
Ordering Management Actions in Pervasive Systems using
Specification-enhanced Policies

Chetan Shankar and Roy Campbell

Dept. of Computer Science, University of Illinois at Urbana-Champaign
{chetan, roy}@cs.uiuc.edu

Abstract

A pervasive system features a plethora of

devices, services and applications organized as a
large distributed system. One approach to
managing such systems is by policies where
administrators specify the management action to
be taken in different situations using Event-
Condition-Action (ECA) rules. An important
problem with policy-based management of a
pervasive system is that multiple rules can get
triggered on a single event and the behavior of the
system depends on the order of rule enforcement.
Systems managed using ECA policies do not
provide guarantees about system behavior when
multiple rules are concurrently triggered.

In this paper, we present a novel rule
framework called Event-Condition-Precondition-
Action-Postcondition (ECPAP) that combines
axiomatic specifications with ECA rules for
specifying management rules. ECPAP rules
contain action specifications in first-order
predicate logic that enables us to reason about the
enforcement order. We define a notion called
enforcement semantics for policy-based
management and show how this can be used to
provide guarantees about system behavior. We
present the details of the framework.

1. Introduction

Pervasive systems constitute large collections
of heterogeneous and mobile devices, services and
applications. Commercial deployment of these
systems in smart offices, aware homes and other
establishments requires an infrastructure that
enforces organizational guidelines for usage of
these systems. Policy-based management is a
popular approach for enforcing such

organizational requirements in network switches
[3], content distribution networks [4], distributed
systems [5] and pervasive systems [6, 1]. Policies
are a means of specifying and influencing
management behavior within a system, without
coding the behavior into the manager agents [8].
These policies may be used for managing different
aspects of a system such as Fault, Configuration,
Accounting, Performance and Security [7].

Our notion of a pervasive system is a

physically-bounded collection of devices,
applications and services, called Active Space [9].
Gaia distributed meta-operating system [17]
provides services for discovering new devices and
services, integrating services of mobile devices
with that of the space, migrating applications and
data across devices and for various other
functionalities. We use policies to manage the
dynamism and configuration of resources of an
active space. Policies guide the behavior when
mobile devices are brought into the active space;
applications are started; device file systems are
mounted and so on.

Typically, policy-based management systems
use policies designed using Event-Condition-
Action (ECA) rules. These rules specify the action
to be performed when a certain event occurs and
the specified condition is satisfied. A typical rule
would look like, “if a device physically enters the
active space and the device is owned by the space
owner, mount device file system”. A mobile
device entering the active space generates an event
in our location system [10]. The management
system receives this event, checks the device
ownership and mounts the device file system onto
the active space file system.

Management policies are designed by system
administrators who modify them periodically to

conform to organizational and user requirements.
Policies get altered by addition and deletion of
rules as devices and applications are added or
removed from the system, organization and user
needs change and due to various other system
dynamisms. An active space may have more than
one administrator controlling different aspects of
the system resulting in different policies that need
to be merged. Policies may be designed for
various system granularities such as domains,
devices and applications and therefore multiple
policies may simultaneously apply. Such policy
operations create several inconsistencies among
rules such as conflicts [2], dominance [12] and
insufficient coverage [24]. In addition, multiple
rules may need to be enforced on the occurrence
of a single event and the management system
should determine the enforcement order of these
rules. Existing policy-based management systems
execute rule actions once an event is received and
condition is verified. If multiple rules are triggered
by a single event the order of execution of the rule
actions determines the behavior of the system. For
example, policy rule R1 may state “if a device
enters an active space and the space has stopped,
restart space” and rule R2 may state “if a device
enters an active space, authorize device”. When a
device enters the active space that is not running,
both rules are triggered. If rule R1 is enforced
before R2, then the active space and authorization
application are both started. But if R2 is enforced
before R1 the authorization application fails to start
because the space services are not running.
Current policy-based systems do not provide any
guarantees to the order of enforcement of the
management rules. While several research projects
have addressed conflict detection [2, 3, 11],
dominance checks [12] and coverage checks [24]
no project on policy-based management has
addressed the problem of ordering rule
enforcement, to the best of our knowledge.

In order to reason about the order of
enforcement, management systems require explicit
specifications of rule actions and therefore policy
rules based on ECA framework are unable to
address the above problem. We have developed a
specification-enhanced rule framework called
Event-Condition-Precondition-Action-
Postcondition (ECPAP) for specifying
management rules for active spaces [1, 2]. ECPAP

rules contain axiomatic specification of rule
actions in first-order predicate logic as pre- and
post-conditions. The pre-condition specifies the
partial system state before execution of rule action
while post-condition specifies the partial system
state once the action has successfully executed.
Note that rule condition is different from pre-
condition because the rule condition is specified
by the policy designer while the pre-condition is
specified by the action developer (programmer).
We have used the ECPAP rule framework for
conflict detection and resolution and monitoring of
rule enforcement in [2] and analyzing policy
cycles in [1]. In this paper, we show how the
ECPAP framework can be used to reason about
enforcement order of rules. A typical policy
containing ECPAP rules is shown in figure 2.

When multiple rules are triggered by a single
event the management system detects conflicts and
resolves those using priorities [1, 2]. The system
then analyzes dependencies between different rule
actions using pre- and post-conditions and
constructs a Petri net-based workflow that defines
the enforcement order of rules.

The problem of guaranteeing certain
enforcement order of rules in management systems
is roughly analogous to the problem of providing
transaction guarantees in databases. Transaction
semantics defines the order in which concurrent
transactions need to be executed to meet certain
correctness criteria. In policy-based management
systems, we need to define similar semantics of
enforcement to define the way in which multiple
triggered rules need to be enforced to meet certain
criteria. Therefore, we define maximum rule
enforcement semantics for policy-based systems
that guarantees that when multiple rules are
concurrently triggered the system successfully
enforces as many rules as possible. We formally
prove that our algorithms for Petri net workflow
construction guarantee the above semantics.

Our extension of the ECA framework with
action specifications follows naturally from
current research efforts in autonomic computing.
There has been widespread interest lately on using
planning techniques from AI for programming and
managing pervasive and distributed systems with
encouraging results [21, 22, 23]. These research

works have shown that annotating actions with
simple pre- and post-condition specifications
provides numerous benefits such as raising the
programming abstraction level and automating
system management. Based on the success of these
efforts we have extended management policies
with action specifications and introduced the
ECPAP framework [1, 2].

In section 2, we discuss our management
system based on the ECPAP rule framework and
present the policy structure. In section 3, we
present algorithms for constructing the Petri net
workflow and define our idea of enforcement
semantics. We discuss the architecture and
implementation details of our system in section 4.
In section 5, we evaluate the system overhead by
determining the algorithmic complexities and use
those to explain empirical results. Section 6
discusses the feasibility of specification-enhanced
programming and management and argues the
viability of extending management policies with
action specifications. In section 7 we relate our
work to research in policy-based management and
finally conclude the paper.

2. ECPAP Management System

Our management system is currently
implemented as a service and receives events from
other services and applications. Figure 1 shows the
flowchart of policy enforcement. A policy is
compiled and checked for conflicts and cycles
using static analysis techniques [1, 2]. An object
file is generated if the policy is free of static
conflicts and loaded into the management system.
The management system subscribes to events in
the policy rules and waits for events to occur.
Once an event is received the management system
determines the set of triggered rules. It analyzes
the set for dynamic conflicts [2] and resolves those
using priorities. It determines the enforcement
order of rules and constructs a Petri net workflow.
This workflow is executed by a workflow
execution engine and the system waits for further
events. Currently we process each event separately
and if subscribed events are generated during the
workflow execution they are cached in the event
reception system for processing in a queue. We are
currently investigating approaches to evaluate
policy rules based on

Figure 1. Flowchart of policy enforcement

complex events that are formed from composition
of simple events and so we do not consider
complex events in this paper.

2.1 Policy Structure

Our management framework uses policies that
are formulated as sets of event-condition-action
rules of the form
 on event if condition do action

A policy rule is read as: “When event occurs
in a situation where condition is true, then execute
action”. The action is a call to a method in a
library of actions where each action is annotated
with a pre-condition and a post-condition by the
action developer (programmer). Therefore, for the
purposes of analysis (and in the rest of the paper)
we consider our policy rules to be of the form
event-condition-precondition-action-postcondition
(ECPAP), although pre-conditions and post-

conditions are not specified as part of the rules. An
action may be invoked by multiple rules in the
policy and this format avoids listing the
specifications at multiple places. We represent an
ECPAP rule as (e, c, p) � (a, s) where e denotes
the rule event, c denotes the condition of the rule,
p is the pre-condition of the rule action, a, and s is
the action post-condition. Our policy rule
framework extends that of Policy Description
Language (PDL) [13] by adding axiomatic
specifications as “extension”s to the rule.

There are three basic classes of symbols:

primitive event symbols, action symbols and
constant symbols. Primitive event symbols
represent basic events that can be subscribed to in
the system. For example, ObjectEnter and
ObjectExit are primitive event symbols that are
generated by the location system when any object
physically enters or exits a geographic region,
respectively. An event is a primitive event symbol
or a term of the form e(T1 t1, …, Tn tn), where e is
a primitive event symbol of n arguments and each
ti is a variable of type Ti. Ti can be a simple type
such as int, float, char or a complex type
consisting of a set of attributes of simple or other
complex types. The condition part of an ECPAP
rule is an expression of the form p1 && p2 && …
&& pn where each pi is a predicate of the form
x1θx2 and each xi is a constant, a variable that
appears in the event part of the rule or a function
and θ is a relational operator. Each action symbol
denotes the name of a procedure that can be
invoked in the system. An action is of the form
proc(t1, …, tn) where proc is an action symbol and
tis are parameters. For example, restartSpace(s) is
an action where s denotes an active space. Actions
are defined in an action library that also contains
pre- and post-conditions of actions. Pre-condition
of an action is a first-order predicate logic formula
of the form p1 && …&& pn, where each pi is a
first-order predicate of the form Q1t1…Qntn
pred(t1, .., tn): Qi is an optional quantifier and each
ti is a constant or a variable. Post-condition of an
action is a predicate logic formula of the form
Q1y1…Qnyn (events(E) && P), where P is of the
form (p1 && …&& pn) and each pi is a predicate,
E is of the form (e1 && …&& em) where each ei is
a primitive event and Qis are optional quantifiers

and yis are variables that appear in the E and P
parts of the formula. E represents the conjunction
of events that are produced by the action and P
represents the condition that exists after all events
in E have been observed (events(E) is true). We
use the events keyword to identify the event part
from the condition part. Post-conditions provide
an action specification by listing all observed
events produced by the action and the perceived
partial state of the system after all events have
been observed. Our active space uses
asynchronous communication and therefore we
use this approach, based on runtime verification
techniques, to monitor action execution [2].

A policy, P is a finite set of ECPAP rules and

is formally defined as P = {r | r is an ECPAP rule}.
The management system enforcing the policy
expects as input an event, e and its occurrence is
represented by occ(e). The semantics of each rule,
(e, c, p) � (a, s) in the policy is specified by the
implication,

occ(e) ∧ c ∧ p � exec(a)
exec(a) � �s

where exec(a) represents the initiation of the
execution of action a. � is the eventually temporal
operator [14] and �s means that s becomes true
after a few execution steps. We are using a
monitoring framework to monitor policy action
execution. We interpret �s as bounded eventually
implying that s becomes true in a bounded number
of execution steps or the action is assumed to have
failed. The number of steps is system dependent
and is independent of the ECPAP rule framework.

A typical management policy used in our
active space is shown in figure 2. The policy
language uses terms defined by services in our
active space. For example, ObjectEnter(Device d,
Space s), is an event term that represents an event
that is fired by the location system when a device
is physically brought into an active space. Events
contain data that map to arguments when the event
is received by the management system. Device and
Space are user-defined data types and the variables
d and s contain values of the identifiers of device
and space, respectively, when the event is
received. Rule R1 restarts the active space (and its

various services) if it has stopped when a device
enters the space. Rule R2 authorizes a device of
role guest if it enters the space. We have assigned
roles to mobile devices to differentiate between
devices of different users. Rule R3 mounts a
laptop’s file system onto the active space file
system [18] when the laptop is brought into the
active space and R4 unmounts it when the laptop
leaves the space. The pre- and post-conditions of
the actions are shown italicized in braces, above
and below each rule action. When a guest user
with a laptop enters an active space that is not
running, the location system generates an
ObjectEnter event that triggers rules R1, R2 and R3.
A rule is said to be triggered when its event has
been observed and its condition has been
evaluated to true. A rule is said to be enforced
when its action is executed. The order of
enforcement of the rules determines the behavior
of the space. If R2 is executed before R1, R2 fails
since all services of the active space are stopped.
Similarly, if R3 is enforced before R1, R3 fails
since the active space file system is not running.
But if R1 is enforced before R2 and R2 is enforced
before R3, the active space successfully restarts the
space, authorizes the device and if successful
mounts the laptop’s file system. Therefore, when
multiple rules are simultaneously triggered, the
order of enforcement of rules determines the final
system state. A policy-based management system
must provide guarantees when multiple rules need
to be concurrently enforced so that the system
behavior is deterministic. Existing policy-based
management systems based on ECA rules do not
contain specifications of actions required for
reasoning and so do not provide guarantees which
can lead to unpredictable system states. Since our
ECPAP rules contain action specifications we can
reason about rule ordering and provide
enforcement guarantees. In this paper, we show
how the ECPAP framework is used for
guaranteeing that when multiple rules are
simultaneously triggered, the system enforces
rules in an order that maximizes the number of
rules successfully enforced.

R1: on (ObjectEnter(Device d, Space s))

if (statusSpace(s) = = “stopped”)
{statusService(spaceRepository(s), not_running}
do(restartSpace(s))
{events(endRestartSpace(s)) &&
 statusSpace(s, running)}

R2: on (ObjectEnter (Device d, Space s))

if (roleDevice(d) = = “guest”)
{statusSpace(s, running)}
do(authorizeDevice(d, s))
{events(endAuthorizeDevice(d, s)) &&
 authorizationStatus(d, authorized)}

R3: on (ObjectEnter (Device d, Space s))

if (deviceType(d) = = “laptop” &&
 roleDevice(d) = = “guest”)
{statusSpace(s, running) && authorizationStatus(d,
authorized)}
do (mountFileSystem(d, s))
{events(endMountFileSystem(d, s)) &&
 statusFileSystem(d, mounted)}

R4: on (ObjectExit (Device d, Space s))
 if (deviceType(d) = = “laptop”)
 {statusFileSystem(d, mounted)}
 do(unmountFileSystem(d, s))

{events(endUnMountFileSystem(d, s)) &&
 statusFileSystem(d, unmounted)}

Figure 2. A typical active space policy

3. Ordering Management Action Execution

A management policy evolves over time by
addition and deletion of rules, rule modifications
and compositions. Therefore, each rule is
generally enforced independent of other rules in
the policy. This implies that when multiple rules
are simultaneously triggered it is desirable that all
rules are successfully enforced. As demonstrated
in the previous section, order of enforcement of
rules determines if a rule action successfully
executes. Therefore, we define a notion called
enforcement semantics that provides certain
guarantees about rule enforcement. Enforcement
semantics of a policy-based management system
dictates the way rules are to be enforced when
multiple rules are simultaneously triggered. Since
our goal is to successfully execute as many rules
as possible, we call the enforcement semantics of
our management system as maximum rule
enforcement semantics. This semantics guarantees
that the management system enforces rules in an
order that ensures as many rules are successfully
enforced as possible, provided no other errors
cause rule enforcement to fail.

When a set of rules is triggered, we determine
the execution order of the rule actions by
constructing a workflow that expresses

dependencies between different actions. The pre-
and post-conditions of actions are used to
determine which action enables which other
actions. An action is said to enable another action
if the post-condition of the former satisfies the pre-
condition of the latter. For example, in the policy
in figure 2, when rules R1 and R2 are
simultaneously triggered, execution of the action
of R1 brings the active space to a running state as
indicated by the corresponding post-condition.
This satisfies the pre-condition of action of rule R2
and thus enables R2’s action. Therefore, enforcing
R1 before R2 successfully enforces both rules.

The workflow of rule actions is represented as
a Boolean Interpreted Petri net (BIPN) [16]. A
Boolean Interpreted Petri net is a Petri net [19]
whose transitions are assigned Boolean functions.
A transition can fire only when all of its input
places are marked and its Boolean function
evaluates to true. We assign a place to each action
and each transition is assigned the pre-condition of
the action that is connected by a directed edge
from the transition as the Boolean function. The
Petri net for the triggered rules (R1, R2 and R3) of
figure 2 when the ObjectEnter event is received is
shown in figure 3. The action of rule Ri is
represented as Ai.

�����

����

���������	�
�����

�
��

���������	�
�����

�
�����

������������
������
��������������
����

�
�

�
�

�
�

Figure 3. Petri net workflow for triggered rules
of policy in figure 2

Definition 1. Formally, the BIPN of a set of
actions A={a1,…,an} is a 1-safe marked Petri net
[16] represented as a triple B = (P, T, F) where
P = {place(a) | ∀a ∈ A} ∪ {Start}, where place(a)
is the place representation of action a.
T={tK,pre(a)|∀x∈K, tK,pre(a)∈x⋅⋅⋅⋅∧�place(a)∈tK, pre(a)⋅⋅⋅⋅ },
where K is a set of places and for x ∈ P ∪ T,
⋅⋅⋅⋅x = {y | yFx} is called the input set of x and

x⋅⋅⋅⋅ = {y | xFy} is called the output set of x

and the flow relation, F ⊆ (PxT) ∪ (TxP) such that
dom(F) ∪ codom(F) = P ∪ T. pre(a) represents
the pre-condition of action a.

3.1 Petri net Workflow Construction

A Petri net workflow expresses dependencies
between different actions and therefore to
construct a workflow we analyze each pair of
actions to determine if one enables the other. Pre-
conditions of certain actions are satisfied by the
current system state and therefore these actions are
called trivially-enabled actions.

Definition 2. An action a is said to be trivially-
enabled if the current state of the system, I,
satisfies its pre-condition. It is represented as I
pre(a), where is the satisfies symbol.

Intuitively, trivially-enabled actions are
independent of other actions and can be executed
as the first set of actions in the workflow. For
example, the pre-condition in rule R1 is
statusService(spaceRepository(s), not_running).
spaceRepository(s) returns the identifier of an
active space service called Space Repository that
contains information about applications and
devices in the active space. If the space repository
is not running, it implies that there are currently no
running applications in the active space and so it is
safe to restart the space. If the active space is not
running, the pre-condition evaluates to true and
therefore A1 can be executed independent of A2
and A3. The algorithm to determine trivially-
enabled actions is shown below.

Algorithm 1: Trivially-enabled action analysis

V = {}: set of trivially-enabled actions
A : set of actions of triggered rules
for each action a in A
 if pre(a) evaluates to true
 V = V ∪ a

Once trivially-enabled actions have been
identified, we check to see which action enables
which other actions through enablement analysis.

Definition 3. An action a1 is said to enable action
a2 if post(a1) pre(a2) where post(a1) represents

the post-condition of action a1 and a2 is not
trivially-enabled. This implies that execution of a1
would satisfy the pre-condition of a2 and so a2 can
be executed after a1. Since trivially-enabled
actions are already enabled by current system state
we do not check to see if any actions enable them.
The algorithm for enablement analysis is shown
below.

Algorithm 2: Enablement analysis

Enable(a) = {} : set of actions enabled by action a
V : set of trivially-enabled actions from algo. 1
A : set of actions of triggered rules
for each action a ∈ A
 for each action b ∈ A-V
 if post(a) pre(b)
 Enable(a) = Enable(a) ∪ {b}

This algorithm determines that executing A1
enables A2. Post-conditions of some actions may
satisfy part of the pre-condition of another action.
For example, post-condition of A1 –
events(endRestartSpace(s)) &&
statusSpace(s,running) – satisfies a part of the pre-
condition of A3 (statusSpace(s, running)).
Similarly, post-condition of A2 satisfies a part of
the pre-condition of A3. Therefore, A1 and A2 must
be executed to enable A3. We say that each action
A1 and A2 partially-enables A3. Note that the
variables s and d in predicates
statusSpace(s,running) and authorizationStatus(d,
authorized) are bound to values of the active space
and device during evaluation, respectively, and
thus form propositions whose satisfiability checks
are decidable.

Definition 4. An action a1 is said to partially-
enable action a2 if post(a1) partial-pre(a2),
where partial-pre(a2) is a conjunction of some
proper subset of conjuncts of pre(a2). A set of
partially-enabling actions of an action a that
together enable a is called a partial-set of a. An
action may have multiple partial-sets and
therefore, the set of all partial-sets of a is denoted
by partial-sets(a). In the above example, partial-
sets(A3) = { {A1, A2} }. The following algorithm
determines the partial-sets.

Algorithm 3: Partial-sets determination

Partial-sets(a) = {} : set of partial-sets of action a
A : set of actions of triggered rules
V : set of trivially-enabled actions
S : temporary set
for each action a ∈ A-V
 S = {}
 for each action b ∈ A-{a}
 if b partially-enables a
 S = S ∪ {b}
 for each subset s of S
 if (cardinality(s) > 1)
 p = true
 for each action c ∈ s
 p = p ∧ post(c)
 if p pre(a)
 Partial-sets(a) = Partial-sets(a) ∪ {s}
 end if
 end for
end for

The above algorithm determines for every
action a that is not trivially-enabled, which set of
actions collectively enable a. If the set contains
only one action, then it implies that a single action
enables a and therefore is already determined by
algorithm 2. Therefore, algorithm 3 only considers
sets having more than one element. In addition, the
algorithm does not test an action with itself as this
might lead to a deadlock.

Though the algorithm for partial-enablement
analysis can replace enablement analysis of
algorithm 2, we separate the two algorithms since
partial-enablement analysis has a much higher
complexity as detailed in section 5.

Once we determine the partial-sets, we
construct the workflow as a Petri net using
algorithm 4. The Petri net is represented as an
adjacency set of places and transitions.

Algorithm 4: Petri net Workflow Construction
A : set of actions of triggered rules
V : set of trivially-enabled actions
Enable(a) : set of actions enabled by action a
Partial-sets(a) : set of all partial-sets of action a
P = {Start} : set of Petri net Places –
 initialized to Place called ‘Start’

T = {} : set of Petri net Transitions
place(a) : Place for action a
adj(x) : adjacency set of x, x ∈ P ∪ T
trans(p, f) : Transition with function f
 connected by edges from places in set p

for each action a ∈ A
 P = P ∪ {place(a)}
t = trans({Start}, true)
adj(Start) = adj(Start) ∪ {t}
T = T ∪ {t}

for each action a ∈ V //trivially-enabled actions
 adj(t) = adj(t) ∪ {place(a)}
for each action a ∈ A //enable
 for each action b ∈ Enable(a)
 t = trans({place(a)}, pre(b))
 if t ∉ T
 T = T ∪ {t}
 adj(place(a)) = adj(place(a)) ∪ {t}
 end if
 adj(t) = adj(t) ∪ {place(b)}
 end for
end for
for each action a ∈ A-V //partially-enable
 for each set s ∈ Partial-sets(a)
 t = trans(s, pre(a))
 T = T ∪ {t}
 adj(t) = adj(t) ∪ {place(a)}
 for each action b ∈ s
 adj(place(b)) = adj(place(b)) ∪ {t}
 end for
end for

This algorithm constructs a BIPN using the
results from algorithms 1-3. It initializes the Petri
net by assigning a place to every action. The Start
place is connected to each place representing
trivially-enabled actions through a transition with
the true Boolean function. We assign the Boolean
function true to the transition since the pre-
condition of all trivially-enabled actions evaluate
to true. For each action a enabling action b a
transition is created with the Boolean function
pre(b) that connects place(a) to place(b). Finally,
for every set of actions s enabling an action a, a
transition with Boolean function pre(a) is created
that connects places representing actions in s to
place(a).

The Petri net generated from algorithm 4 for
action set A is represented as B = (P, T, F) where
P = {place(a) | ∀a ∈ A} ∪ {Start}
T = {ti,j | (i = {Start}, j = true) ∧
 (i = {place(a)}, j = pre(b) | ∀a,b ∈ A,
 (post(a) pre(b)) ∧ (pre(b) true)) ∧
 (i = s, j = pre(b) | ∀b∈A, (∀s ∈ 2P-{Start},Λ∀k∈ s
 post(action(k))) pre(b)) },
action(k) represents the action in set A assigned to
place k.
F = { (x,y) | ∀ti,j ∈ T, ∀x ∈ i, y=ti,j} ∪ {(x,y) |
 ∀ti,j∈T,(x= ti,j∧y=place(k),∀k∈A | j=pre(k))}

The three conjuncts in the definition of T
correspond to the transitions resulting from
algorithms 1-3. The transitions are labeled ti,j

where i = ⋅⋅⋅⋅ti,j and j is the assigned Boolean
function. The flow relation, F, represents the
various edges of the Petri net.

Theorem 1. For a set of actions A = {a1, … , an},
the Petri net generated by algorithm 4 enables
maximum number of actions starting from the
current system state I.

Proof. To prove the above theorem, it is sufficient
to prove that for every action a ∈ A, if I �k a, then
there is a reachable path [19] in the Petri net from
the Start place to place(a), where I �k a means
that starting from the current system state I,
successful execution of k actions of A enables a. X
� a1 implies execution of all actions of set X
enables a1.

We prove this by structural induction on the
Petri net.

Basis: I �0 a
pre(a) is satisfied by current system state and so a
is trivially-enabled by algorithm 1. Therefore,
t{Start}, true ∈ T and {(Start, t{Start}, true), (t{Start}, true ,
place(a))} ⊆ F. Therefore, there is a reachable
path from S to place(a) through the transition
labeled t{Start}, true.

Hypothesis: Assume if I �k a there is a reachable
path from Start to place(a). We need to prove that
if I �k+1 a1 there exists a reachable path from Start
to place(a1).

Since I �k a from our inductive hypothesis,

there is a set of actions A� ⊂ A such that ∀x ∈ A�,
I�l≤ k x and A� � a1. Therefore, there is a
reachable path from Start to place(x) for all x∈ A�.
There are two cases to consider.

Case 1: A� = {a}

Since a is found to enable a1 from enablement
analysis in algorithm 2, t{place(a)}, pre(a1) ∈ T and
{(place(a), t{place(a)}, pre(a1)), (t{place(a)}, pre(a1) ,
place(a1))} ⊂ F. Therefore, there is a reachable
path from place(a) to place(a1) and since by
hypothesis there exists a reachable path from Start
to place(a), by transitivity, there is a reachable
path from Start to place(a1).

Case 2: Cardinality(A�) > 1

Actions in A� are found to enable a1 from
partial-enablement analysis in algorithm 3.
Therefore, t{place(x)| ∀x∈A�}, pre(a1) ∈ T and {(place(a) |
∀a∈A�, t{place(x) | ∀x∈A�}, pre(a1)), (t{place(x) | ∀x∈A�}, pre(a1) ,
place(a1))} ⊂ F. Therefore, there is a reachable
path from place(x), ∀x ∈ A� to place(a1) through
the transition t{place(x) | ∀x ∈A�}, pre(a1). Since there is a
reachable path from Start to place(x),∀x ∈ A� from
our hypothesis, by transitivity, there is a reachable
path from Start to place(a1). �

3.2 Petri net Workflow Execution

Once the workflow is constructed, the actions
are executed using our Petri net workflow
execution engine. The engine analyzes the Petri
net for any deadlocks using the deadlock detection
algorithm described in [19]. If a deadlock is found
the execution engine does not execute any action
in the workflow. Currently, we do not resolve
deadlocks and abandon the workflow. If the Petri
net is deadlock-free, the engine uses a simple Petri
net traversal algorithm based on Breadth-First
Search (BFS) to traverse the net and execute
actions. The transition states of the Petri net act as
synchronization points in the workflow. When
multiple places lead to a single transition, the
engine waits for the completion of all actions in
the places before executing actions of places
leading out of the transition. At each transition, the
engine verifies the Boolean function for
satisfaction before executing the following action.

4. Architecture and Implementation

Figure 4. Management Service Architecture

Figure 4 illustrates the architecture of the
management service. The management service
contains a coordinator component that coordinates
the interactions among various components of the
service. The policy compiler compiles the
management policy and generates an object file.
The action library contains a library of actions that
can be invoked from the action part of the policy
rule. The management service uses dynamic
invocation to invoke actions and this enables
actions to be dynamically added into the action
library. In addition, the action library contains
action specifications as pre- and post-conditions.
These specifications are used for static and
dynamic conflict detection and resolution [2],
termination analysis [1] and for reasoning about
enforcement order when multiple rules are
simultaneously triggered. The policy loader loads
the generated object file into the management
service. The service stores the policy rules in a
policy store, which is a simple database. The event
receiver is responsible for subscribing to events
and receiving them when they occur. The event
receiver verifies the types of the parameters in the
events and notifies the management coordinator of
the event occurrence along with the parameters.
The management coordinator determines the
triggered rules, and uses the rule processor to test
the rule condition expressions. If a condition
evaluates to true the rule is added to a triggered
action set. The dynamic conflict resolver
determines and resolves any conflicts among rules
in the action set [2]. The workflow generator
constructs a Petri net workflow of actions that is
executed by the workflow execution engine.

Enforcement verifier detects the end of each rule
action by monitoring the events in the post-
condition and informs the workflow executor.

Our active space consists of various devices
such as plasma displays, tablet PCs, desktops,
laptops, cameras and sensors and Gaia operating
system [17] provides essential services for
discovering resources, sharing data and running
applications in the space. The Gaia OS kernel
services run on Windows 2000/XP. The services
are implemented in C++ and Java using CORBA
as the communication middleware. The CORBA
implementation used for Windows 2000/XP is
Orbacus. The management system is implemented
in Java. It uses a Prolog reasoner called XSB and
uses JNI interfaces to communicate with XSB.
The policy compiler and loader are implemented
in Java. The policy compiler has a parser that is
generated using the ANTLR parser generator tool.
We use CORBA event channels for event
communication and we have extended them to
support parameterized events. Location of an
object is sensed by Ubisense Location System [25]
installed in our active space lab. Ubisense uses
ultra wideband (UWB) sensing technology to
detect location of Ubisense badges. Each device is
associated with a badge and the location of the
badge indicates the location of the device.

5. Evaluation

The management system is currently used for
managing configuration of our active space when
mobile devices are brought into the space; new
services and applications are deployed in the
space; applications are migrated across spaces and
so on. The location service of Gaia [10] and
presence service [17] are used for generating
configuration change events. Location service
generates location events when badges enter or
exit a region while presence service generates
events when new applications and services are
started or stopped in the system. In this section, we
will discuss the algorithmic complexities of the
various algorithms presented in the paper and use
them to explain the system performance that we
have empirically measured.

Trivially-enabled action analysis (algorithm 1)
has a linear complexity of O(n) pre-condition

checks for n actions. Enablement analysis
(algorithm 2) does a pair-wise satisfiability check
of actions and therefore has a quadratic
complexity of O(n2). Partial-enablement analysis
(algorithm 3) analyzes for each action if it is
enabled by a set of actions. Each action subset
must be determined and this has an exponential
complexity of O(2n). Since each subset is tested to
see if it enables the action for all actions the final
complexity is O(n22n). Currently, algorithm 3 has a
very high complexity but there are various
optimizations that can be performed to reduce the
value of n. For example, the enablement analysis
algorithm reduces the number of rules to be
verified during partial-enablement analysis. Since
enablement analysis has a quadratic complexity
the overall performance overhead is greatly
reduced. In addition, the number of rules that are
normally triggered on a single event is quite less
(less than 5 rules per event in our active space
policy) and so the overhead is tolerable. We are
currently looking at static analysis techniques to
determine dependencies between different rules at
policy compilation time. Finally, the Petri net
generation algorithm (algorithm 4) has a worst-
case complexity of O(n22n) since it uses results
from partial-enablement analysis algorithm and so
is bounded by the latter’s complexity.

The performance overhead for Petri net
workflow generation is shown in figure 5. The
management system was executed on a
Pentium(M) 1.7GHz machine with 1.0GB RAM.
Figure 5(a) shows the overhead with varying
number of triggered rules. Our test policy had
multiple instances of the same rule since the focus
was on testing the overhead of the system. As
predicted from the algorithmic complexity
described above the overhead is exponential with
the number of triggered rules. For 15 triggered
rules the overhead was found to be around 3
seconds. Normally, for a typical policy, the
number of rules triggered on a single event can be
expected to be much less than 15 and so the
approach is feasible.

The number of predicates in pre- and post-
conditions of actions influences the Petri net
generation overhead. Therefore, we measured the
overhead with varying number of predicates in
action specifications. Figure 5(b) illustrates

Petri net Generation Overhead

0

500

1000

1500

2000

2500

3000

3500

3 4 5 6 7 8 9 10 11 12 13 14 15

Number of triggered rules

Ti
m

e
(m

s)

(a)

Petri net Generation Overhead
(Number of triggered rules = 3)

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128 256 512 1024

Number of Predicates

T
im

e(
m

s)

(b)

Figure 5. Petri net Workflow Generation
Overhead – (a) Overhead vs Number of

Triggered Rules (b) Overhead vs Average
Number of Predicates

the performance overhead of the system. The x-
axis indicates the average number of predicates for
each pre- and post-condition. The y-axis shows the
overhead in milliseconds. The overhead is less
than linear though the curve appears exponential
in the graph due to the exponential increase in the
values of x-axis.

6. Discussion

Specification-enhanced programming and
system management have recently gained
prominence as important approaches to reducing
programming and management efforts of complex
systems [1, 2, 21, 22, 23]. In [1, 2] we showed
how extending actions with specifications enabled
advanced conflict and termination analysis for
policy-based management systems. Andrzejak et
al [21] have used actions with pre- and post-
conditions for planning complex workflows from
simple actions for system management. Anand et
al [22] use specification-enhanced actions,
expressed as pre-conditions and effects, for
programming pervasive computing environments.
The ABLE project [23] uses axiomatic
specifications of actions for goal-based autonomic

computing. All of these approaches have shown
that providing specifications for actions is a
feasible extension that provides numerous
benefits. Therefore, it would be fair to assume that
actions for policy-based management can be
annotated with specifications and is a viable
approach.

Currently, in this work we assume that action
specifications are correct and complete to the
extent required for reasoning about rule
enforcement. Dealing with incorrect and
incomplete specification is an orthogonal problem
and does not fall within the scope of our work.

7. Related Work

Policy-based management has been an active
area of research for the past few years and many
projects have focused on designing policy
languages [6, 13, 15], detecting and resolving
policy conflicts [2, 8, 11] and various other
analyses [7, 12, 23]. To the best of our knowledge,
no research work on policy-based management has
addressed the problem of ordering management
rules and providing enforcement guarantees as we
have addressed in this paper. One of the well-
addressed problems when multiple rules are
triggered is conflict analysis. Dunlop et al [20] use
temporal characteristics of policies to dynamically
reason about policy consistency. Their approach
detects a large class of conflicts that cannot be
detected statically. The focus of their work is on
conflict analysis and not on ordering rule
enforcement as we have presented in this paper. In
[1] we used the ECPAP framework to detect and
resolve dynamic conflicts that occur due to side-
effects of actions. In this paper, we use this work
for conflict analysis prior to constructing the Petri
net workflow. Sloman et al [5, 7, 8] have
contributed extensively to research on policy-
based management of distributed systems. They
have developed the Ponder policy specification
language and defined techniques for conflict
analysis and role-based management. To the best
of our knowledge, their work does not address the
problem of ordering concurrently triggered rules.
Many research projects in autonomic computing
reason about action ordering [21, 22]. These
projects are based on AI planning techniques
where users specify high-level goals and the

planning system determines the ordered set of
actions to be executed to reach the desired goal
state. The main difference between these projects
and our work is that in goal-based approaches the
final system state that needs to be reached is
known and the system has to determine the actions
to be executed to reach that state. In the problem
that we have addressed, the final system state is
unknown. When an event occurs, a set of rules get
triggered and we need to reason about the
execution order of the rule actions based on some
enforcement semantics.

8. Conclusion and Future Work

Pervasive systems and services are gaining
ubiquitous presence with commercial deployments
in smart offices, aware homes and other
establishments. Policy-based management is a
feasible approach for enforcing organizational
guidelines for usage of these systems. Policies are
designed as sets of Event-Condition-Action rules
that guide the behavior of these systems when
certain events occur. Some events trigger multiple
rules and the order of enforcement of these rules
determines the system behavior. In this paper, we
address this problem of ordering enforcement rules
when they are concurrently triggered by a single
event. We use a specification-enhanced rule
framework called Event-Condition-Precondition-
Action-Postcondition (ECPAP) for reasoning
about enforcement order. The new rule framework
enables us to construct a workflow of actions from
triggered rules using Boolean Interpreted Petri
nets. We define a new notion called maximum
action enforcement semantics and show how this
semantics provides enforcement guarantees for
policy-based management of pervasive systems.

Currently, we are investigating several
different enhancements to this work such as
optimization of Petri net generation algorithms,
defining correctness criteria and role-based
approaches to managing pervasive systems.

Reference

[1] C.Shankar and R.Campbell, “A Policy-based Management
Framework for Pervasive Systems using Axiomatized Rule
Actions”, Fourth IEEE International Symposium on Network
Computing and Applications (IEEE NCA05), MA, July 2005.

[2] C.Shankar, A.Ranganathan and R.Campbell, “An ECA-P
Policy-based Framework for Managing Ubiquitous
Computing Environments”, Mobiquitous 2005, San Diego
July 2005.
[3] R. Bhatia, et al., “Policy Evaluation for Network
Management”, INFOCOM 2000, pp.1107-1116.
[4] K. Amiri, et al., “Policy based management of content
distribution networks,” IEEE Network Magazine, 2002.
[5] M. Sloman, “Policy Driven Management For Distributed
Systems”, Plenum Press Journal of Network and Systems
Management, vol 2, no. 4, Dec. 1994, pp. 333-360.
[6] L. Kagal et al., “A Policy Language for a Pervasive
Computing Environment”, IEEE 4th International Workshop
on Policies for Distributed Systems and Networks, June 2003.
[7] E. C. Lupu, “A Role-Based Framework for Distributed
Systems Management”, PhD Thesis, Imperial College,
London.
[8] E. C. Lupu, et al., “Conflicts in Policy-Based Distributed
Systems Management”, IEEE Transactions on Software
Engineering, Vol. 25, Nov 99, pp. 852-869.
[9] A. Ranganathan, et al., “Mobile Polymorphic Applications
in Ubiquitous Computing Environments”, Mobiquitous 2004,
Boston, 2004.
[10] A.Ranganathan et al., “MiddleWhere: A Middleware for
Location-Awareness in Ubiquitous Computing Applications”,
Middleware 2004: ACM/IFIP/USENIX 5th International
Middleware Conference, Toronto, Canada, Oct. 2004.
[11] J.Chomicki et al., “Conflict Resolution Using Logic
Programming”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 15, 2003.
[12] D.Verma, “Simplifying Network Administration using
Policy based Management”, IEEE Network Magazine, 2002.
[13] J. Lobo, et al., “A policy description language”, in Proc.
of AAAI, Orlando, FL, July 1999.
[14] Z.Manna and A.Pnueli, “The Temporal Logic of
Reactive and Concurrent Systems”, Springer-Verlag, 1995.
[15] N.Damianou et al., “The Ponder Specification
Language”, Workshop on Policies for Distributed Systems
and Networks (Policy2001), HP Labs Bristol, 29-31 Jan 2001.
[16] B.N. Roussev, “Self-checking Implementation of
Boolean Interpreted Petri Nets”, IEEE Symposium on
Emerging Technologies and Factory Automation, 1994.
[17] M.Román et al., “Gaia: A Middleware Infrastructure to
Enable Active Spaces”, In IEEE Pervasive Computing, pp.
74-83, Oct-Dec 2002.
[18] C.Hess, “The Design and Implementation of a Context-
Aware File System for Ubiquitous Computing Applications”,
PhD Thesis, UIUC, 2003.
[19] W.Reisig, “Petri Nets : An Introduction”, Springer-
Verlag, New York, 1984.
[20] N.Dunlop et al., “Dynamic Conflict Detection in Policy-
Based Management Systems”, EDOC �02, 2002.
[21] A.Andrzejak et al., “FeedbackFlow - An Adaptive
Workflow Generator for System Management”, ICAC 2005.
[22] A.Ranganathan et al., “Pervasive Autonomic Computing
Based on Planning”, ICAC 2004.
[23] B.Srivastava et al., “The Case for Automated Planning in
Autonomic Computing”, ICAC 2005.
[24] M. Beigi et al. “Policy Transformation Techniques in
Policy-based Systems Management”,
Policy 2004, USA, 2004.
[25] Ubisense – http://www.ubisense.net/

