set of (random) values, a.k.a. support 
points, but also the importance (weight) of each support 

point. The complete specification of the distribution 

dsp
pN  can therefore be represented by the set 

pN

i

ii ws 1},{  and each such support point, denoted by 

i

ns1 , is a randomly generated sequence of states for our 

Bayesian filtering context. Given the previous state of the 

system,
pN

i

i

n

i

n ws 1110 },{ , we need to derive the current 

state of the system,
pN

i

i

n

i

n ws 10 },{ where the weights w(i)

are computed as: 

i

n

n

i

n

i

n

i
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i
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i

nni
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sspsdp
w 1

1

1
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3.3. Generic Particle Filters 

A common problem with Sequential Importance 

Sampling filters is Degeneracy, where, after a few 

iterations, all but one support point will have negligible 

weights. Consequently, a significant amount of 

computation is spent on updating particles that contribute 

insignificantly to the approximation of p(sn|dn-1) and the 

quality of the approximation decreases over time. To 

reduce the effects of degeneracy, it is necessary to remove 

particles with insignificant weights and concentrate on 

those with significant weights. This is accomplished, 

through a technique known as resampling, by drawing Np

independent samples from nnN dsp
p 1  (Equation 2) 

whenever degeneracy falls below some threshold N .

Because resampling draws from a true posterior (in an 

approximate sense), the resampled weights remain 

uniform throughout. Algorithms that incorporate 

Importance Sampling have gained significance over the 

past decade. The term particle filter is prevalent for such 

algorithms and we will adopt this term. The support point 

set
pN

i

i

ns 1}{ will be referred to as “particles”. A pseudo 

code description for such an algorithm (adopted from [7]) 

is provided below: 

FOR i = 1 TO Ns

Draw n

i

nn

i

n dssgs ,1

Assign the particle a weight,
i

nw , according to eqn. 3 

END FOR 

Calculate total weight
pN

i

i

nwt 1}{

FOR i = 1 TO Np

 Normalize
i

n

i

n wtw 1

END FOR 

Calculate Neff using
pN

i

i

n

eff

w

N

1

2

1

IF Neff < N

 Resample according to 
i

nw
END IF 

Figure 1. Generic Particle Filter [7] 

4. The Particle Filter Approach to RSSI 

Localization 

As shown in the previous section, a particle filter 

allows for a high degree of flexibility as far as the state 

model is concerned. The filter is capable of handling 

substantially complex state models including those that 

are non-linear and non-Gaussian. This allows the use of 

arbitrary process models, which is of particular interest 

since a model of wireless signal strength distributions 

should be neither linear nor Gaussian. 

We are primarily interested in tracking the location of 

a wireless enabled mobile node or device in an indoor 

environment and thus need to develop valid measurement 

and movement models for it. Here, we define the location 

of the mobile node in terms of its position in space and its 

orientation relative to a reference frame. The movement 

model depends on the agent carrying the mobile node 

(e.g. the movement model for a human carrying a laptop 

computer would be considerably different from that of a 

wireless enabled robotic vacuum cleaner). The 

measurement model, on the other hand, is largely a 

function of the environment and of the location of the 

access points. 

4.1. Measurement Model for the Particle Filter 

A typical wireless communication system consists of 

two nodes exchanging information with each other. For 

the proposed localization approach to work, it is 

necessary that one of these nodes be at a fixed location at 

all times and we require a setup where the mobile node, 

or target, communicates with one or more wireless access 

points. Such a setup is typical in most buildings and 

homes where wireless network access is available via 

IEEE 802.11x, Bluetooth, or other technologies. E.g., a 

WiFi access point in such a setup will typically respond 

to a probe packet from a node with a probe response 

packet. The node can then extract the Received Signal 

Strength Indication (RSSI) reading from this probe 

response packet to build our measurement model. 

Wireless Maps: To estimate the location of a mobile 

node from a Received Signal Strength Indication, a 

statistical representation of the same across the indoor 

environment is necessary. Building such a representation 

involves collecting a number of RSSI readings from each 

access point at every possible location in the indoor 

environment. These readings represent a wireless map of 

the environment and form the measurement model for the 

particle filter. Since it is infeasible in practice to collect 

readings at every possible location the mobile node may 

be in, it is necessary to discretize the physical area of the 

environment by dividing it into cells. This introduces a 

trade-off between precision in localization and cell size. 

Since we are also interested in estimating orientation 

of the mobile node, we need to construct such wireless 

maps for every orientation the node may take. Again, this 

is practically infeasible and thus it is necessary to 

discretize orientation. 
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We represent a wireless map tuple by one set of 

readings from each access point per cell per 

orientation: },,,{,,, 21 kAPAPAPyx where:

x & y represent the Cartesian coordinates of a 

physical point on the map 

 represents the orientation at that physical point 

AP1, AP2,…, APk represent vectors containing a set 

of readings collected from access points 1, 2,…, k 

4.2. Movement Model for the Particle Filter 

A typical movement model representing the motion of 

a mobile node generally consists of velocity and/or 

acceleration parameters. Construction of such models is 

straightforward, considering that models representing 

human or robot motion are readily available. 

For our purposes, we assume that the target’s 

movement follows a Gaussian velocity model. Following 

this assumption, we pick a normally distributed random 

variable to update the location of each particle during the 

model update step. 

Figure 2 shows the probability of particle displacement 

if the current location of the particle is the center of the 

shaded circle. Darker regions here indicate higher 

probabilities that the particle moves to that location after 

the measurement update step. Since the target node 

cannot cross walls, the particles are restricted from 

crossing walls as indicated in the figure. 

Figure 2. Particle displacement distribution 

5. Implementation and Experimental Results 

5.1. Experimental Setup 

To validate the presented approach, a test network was 

set up on the at The University of Texas at Arlington 

(third floor, Nedderman Hall). The environment consists 

of four corridors, one lounge, and two wireless access 

points. The entire area was divided into 88 cells in order 

to derive the wireless maps. Two wireless access points 

are set up at the ends of one hallway to achieve coverage 

of the entire area and to reduce the structural symmetry in 

the environment. While we use an IEEE 802.11b wireless 

Ethernet network, the proposed method works with any 

wireless technology that provides RSSI readings as part 

of standard operation. The environment with the access 

point locations and cells is as shown in Figure 3. 

Figure 3. The environment 

5.2. The Training Phase – Building the Wireless 

Map

The training phase consists of building a wireless map 

of the environment and has to be executed only once for a 

given environment if the access points remain in the same 

location. We build a wireless map of the environment by 

sampling the space and gathering data at various 

predefined points in the indoor environment. 

This map forms a statistical representation of the 

environment based on the two access points. To build the 

map, the floor area forming the indoor environment was 

measured and divided into cells of known dimensions as 

shown in Figure 3. Sample sets of 100 RSSI readings 

from each access point are collected in each cell. 

Readings from multiple access points are collected 

concurrently so that covariance measures between 

readings from different access points are valid. Since the 

human body absorbs some of the energy of the radio 

waves, the orientation of the operator with respect to the 

access points while collecting readings can significantly 

affect the map. Therefore, we collect readings for eight 

different orientations in each cell. This sample set forms 

the data for computing the wireless map. 

Figure 4 shows a wireless map of the environment 

developed using the top right access point. Signal 

intensity is denoted by shading in the environment: darker 

shades indicate regions with higher intensity. 

Figure 4. Wireless map for the top right access point 
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5.3. The Localization Phase 

To use the particle filter, we first initialize all three 

dimensions of the initial particle using uniform 

distributions. Subsequently, the particle filter uses the 

new RSSI readings to update the probability distribution 

for the location of the target across the environment. 

To facilitate the measurement update using the 

wireless maps in an efficient manner and to account for 

readings that did not occur during the training phase, we 

represent the actual entries in each cell of the wireless 

map by a multivariate probability density function 

representing the set of readings. Readings within a cell 

seem to follow a Gaussian distribution as shown in Figure 

5 and therefore, we use the Gaussian probability density 

function: 

XXVXX

k

T

e
V

xp
1

2

1

2

1

Figure 5. Signal strength distribution in a cell 

In this function, 

V denotes the determinant of the covariance matrix: 

22

1

2

1

2

1

kk

k

V with  as the standard 

deviation, and
2

lm the covariance between l and m,

i.e.
1

2

n

dddd
i m

i
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i

l
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X are the RSSI readings:
T

kddX 1

X is the mean of X
i

k

i

k APd is the ith reading in the set of readings 

taken from access point k, After computing this density 

value for the current reading, it is used as the weight of 

each particle. 

Once the measurement update is performed, all three 

dimensions of the particles are updated based on a zero-

mean Gaussian movement model. If, during this 

resampling, one or more particles are found to “cross” a 

wall or other physical barrier, they are simply deleted and 

new particles are added to substitute them. We then 

resample the particles based on their new weights. 

While the particle filter generates a posterior 

distribution of particles, it is up to a user to extract a 

desired estimate from this distribution. We have 

implemented three such estimates: 

Estimate 1: Sum of the Inverse Distances: This method 

computes the estimation weight of each particle with 

respect to its distance from all other particles. The inverse 

of the distance from one particle to another provides a 

weight with respect to that particle. The cumulative 

weight of a particle with respect to all other particles is 

used as the final estimation weight. Finally, the particle 

with the highest weight is chosen as the best estimate. 

Estimate 2: Highest Particle Density in a Circle with 
Given Radius: Here a different estimation weight for each 

particle is computed; the particle with the highest weight 

is chosen as the best estimate. To compute the weight, 

circles with a constant radius are centered on each 

particle. The number of particles in each circle is 

determined and used as the weight. In our experiments a 

radius of 1m is used. 

Estimate 3: Mean of All the Particles: Unlike the two 

methods above, no estimation weights are computed in 

this method. The value of each dimension of the particle 

is averaged across all particles and the resulting numbers 

are used as the best estimate. The advantage of this 

method is that it runs in O(n). 

In the following we will show results for the first two 

estimates. The reason for choosing these is that, while the 

mean can lead to good results in terms of average error, it 

will frequently fall on impossible locations in the case of 

multimodal probability distributions in the particle filter. 

5.4. Results – Simulated Walkthrough 

In this section, we present results of our experiment 

using simulated RSSI readings. The movement path of 

the mobile node, which simulates a node moving with 

non-constant velocities, is as shown in Figure 6. Figure 7 

shows snapshots of the simulation program’s graphical 

display while it is running. We see that after an initial 

phase of finding the mobile node, the particles 

(population:3000) are able to follow the node. The actual 

mobile node’s location is represented by a white circle, 

particles are represented by small dots, and the various 

estimates discussed above are represented by shaded 

circles.
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Figure 7. Movement path for the simulated walk through with velocities 

Figure 6. Simulation snapshots (simulated walkthrough mode) 

As can be observed from the GUI snapshots, even with 

the assumption that the RSSI readings in a cell follow a 

basic Gaussian distribution, the system performs well at 

tracking the target

Estimation Errors 
Data from the various location and orientation 

estimates was collected during the run and errors in 

estimation are determined by computing the difference 

between the true location and orientation values and those 

produced by the estimates. Figure 8 shows an error plot of 

estimate 1 for one simulated walkthrough. 

In order to analyze the number of particles required to 

obtain estimates with the desired precision, trial 

simulations were run with varying number of particles 

(200 through 10,000). Data from these runs was collected 

for eight trials for each particle number value, and error 

plots for the two estimates (average location error) are 

presented in Figures 9 and 10. The error bars in these 

figures represent one standard deviation showing that  

Figure 8. Location error  

while the accuracy continues to improve when the 

number of particles is increased the magnitude of the 

improvement decreases significantly as the number of 

particles increases beyond 3000. 
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Figure 9. Average error in location (estimate 1)  

Figure 10. Average error in location (estimate 2) 

5.5. Results – Real Walkthrough 

In this section, we present results of experiments 

where RSSI readings from both access points were 

recorded during an actual “walk” through the 

environment. During the walk periodic RSSI 

measurements were taken from the network interface 

card and were stored on the computer. This recorded 

data was then used as the input to the simulation 

program and location estimates were derived using the 

particle filter. During the walk the user was following an 

engineered path so error estimates can be calculated.; 

this path taken by the walker is shown in Figure 11. 

Snapshots from the GUI of  the simulation program are 

shown in Figure 12. Trial runs similar to section 5.4 

were conducted with the recorded data; error plots are 

shown in Figures 13 and 14. 

While the error is slightly higher than in the 

simulated walk through mode, the filter still tracks the 

mobile node correctly. The increase in average error is 

due mainly to systematic influences of the environment 

on the RSSI readings. These influences are caused by 

effects such as opened or closed doors and people or 

objects moving through the environment, which slightly 

alters the RSSI reading distribution in each cell. 
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Figure 12. Movement path of the real walkthrough 

Figure 11. Snapshots of the localization interface during the real walkthrough 

Figure 13. Average error in location (estimate 1) 

 6. Conclusions and Future Work 

In this paper, we have presented a probabilistic 

approach to the localization problem using only RSSI 

readings, which almost all wireless devices are capable of 

measuring as a part of their standard operation. We have 

demonstrated the performance of the proposed approach 

through simulations and real life experiments performed 
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in an indoor environment with two access points. These 

demonstrations show that even with all the required 

approximations, the system was successful at tracking the 

mobile node with a reasonable amount of precision. This 

illustrates the potential of our approach in enabling 

location awareness among existing devices with no 

additional infrastructure. 

To improve the performance of the system, many of 

the approximations could be improved upon through 

research and study. The distribution of RSSI readings in a 

given cell under various conditions needs to be studied in 

detail to construct a better wireless map of the 

environment. Also, the movement model used has 

potential for improvement by using additional sensors 

which may easily be integrated with the existing particle 

filter.
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