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Abstract 
 

In pervasive computing environments, service 
discovery facilitates users to access network services by 
automating tedious manual configurations.  When 
network services becomes pervasive, the number of 
service providers also increase dramatically.  Because 
of security and privacy concerns, network services are 
segmented by service providers.  Existing service 
discovery protocols, however, do not address how to 
facilitate users to properly identify and authenticate with 
existing service providers.  Without prudence, sensitive 
information may be exposed.  Conversely, with prudence 
both users and service providers prefer the other party 
to expose sensitive information first.  We identify that 
even among legitimate users and service providers, 
there are privacy concerns that may be expressed as a 
chicken-and-egg problem.  In this paper, we propose a 
progressive approach to solve the problem.  Users and 
service providers expose minimal sensitive information 
in turn and identify necessary exposure during the 
process.  Theoretical analysis, simulation, and 
experiments show that our approach protects sensitive 
information with little overhead. 

1. Introduction 

In traditional secure network service accesses, a user 
explicitly specifies a service’s network address and 
supplies a credential (a user name and password pair or a 
certificate) to authenticate with a service provider.  The 
user has a priori knowledge of the service, the service 
provider, the credential, and the relation among them.  
Imagine within pervasive computing environments, in 

which network services (services for short) become 
ubiquitous and embedded within our personal belongings, 
homes, and offices.  Every person may become a service 
provider and a user.  Both the number of services and 
service providers with which a user interacts dramatically 
increases.  As a consequence, two new challenges emerge.  
First, as the number of services increases, manual efforts 
to configure devices for potential communications and 
maintain availability of services become overwhelming.  
Second, as the number of service providers increases, 
memorizing the relation between services, service 
providers, and credentials becomes burdensome.  Service 
discovery as an essential element for service access and 
sharing in pervasive computing has been widely accepted 
[1].  Most existing service discovery protocols provide 
elegant solutions such as soft state and lease-based 
mechanisms and just-in-time driver installation to meet the 
first challenge [2].  Instead of tedious manual 
configuration, users designate services by names and 
attributes, and then protocols discover services and 
configure devices.  Nevertheless, the second challenge is 
not well addressed.     

Current service discovery solutions may be roughly 
classified into four approaches.  First, insecure service 
discovery protocols allow anyone to discover and use 
anyone else’s services [3-6].  Second, approaches may 
apply traditional access control solutions to secure services 
within each service provider [7-11].  Third, trusted servers 
may manage authentication and authorization centrally 
[12].  Fourth, a protocol may discover existing service 
providers at a moment, and the software that manages a 
user’s credentials for associated service providers 
automatically authenticates with the service providers [13].  
The first approach obviously sacrifices security and 
privacy.  With the second approach, a user has to 
memorize services and their associated credentials.  In 
addition, since services and service providers may be 
mobile and partial failures may happen to services, the 
user has to identify the existence of service providers 
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and/or the services.  The third approach improves 
usability such that a user may only need one credential 
for service discovery.  Nevertheless, from a service 
provider’s perspective, he has to expose services to 
central servers and trust servers to manage services 
securely.  From a user’s perspective, he has to expose 
every service requests to central servers.  The fourth 
approach seems to solve the second challenge since it 
properly identifies the legitimacy of users and service 
providers.  However, there are two privacy issues: both a 
user and a service provider expose their presence 
information; a user exposes a service request to all 
recognized service providers.  Both exposures may not 
be necessary.  For example, Bob and his colleagues may 
provide each other privileges to access MP3 players, 
electronic books, digital pictures, etc.  When Bob 
discovers services using the fourth approach, he 
discovers existing service providers, and then he 
authenticates and queries them for services.   However, 
if the service is only offered by his office, it is not 
necessary for Bob to tell colleagues his service request.  
Moreover, although the involved user and service 
providers are all legitimate, Bob and his colleagues’ 
presence information can be inferred.  Thus, we identify 
that even among legitimate users and service providers 
there are privacy concerns that do not exist in traditional 
network service access. 

Designing a service discovery protocol that protects 
sensitive information for both users and service 
providers is challenging.  From users’ point of view, it is 
prudent to authenticate and expose service requests only 
to necessary service providers.  However, identifying the 
necessary service providers requires knowledge of the 
current existing services and service providers and their 
relations.  Ideally, if service providers expose their 
existence and service information first, users can choose 
only necessary service providers to contact.  
Nevertheless, from the service providers’ point of view, 
it is not prudent to reply when a request is from an 
illegitimate user or the requested service is not offered.  
The act of hiding by not responding not only saves 
computation power and energy, but also protects the 
presence information of a service provider.  Ideally, if 
users expose their credentials and service requests first, 
a service provider can easily make a decision.  
Therefore, both users and service providers prefer that 
the other party exposes information first.  The conflict 
between a service provider and a user becomes the 
chicken-and-egg problem.   

In this paper, we propose a progressive approach to 
solve the conflict between users and service providers.  
Users expose partial information about who they are and 
what services they are seeking.  Then, if service 
providers find matches (recognize the users and offer the 
requested services), they expose partial information 

about who they are and what services are available.  Users 
and service providers in turn expose until they reach a 
certain confidence level to authenticate for service access.  
If there is any mismatch about the service or user 
information during the processes, the communication 
stops. We target environments in which users discover 
services within their vicinity via wired or wireless 
networks.   

Compared to the fourth approach, the progressive 
approach not only properly identifies the legitimacy of 
users and service providers, but also differentiates to 
which legitimate service provider that a user should expose 
his sensitive information and determines whether a service 
provider should expose its sensitive information to a 
legitimate user.  Our approach addresses these new 
difficult problems: 

Privacy:  Communication in each round is based on 
mutual matches.  When mismatches are found, 
communications stop and only partial information is 
exposed, such that the other party receives uncertain 
sensitive information. 

Security: When a small amount of information is 
exposed, the number of false positive matches between 
foreign parties increases.  Illegitimate users or service 
providers may be involved in the communications.  
However, our approach secures sensitive information.  
Therefore, illegitimate parties do not understand the 
sensitive information. 

Fairness: During the exposure process, neither users 
nor service providers may acquire additional sensitive 
information while exposing less than a very limited 
amount of sensitive information.  

Adaptive: Our approach is adaptive to support users 
with different numbers of credentials and service providers 
with different numbers of services in different 
environments.   The approach requires little processing and 
storage space.     

We prove the mathematical properties of our 
progressive exposure approach.  The exposure in terms of 
probability is known in each step.  Our experiments show 
that our approach is efficient.  It introduces very limited 
overhead even on mobile devices such as PDAs.  We also 
do simulations to test hypotheses in our model.   

The rest of the paper is structured as follows.  In 
Section 2, we discuss related work.  Section 3 presents our 
progressive exposure approach.  In Section 4, we 
demonstrate our claims through analysis and 
experimentation.  In Section 5, we outline our future work 
and conclude our contribution. 

2. Related Work 

A detailed comparison of service discovery protocols 
may be found in  [2], and thus we omit discussion of 
insecure service discovery approaches.  We discuss 
representative protocols for the other three approaches. 
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Applying traditional access control solutions.  In the 
trusted discovery mode of Bluetooth Security [11], 
service information is only exposed to a device that 
shares a common secret with the service.  The solution is 
appropriate for Bluetooth devices that have limited 
resources.  However, if the solution is widely used in 
pervasive computing environments, a user needs to 
maintain many credentials because for each device a 
different credential may be used.  Moreover, identifying 
the existence of a device is inevitable.  Universal Plug 
and Play (UPnP) Security provides many authorization 
methods including access control lists, authorization 
servers, authorization certificates, and group definition 
certificates [7].  Our approach complements UPnP 
Security and provides a mechanism to properly and 
automatically supply credentials and expose existence 
information. 

Trusted central servers.  In Secure Service 
Discovery Service (SSDS) [12], servers are in a 
hierarchical structure.  A server at the leaf level controls 
services at a place, while a server at a higher level 
aggregates information on the lower level servers.  Users 
and services authenticate with servers for service 
lookups and registration, respectively.  SSDS is one of 
the first secure service discovery protocols and provides 
many security features.  Nevertheless, privacy concerns 
may hinder users and service providers to expose 
information to the central servers.  For example, Bob’s 
MP3 player refreshes its service registration every five 
minutes, and thus Bob’s daily itinerary is known to the 
servers.  Unlike the trusted central server approach, we 
assume each service provider manages his own services 
and decides whether to expose sensitive information. 

Automated service provider discovery and credential 
management.  In our previous work, PrudentExposure 
[13], users and service providers exchange one-time 
code words to discover each other’s existence.  By 
encoding code words in a special form, a user sends one 
network packet to include code words for all service 
providers from who he acquires credentials.  If a service 
provider finds a match on a code word, he replies with 
another one-time code word for the user to verify, 
otherwise, the service provider keeps silent.  The 
procedure of exchanging code words is shown in Figure 
1.  More specifically, a code word is generated from a 
shared secret between a user and a service provider 
using a hash function.  A code word is represented as 
one bit in an array and it is very high in probability that 
only legitimate parties can generate and verify the code 
word.  Based on the matched code words, proper 
credentials are selected and submitted to the respective 
service providers for authentication.  Then, a user 
queries service providers for services.  In short, only 
legitimate parties gain access to sensitive information.   

 
Figure 1. A user and a service provider exchange 

code words in PrudentExposure. 

Similar to PrudentExposure, in this paper, a user 
utilizes a program to manage all his credentials; and users 
and service providers exchange code words.  Thus, the 
discussion of the credential management program and the 
properties of code words will not be repeated in this paper.  
Unlike PrudentExposure, the progressive approach uses a 
different method to exchange code words and service 
information. More important, it uses a stronger criterion to 
protect sensitive information and avoid unnecessary 
exposure to legitimate parties.  Instead of authenticating 
and querying all service providers that a user has 
credentials, a user only authenticates with service 
providers that have the service and excludes the rest of 
service providers during the process.  Likewise, a service 
provider uses both the user’s and service’s legitimacy as 
criteria when exposing his information.  Figure 2 
illustrates the different design goals of PrudentExposure 
and the progressive approach from a service provider’s 
point of view.  From a user’s point of view, the diagram is 
similar.  PrudentExposure discovers legitimate users and 
service providers.  The progressive approach discovers a 
smaller set: legitimate users and services or legitimate 
service providers and services.   

 
Figure 2. Different design goals of 

PrudentExposure and the progressive approach 
from a service provider’s point of view. (a) The 
design goal of the progressive approach is to 

properly find Case D.  (b) The design goal 
PrudentExposure is to find Case 1. 
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Other work also influences our approach.  
Automated trust negotiation systems, such as [14] and 
[15], establish mutual trust between strangers on the 
Internet.  Two parties in turn disclose part of their access 
control polices and submit required credentials, until 
they reach mutual trust.  For example, one party may 
require credit card information, while the other party 
may require seeing a certificate from a Good Business 
Bureau first.  The systems cannot establish trust when 
there is a conflict, such as the conflict that we are trying 
to solve. 

Expressing knowledge of a secret in a sequence of 
messages in Port Knocking [16] inspires our work.  In 
order to connect to a service on a server, a client 
“knocks” on the server’s firewall in a special sequence 
based on a shared secret between them.  The knocking 
sequence is a serial of connection messages to different 
closed ports on the firewall.  Another innovative 
approach is authentication on untrustworthy public 
Internet access points [17].  The authentication requires 
a user to correctly recognize a sequence of personal 
photos in reasonable time.  In our approach, a user and a 
service provider establish trust via a sequence of mutual 
exposures. 

3. A Progressive Exposure Approach 

Our approach handles the four cases (in Figure 2 
(a)), which have different security and privacy 
requirements.  For Case A and B, a service provider’s 
identity and service information need to be protected 
because a user is not legitimate.  For Case C and D, a 
user is legitimate.  Whether exposing available services 
and presence information to the user is based on the 
legitimacy of the service request (the service provider 
offers the service to the user).  Similarly, from a user’s 
perspective, the legitimacy of a service provider and 
whether a legitimate service provider has the requested 
service need to be discerned.  However, in the 
beginning, neither a user nor a service provider knows 
which case it will be.  More importantly, we need to 
solve the chicken-and-egg problem and protect the 
sensitive information as we discussed in the 
Introduction. 

To solve the chicken-and-egg problem, a user and a 
service provider expose only partial information (several 
bits) in turn.  During each round of message exchange, 
both the user and service provider verify the partial 
information.  If there is a mismatch, the communication 
stops.  If matches repeatedly occur at both sides, the 
legitimacy of the user or the service provider and the 
service will reach a high probability and the 
communication will stop.  When a mismatch occurs, 
only partial information is exposed and both parties 
acquire sensitive information with uncertainty.  Neither 

a user nor a service provider can discern Case C from Case 
A and B when a mismatch happens. 

Our progressive approach specifies how users and 
service providers exposed their information.  We illustrate 
how to protect sensitive information from illegitimate 
parties.  Moreover, since we also protect sensitive 
information among legitimate parties via uncertainty, an 
analysis of the exposure in terms of the probability is given 
and the probabilities are known for each message in the 
communication.  Because false positive matches happen 
when a discovery message turns out to be Case A, B, or C, 
we will analyze the expected waste of communication for 
those cases.   

3.1. Expose Sensitive Information Only to 
Legitimate Parties 

During the discovery process, there are two parts of the 
sensitive information that we protect from illegitimate 
parties: a user or a service provider’s identity and service 
information.  To protect identities, a user and a service 
provider speak one-time code words.  A code word is 
generated from a time variant parameter (TVP) and a 
shared secret.  Specifically, we use hash-based message 
authentication codes (HMAC) proposed in [18]:  

h(Secret, XOR padding1, h(Secret, XOR padding2, 
Time Variant Parameter)), where h is MD5.   

Unlike PrudentExposure in which a code word is a bit, 
the code word is a sequence of bits in multiple messages, 
i.e., only a partial of the hash result is exchanged in each 
message.  The left side of Figure 3 illustrates the 
generation of a code word.  The nature of the HMAC 
ensures that without knowing the shared secret, it is 
computationally difficult to find the hash result [19].  
Thus, only a legitimate user or a legitimate service 
provider can correctly generate and verify the code word.   

 
Figure 3. Generating one-time code word to 

identify existence information (left side); and 
generating a one-time secret to protect service 

information (right side). 

Services are identified by their hash, and thus service 
names have the same length.  To protect a user’s service 
request and available services of a service provider, a one-
time secret is generated at both sides from the shared 
secret as shown on the right side of the Figure 3.  In each 
message, a user and a service provider use a byte to 
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encrypt or decrypt a few bits of the service information.  
To be precise, encryption is 

secretone-timeservicecipher   ⊕=  and 

decryption is ecretone-time scipherservice  ⊕= .  

The encryption method is known as the Vernam cipher 
[19].  According to [19], if the bytes that we use to 
encrypt service information is random, our encoding 
method is computationally secure.  We show our tests of 
the hypothesis in Section 4.1.   

3.2. The Protocol 

We start with a simplified case that a user interacts 
with one service provider.  The exposure process is 
shown in Figure 4.  First, a user generates one-time code 
words and secrets.  Next, he sends a piece of the code 
word and service request to a service provider along 
with a TVP.  Then, the service provider generates the 
code word and secret.  If the service provider does not 
find a match on the code word, he keeps silent.  
Otherwise, the service provider checks whether there is 
a match for the service.  If he does not find a match, he 
keeps silent.  Unless he finds both matches, the service 
provider returns 1 or 2 bits of the code word and 1 or 2 
bits of available services.  Similarly, if there are matches 
for the code word and the service, the user sends another 
fraction of the code word and the requested services.  
The process continues until either a mismatch is found 
or legitimacy reaches a high probability.  If a mismatch 
is found, a message indicating that the communication 
stops is sent to the other party.  If high legitimacy is 
found, the service provider instructs the user to 
authenticate for service access.  The numbers of the 
initial bits and subsequent bits are described in Section 
3.3 and 3.4, respectively.  

User
Service provider

Check code word bits

Quit[not match]

Check service information bits
[not match]

[match]

1st message

Check code word bits

[match]

ith message
Quit

[match]

[not match]

Check service bits

[not match] [match]

[legitimacy high in probability]

(i+1)th
message

[continue verification]

Authenticate

Generate one-time 
code words and secrets

Generate the one-time 
code word and secret

 
Figure 4. The activity diagram of the discovery 
process between a user and a service provider. 

At a service provider’s side, more than one service 
hashes may match the first several bits of the requested 
service hash.  Therefore, it is possible that the next bit or 
two bits may be more than one possibility.  For example, 
the service information is 0100 in a user’s request; a 
service provider has two services that start with 0100 and 
the following bit is 0 for one service and 1 for the other.  
To inform the user that there are more than one service 
matches his requested service bit sequence, we encode the 
possible combinations of the bits as shown in Table 1.  If a 
service provider replies with more than one possible 
service, a user in his message should indicate which bit or 
two bits match together with the next bit or two bits.  

Table 1. The encoding scheme for service 
information.  

Next single bit Coding Next 2 bits Coding 
0 00 00 0000 
1 01 01 0001 
0 and 1 10 10 0010 
  11 0011 
  00 and 01 0100 
  00 and 10 0101 
  00 and 11 0110 
  01 and 10 0111 
  01 and 11 1000 
  10 and 11 1001 
  00, 01, and 10 1010 
  00, 01, and 11 1011 
  00, 10, and 11 1100 
  01, 10, and 11 1101 
  00, 01, 10, and 11 1110 

 
Figure 5. Message formats. 

Without knowledge of the existing services and service 
providers, a user may specify all code words and encrypted 
service information in the first message.  Figure 5 (a) 
shows the message format.  Since a code word and a 
service request occupies up to 3 bytes, a user may include 
hundreds of pairs of code words and service information in 
one network packet.  Then, the message may be sent as a 
broadcast message or as a multicast message for minimum 
configuration overhead.  The following message between a 
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user and a service provider may be sent via TCP unicast 
to guarantee message delivery.   Figure 5 (b) illustrates 
the format for the following messages, three bits for 
code word and five bits for service information.  Only 
the last five bits are encrypted using a one-time secret.   

Figure 6 shows the protocol.  After first round, a user 
and a service provider send messages in the same format 
as message 3 and 4 in Figure 6, respectively.  When the 
discovery process ends, either message A or B is sent to 
indicate the discovery results. 

Since only several bits are exchanged in the 
beginning, the code words for different service providers 
may have the same last several bits, called code word 
conflicts.  The probability of a conflict is very high, but 
the expected numbers of the conflicts are small.  It can 
be proved that:  

.2))
2

1
1(1(  

) (

    
  

bitsnumber of codewordsofnumber
bitsofnumber

-

code wordsnumber of conflictscodeword E

×−−

=

When generating code words, if a user finds the last 
several bits of a code word is already used for a service 
provider, he uses another TVP to generate code words 
again.  In almost all cases, using two TVPs make the 
code words unique. 

3.3. Predictable Exposure  

We now examine matches of the code words quantitatively 
during the discovery process.  When verifying code word 
bits, a service provider finds either a match or a mismatch.  
If a mismatch occurs, he knows the user is illegitimate.  If 
a match happens, he does not know whether the user is 
legitimate or a false positive match occurs.  A service 
provider is interested in the probability that given a match 
is found in a message, what is the probability that the 
message comes from an illegitimate user, 
namely )| ( matchusernotp . It depends on two 

probabilities: the probability of false positive 
matches, ) |( usernotmatchp , and the probability that a 

message comes from a legitimate user, )(userp . 

The first probability, ) |( usernotmatchp , depends on 

the design of our approach: the number of code words a 
user has and the number of bits exposed so far.  Assuming 
that the hash results of the last several bits follow the 
Integer distribution (all possible values are equally likely), 
the probability in the first message is: 

codewordsofnumber
bitsofnumber

usernotmatchp   
  

)
2

1
1(1) |( −−=

Given a message is not from a legitimate user, we want to 
control the false positive match and still preserve the 
uncertainty.  Thus, we may set the limit to 25%.  A user 
may simply select the number of bits to expose from Table 
2 based on the number of credentials that he has.  A 
service provider examines the number of code words in the 
first message and the number of bits in a code word to 
learn the initial false positive rate.  Afterwards, the false 
positive rate will decrease by half for each message. 

Table 2. Number of bits to expose in a code word 
vs. the number of credentials a user has. 

No. of bits 4 5 6 7 8 9 10 
Number of 
credentials 

<5 <10 <19 <37 <74 <148 <295 

The second probability, )(userp , is service provider 

dependent.  It might be related to the environment and the 
mobility of a service provider.  Based on history 
information, a service provider learns the probability that a 
discovery message is from his users, that is 

) |(1
) |()(

)(
usernotmatchp

usernotmatchpmatchp
userp

−
−=  

where )(matchp  is the rate that the service provider finds 

a match in the first message; and ) |( usernotmatchp  in 

the first message is approximately 25%.  Before a service 
provider accumulate enough history information, he may 
use a fixed strategy, for example, always exchange up to 5 
message rounds.  

From the preceding two probabilities, we have Figure 6. The protocol. 

Notation:  
U is a user; S is a service provider.   
KUS is a secrect shared between U and S.   
KUSI is a secret that U and ith S use to encrypt and 
decrypt messages.   
tX is a timestamp that X attaches.   
RX is a random number that X generates. 
SRBJ is bits of the requested service information in 
the Jth message.   
SABJ is bits of the available service information in the 
Jth message. 
CBJ

SUI is bits of a code word shared between U and 
the ith S in the Jth message. 
KSUI is a symmetric encryption key generated at U and 
the ith S. {}N is a set of N elements. 
Q is a message indicates the communication stops.   
A is a message instructs a user to authenticate. 
No. Sdr/Rvr Message 
1 U→S: RU, tU, {CB1

SUI, (SRB1) KUSI}
N 

2 S→U: RU, tU, CB1
SU, CB2

SU,  
(SAB2) KUS 

3 U→S: RU, tU, CB3
SU, (SRB3) KUS 

4 S→U: RU, tU, CB4
SU, (SAB4) KUS 

A U→S:  
or S→U: 

RU, tU, Q 

B S→U: RU, tU, A 
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)| (

userpuserpusernotmatchp

userpusernotmatchp
matchusernotp

+−
−×=

 

Figure 7 shows that as the number of bits exchanged 
increases, )| ( matchusernotp  decreases quickly.  

Moreover, a service provider with certain )(userp  

knows the probability of )| ( matchusernotp  in each 

round based on the number of bits exchanged. 
Similarly, we calculate )| ( matchservicenotp .  

(Note the match here means that a service provider finds 
matches on the service information.)  It depends on three 
facts: the probability that the service provider has the 
service, )(servicep , the probability of false positive 

matches, )| ( matchservicenotp , and the number of 

services a service provider has.  Since a user does not 
know how many services a service provider has at the 
discovery moment, the user may by default send four 
bits of the service information.  )| ( matchservicenotp  

may be calculated at the service provider’s side and is 
very similar to the calculation of )| ( matchusernotp .  

In addition, a service provider learns the )(servicep  

from history information.   
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Figure 7. )| ( matchusernotp decreases as the 
number of code word bits exposure increase 

after the 1 st  message.   
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Figure 8. )| ( matchservicenotp decreases as 

the number of service information bits 
exchanged increases after the 1 st message.  (A 

service provider with 320 services.) 

We graph the relation between 
)| ( matchservicenotp  and number of bits exchanged 

after the first four bits for a service provider with 320 
services in Figure 8.  If a service provider has 160 (or 640) 
services, he needs to exchange one less (or more) message 
to reach the same probability. 

Therefore, in each round a service provider knows the 
probability of legitimacy of a user and a service request.  
Moreover, a service provider may choose critical values 
for )| ( matchusernotp  and )| ( matchservicenotp , for 

example 5% for both probabilities.  During a discovery 
process, if the probabilities are less than the critical values, 
the service provider thinks that legitimacy is high enough 
and therefore finishes the discovery process. 

3.4. The Exposure Strategies 

During a discovery process, a service provider does not 
need to calculate the probabilities to determine whether the 
legitimacy of a user and the user’s service request reaches 
a high probability.  Instead he only needs to perform table 
lookups.  Because once the critical values are decided, the 
numbers of bits that are necessary to reach the critical 
values are derived directly from the calculation results as 
we discussed in Section 3.3.  Table 3 (a) lists the number 
of bits for different )(userp  values, and Table 3 (b) lists 

the number of bits for different )(servicep values and 

different number of services for critical values at 5%.  For 
example, if a service provider has 80 services, )(userp is 

0.016, and )(servicep  is 0.032, then he needs to 

exchange 10 bits of the code word and 12 bits of service 
information.  When the number of registered 
services, )(userp , or )(servicep changes, a service 

provider  performs a table lookup.   

Table 3. Number of bits to exchange to reach a 
critical value (less than 5%) for 

)| ( matchusernotp  and )| ( matchservicenotp  
in (a) and (b), respectively.  

 
The general exposure strategy is that a service provider 

and a user exchange 1 or 2 bits of a code word and 1 or 2 
bits of service information in one message, specifically 
four combinations: 1/1, 1/2, 2/1, and 2/2 (the first number 
is the number of code word bits and the second number is 
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the number of service information bits).  Exposing 1 or 2 
bits at a time is for the following three reasons.  First, 
when mismatches occur, exchanging few bits exposes 
minimal sensitive information.  Second, a service 
provider may use different combinations to synchronize 
the convergence for )| ( matchusernotp  

and )| ( matchservicenotp  to reach the critical values at 

the same time.  Third, 2/2 is used to make the 
convergence of the discovery process quicker when the 
two numbers of bits are large.  The disadvantage of the 
progressive exposure process is that the number of 
messages required to reach critical values may be large.  
For example, 20 bits require at least 10 messages to be 
exchanged.  However, our experiments show one 
message only takes about 4 milliseconds on a PDA. 

A service provider decides an exposure strategy for 
each discovery session based on the two numbers of 
bits.  A user’s strategy is to expose the same number of 
bits of the code word and service information as a 
service provider does.  For example, if a service 
provider needs to exchange 10 bits of a code word and 
12 bits of service information with a user, he may use 
the strategy 1/2, 1/1, 1/1, 1/1 and 1/1.  After receiving a 
message, the user knows how many bits to exchange in a 
reply message.  Thus, the interaction between a user and 
a service provider is 1/2, 1/2, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1, 
1/1, and 1/1. 

Up to now, the design is from the service provider’s 
perspective.  From the user’s perspective, he may trust a 
service provider’s strategy.  If a service provider is 
illegitimate, false positive matches occur and the service 
provider does not know the user’s identity and does not 
understand the user’s service request.  The service 
provider wastes energy and processing power if he 
exchanges messages more than necessary.  If a service 
provider is legitimate and provides the requested 
service, exchanging messages more than necessary does 
not offer him any better payoff.  Conversely, if the 
service provider exchanges messages less than 
necessary, he does not have enough confidence that 
authentication (his identity exposure) is necessary.   If a 
service provider is legitimate but he does not provide the 
requested service, he knows the user’s identity and the 
service request more accurately by exchanging messages 
more than necessary.  However, the service provider 
also exposes his identity more precisely.  Moreover, to 
learn more about user’s sensitive information, he needs 
to claim that he has the service by correctly guessing the 
next 1 or 2 bits of service information or claim that he 
has multiple services that match the initial sequence of 
the service hash bits.  The behavior pattern can be 
detected if the service provider does it many times.  

3.5. False Positive Match Overhead 

The overhead of false positive matches can be 
calculated from the probabilities that we discussed in 
Section 3.3.  Consider the exposure process as a Markov 
chain illustrated in Figure 9.  For each transient state (state 
“0”  to “k” ), if both the bits of a code word and service 
information match, the process goes to the next state.  
Otherwise, the process goes to the absorbing state, “Quit” .  
Given that a discovery message is not legitimate (the user 
is illegitimate or the user is legitimate but the service 
provider does not have the service), the process should go 
to the “quit” state.  Since there are false positive matches, 
the process may go to the next state.   

 
Figure 9. Message exchange process expressed 

as a Markov chain. 

Suppose given a discovery message is illegitimate, the 
probability of the process goes to the next state is pi and 
the probability of the process goes to the “Quit”  state is qi.  
We calculate pi from the following formula: 

)) () (()) (

) () ((

servicenotpusernotpservicenotmatchp

servicenotmatchpusernotmatchppi

+÷−
×=

I

II

     Moreover, based on the calculation of the mean time 
spent in transient states, we calculate the probabilities that 
the Markov chain makes a transition into state “i” given it 
starts from state “0”  [20]: 
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For example, if a service provider has 80 services, 
)(userp is 0.016, and )(servicep  is 0.032, and he 

selects the strategy 1/2, 1/2, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1, 1/1 

and 1/1, jf ,0  is shown in Table 4.   Thus, the false 

positive match overhead decreases quickly. 

Table 4. Probability in states given a discovery 
message is not legitimate.   
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4. System Evaluation 

In this section, we first show tests of hypotheses 
upon which our approach is based.  Then, we measure 
the performance of our protocol.   

4.1. Hash Results Follow the Integer 
Distribution 

Throughout the discussion in Section 3, we assume 
that the last dozens of bits of hash results follow the 
Integer distribution.  For service information, we may 
encode services to evenly distribute among the first 
several bits.  For code words, however, the good 
security properties are important and should be retained.  
On the other hand, the probability of 

) |( usernotmatchp  is based on the Integer 

distribution assumption.  Moreover, 
)| ( matchusernotp  and )(userp  are based 

on ) |( usernotmatchp .  If the assumption does not 

hold, the abovementioned probabilities are affected.  
Therefore, exposures may not be predicted well.  In 
addition, we also assume that the last 5 bits of each byte 
in the one-time secrets follow the Integer distribution.   
Otherwise, our encryption method for service 
information may not be computationally secure.  Thus, 
the null hypothesis of the first test is that the last dozens 
of bits in code words follow the Integer distribution and 
the null hypothesis of the second test is that the last 5 
bits of every byte in a one-time secret follow the Integer 
distribution. 

We use the chi-square goodness-of-fit test to 
determine if the data can be adequately modeled by the 
Integer distribution [21].  For the first hypothesis test, 
there are 2n possible outcomes (n is the number of bits).  
For the second hypothesis test, there are 25 possible 
outcomes.  To test the hypotheses, we randomly 
generate a secret that serves as the shared secret.  Two 
bytes of a timestamp and 14 one-byte random numbers 
are used as a time variant parameter.  Next, we use the 
mechanism that was discussed in Section 3.1 to generate 
a large number of one-time code words and secrets.  
Then, we count the number of occurrence for each 
outcome.  Last, we calculate the chi-square test statistics 
and select 5% as the significance level. 

For the first hypothesis test, we generate 100,000 
code words for each n, where n is from 4 to 13, 
25,600,000 code words for each n, where n is from 14 to 
16, and 409,600,000 code words for each n, where n is 
from 17 to 20.  Only one test (n=18) is significant.  
However, it may be given a false result.  Because given 
the significance level is 5%, it seems reasonable that 1 
out of 17 experiments is false.  Then, we do 20 
experiments to test as n equals 18 and one of the 20 tests 
is significant.  Therefore, we do not reject the null 

hypothesis for n from 4 to 20.  For the second hypothesis 
test, we generate 10,000 one-time secrets.  All last 5 bits of 
the 20 bytes are tested.   Only byte number 6 turns out to 
be significant.  Similarly, we generate 20 groups of 10,000 
secrets to test byte number 6 again and no p-value is 
significant in the tests.  Therefore, we do not reject the null 
hypothesis. 

4.2. Experimental Results 

Users and service providers may access or provide 
services via portable devices, which have limited 
computing power and energy.  Thus, we measure the 
performance of our protocol on Compaq iPAQs.  Each 
PDA has an ARM SA1110 206 MHz processor, 64MB 
RAM, an expansion pack, and a D-Link DCF-650W 
wireless card.  The wireless cards are set to the 802.11 ad 
hoc mode and 2Mbps. Our software is developed using 
Microsoft eMbedded Visual C++ 3.0 and running on 
Microsoft PocketPC 3.0. 

The experimental results show that our protocol is 
efficient on the PDAs.  Table 5 shows the measurements 
of the major procedures.  We repeated 100 experiments 
and calculated the average time.  When a user generates 
100 code words, a sophisticated version that generates 
unique code words as we discussed in Section 3.2 is used.  
The discovery process between a user and a legitimate 
service provider who provides the service takes about 100 
milliseconds.  Therefore, within reasonable time, a user 
can finish the discovery process. 

Table 5. Performance measurement of the 
protocol. 

Party Operation Time 
User Generating 100 one-time code 

words and secrets, and sending 
discovery messages 

55.64ms 

User Waiting time from sending  
the first message to receiving  
the first reply 

6.62ms 

Service 
provider 

Generating the code word  
and secret, verifying all code  
words and secrets  

2.96ms 

Service 
provider 
and user 

Each message after the first  
two messages, (from verifying 
the code word and service 
information, sending the 
message, to the other  
party receives) 

3.58ms 

 

5. Conclusion and Future Work 

In this paper, we identified that during service 
discovery in pervasive computing environments, sensitive 
information not only needs to be protected from 
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illegitimate parties to access, but also should be exposed 
only to necessary legitimate parties.  We designed a 
progressive approach to secure sensitive information and 
determine necessary exposures.  We presented the 
analysis of the mathematical properties, and 
performance measurement of the protocol. 

Currently, a secret is shared between a service 
provider and his users.  We are working on supporting a 
secret that is shared between a service provider and an 
individual user.  Thus, fine-grained access control rules 
may integrate with the discovery process.  However, 
supporting a shared secret at the user level causes the 
processing at a service provider’s side to be more 
complex.  Multiple code word matches may be found for 
different users in the first message and might cause the 
process to diverge.  We are also working on a revocation 
mechanism.  Revocation of shared secrets from a user 
may not be simple, because a new secret needs to be 
distributed to other users.   

Our approach does not have a specific mechanism 
for situations when many users and service providers are 
in a given place, for example, a stadium.  A discovery 
process will cause many false positive matches and 
waste computation resources and energy.  Moreover, our 
approach may be inefficient when a user knows the 
existence of a service and its associated service provider, 
such as repeated discoveries in a short time period.  We 
would like to improve our design to support these 
situations.  A possible solution is to integrate with more 
precise discovery approaches, such as the approach used 
in PrudentExposure.  However, the rules to determine 
when to use a precise approach and when to use a 
progressive approach could be complex.  

The calculation of )(userp  and )(servicep is based 

on history information, and we are working on providing 
detailed algorithms for updating them.  Service 
providers, who move around frequently, may only use 
recent discovery information for the calculation, while 
less mobile service providers may use more history 
information for the calculation.    

Acknowledgments 

We thank Lyudmila Sakhanenko for formal proof of the 
expected number of code word conflicts described in 
Section 3.2, and James Stapleton for discussing the 
hypothesis testing approaches described in Section 4.1. 

References 
[1] T. Kindberg and A. Fox, "System Software for 
Ubiquitous Computing," IEEE Pervasive Computing, 
January-March, pp. 70-81, 2002. 
[2] F. Zhu, M. Mutka, and L. Ni, "Classification of 
Service Discovery in Pervasive Computing Environments," 
Michigan State University, East Lansing MSU-CSE-02-
24,available at 

http://www.cse.msu.edu/~zhufeng/ServiceDiscoverySurvey.pd
f, 2002. 
[3] Microsoft Corporation, "Universal Plug and Play 
Device Architecture," Version 1.0 ed: Microsoft Co., 2000. 
[4] M. Nidd, "Service Discovery in DEAPspace," IEEE 
Personal Communications, August, pp. 39-45, 2001. 
[5] M. Balazinska, H. Balakrishnan, and D. Karger, 
"INS/Twine: A Scalable Peer-to-Peer Architecture for 
Intentional Resource Discovery," presented at Pervasive 2002 - 
International Conference on Pervasive Computing, Zurich, 
Switzerland, 2002. 
[6] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and 
J. Lilley, "The design and implementation of an intentional 
naming system," presented at 17th ACM Symposium on 
Operating Systems Principles (SOSP ’99), Kiawah Island, SC, 
1999. 
[7] C. Ellison, "Home Network Security," Intel 
Technology Journal, vol. 06, Issue 04, pp. 37-48, 2002. 
[8] Salutation Consortium, "Salutation Architecture 
Specification," The Salutation Consortium Inc.available at 
ftp://ftp.salutation.org/salute/sa20e1a21.ps, 1999. 
[9] E. Guttman, C. Perkins, J. Veizades, and M. Day, 
"Service Location Protocol, Version 2," available at 
http://www.ietf.org/rfc/rfc2608.txt, 1999. 
[10] Bluetooth SIG, "Specification of the Bluetooth 
System -- Core," available at 
http://www.bluetooth.org/docs/Bluetooth_V11_Core_22Feb01
.pdf, 2001. 
[11] Bluetooth SIG Security Expert Group, "Bluetooth 
Security White Paper," available at 
http://grouper.ieee.org/groups/1451/5/Comparison%20of%20P
HY/Bluetooth_24Security_Paper.pdf, 2002. 
[12] S. Czerwinski, B. Y. Zhao, T. Hodes, A. Joseph, and 
R. Katz, "An Architecture for a Secure Service Discovery 
Service," presented at Fifth Annual International Conference 
on Mobile Computing and Networks (MobiCom '99), Seattle, 
WA, 1999. 
[13] F. Zhu, M. Mutka, and L. Ni, "PrudentExposure: A 
Private and User-centric Service Discovery Protocol," 
presented at 2nd IEEE Annual Conference on Pervasive 
Computing and Communications, Orlando, Florida, 2004. 
[14] P. Bonatti and P. Samarati, "Regulating service 
access and information release on the Web," presented at 7th 
ACM conference on Computer and communications security, 
Athens, Greece, 2000. 
[15] T. Yu and M. Winslett, "A Unified Scheme for 
Resource Protection in Automated Trust Negotiation," 
presented at 2003 IEEE Symposium on Security and Privacy, 
Oakland, CA, 2003. 
[16] M. Krzywinski, "Port Knocking: Network 
Authentication Across Closed Ports," in SysAdmin Magazine, 
vol. 12, 2003, pp. 12-17. 
[17] T. Pering, M. Sundar, J. Light, and R. Want, 
"Photographic Authentication through Untrusted Terminals," 
IEEE Pervasive Computing, January-March, pp. 30-36, 2003. 
[18] M. Bellare, R. Canettiy, and H. Krawczykz, "Keying 
Hash Functions for Message Authentication," presented at 
Advances in Cryptology–CRYPTO ’96 (LNCS 1109), 1996. 
[19] A. Menezes, P. v. Oorschot, and S. A. Vanstone, 
Handbook of Applied Cryptography: CRC Press, 1996. 
[20] S. Ross, Introduction to Probability Models, eighth 
ed: Academic Press, 2003. 
[21] J. Rice, Mathematical Statistics and Data Analysis, 
Second ed: Duxbury Press, 1995. 


