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Abstract

Not only the proliferation of 802.11, but also the capability to determine the position of mobile devices make 802.11

highly appealing for many application areas. Typically, a mobile device that wants to know its position regularly performs

active or passive scans to obtain the signal strength measurements of neighboring access points. Active and passive

scanning are survey techniques originally intended to be performed once in a while to learn about the presence and signal

reception quality of access points within communication range. Based on this survey the best suitable access point is

selected as the gateway to the wired network. However, so far, no investigations are known to have been launched into

how regular scanning affects concurrent data transmissions from an end-user point of view. In this paper, we explore

how common data communication is affected while actively or passively scanning at the same time. We found that with

an active scanning interval of less than 2 seconds the network conditions such as throughput and round trip delay are

insufficient for interactive applications. The same is true for passive scanning if a scanning interval of less than 7 seconds

is chosen. Furthermore, we present a novel scan scheme called Monitor Sniffing to reduce client service disruptions.

Monitor Sniffing exploits the fact that 802.11 operates on overlapping channels by overhearing the wireless interface.

We have implemented our Monitor Sniffing algorithm using commodity 802.11g hardware, and we demonstrate that it is

faster than active and passive scanning and does not disturb concurrent data communication. Finally, our approach only

requires software modifications on the client side, making the adoption process quite easy.

1 Introduction

During recent years we have seen considerable improvements in downsizing computer hardware and in increasing the

capacity of rechargeable batteries, as well as the advent of wireless networks for the mass markets. These technologies

allowed the manufacturers to build mobile devices that can be carried around and have a similar performance as desktop

computers had several years ago. The benefit of mobile devices can be leveraged by so-called location-based services:

Applications that act differently depending on the location of the user or, even better, proactively offer location-dependent

information to the user, are currently a hot topic in research, and are considered to be a promising market.

Nowadays, the Global Positioning System [12] is the predominant outdoor positioning system. Whereas GPS works well

in many outdoor scenarios, it suffers from obstacles such as skyscrapers creating shielded street canyons or walls blocking
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the radio signal. To this end, a large number of research projects conceived novel positioning techniques (e.g. [22], [23],

[18], [26], and [5]). However, all these systems either require specialized hardware or show poor positioning accuracy.

Many recent research activities focus on IEEE 802.11-based positioning because almost everywhere, especially in oc-

cupied areas of developed countries, 802.11 network infrastructure is available for data communication [2]. Universities,

offices and many private homes utilize 802.11 networks to get rid of wires. As a reaction to the proliferation of 802.11 al-

most all modern mobile devices, ranging from smartphones to laptops, are shipped with build-in 802.11 network interfaces.

802.11 networks are not only used in indoor scenarios; even outdoors, many universities and coffee stop owners support

nomadic users. Furthermore, 802.11 radio waves tend to travel outside the intended area covering adjacent regions as well.

For instance, an access point deployed at a private home is often detectable while passing by [6]. Finally, 802.11-based

positioning systems show sufficient positioning accuracy to be useful for a wide range of applications.

Another key argument for 802.11-based positioning systems is that 802.11 hardware can be used in dual mode: For

data communication and for measuring the signal strength of neighboring access points as a prerequisite for positioning

systems. For instance, the GUIDE tourist guide [7] and PlaceLab [16] are two representatives for outdoor positioning

systems that utilize 802.11 for data transmissions as well as position determination. Many indoor positioning systems such

as RADAR [3], HORUS [28] and COMPASS [15] require a high rate of signal strength readings especially if they are running

in tracking mode.

In 802.11 the typical way of measuring the signal strength of access points within communication range is to perform

active or passive scans. So far, it was unknown what happens to the data communication capabilities of mobile devices

if signal strength measurements in form of active or passive scans are preformed concurrently. This work fills the gap by

investigating how throughput and round trip delay suffer from different scan techniques and intervals.

Based on these results we conclude that active and passive scanning are inappropriate for positioning systems because

they require too much time to gather information about neighboring access points and hence produce large communication

dropouts. To overcome this problem, we propose a novel scanning technique called Monitor Sniffing. Monitor Sniffing

exploits the fact that 802.11 uses overlapping channels by overhearing the wireless interface. Overhearing allows the mobile

device to listen to frames from adjacent channels while concurrently staying on the channel used for data communication

with the access point it is associated with. This is usefull because from [19] and [6] we know that in many populated areas

on average 2.4 access points are in communication range, and very often the access points are configured to channel 6

or 10 as predefined in the factory defaults. We have implemented Monitor Sniffing using commodity 802.11g hardware and

show that this scan scheme does not disrupt concurrent data transmissions and produces faster scanning results. Finally,

our approach is compliant with the existing 802.11 standard and requires only a software update on the client side to get

ready for use.

The rest of the paper is organized as follows. Section 2 introduces active and passive scanning and discusses how these

approaches affect the communication capabilities of mobile devices. In Section 3, we propose Monitor Sniffing, a scan

scheme especially designed for 802.11-based positioning systems. Section 4 presents the relevant related work. Finally, we

conclude the paper and give directions for future work in Section 5.



2 Active vs. Passive Scanning

In this section, we discuss two techniques to discover neighboring access points, namely active scanning and passive

scanning, as described by the IEEE 802.11 standard [11]. After introducing these two techniques, we investigate the effects

of concurrent scanning on common data transmissions.

2.1 Functional Principles

IEEE 802.11 subdivides the radio spectrum into a set of channels. The number of available channels depends on where

802.11 is used and which sub-specification of 802.11 physical layer is selected. For instance, in the United States, only

11 channels are allowed for 802.11b and 802.11g, whereas 13 channels can be used in Europe. In contrast, the commercially

less successful 802.11a defines 12 channels, however, in some countries the radio spectrum of 802.11a is still assigned to

other purposes today.

A wireless network interface usually listens to one channel at a given time. So, if a mobile station wants to know all the

access points in communication range, it has to tune its wireless network interface to each channel, one after another, and

perform a scan.

IEEE 802.11 defines two scanning techniques: Active scanning and passive scanning. The former approach requires a

bi-directional communication initiated by the mobile station. For the latter approach, the mobile station passively listens

for management frames send out by access points. The details of these two techniques are discussed in the following two

sections.

For the remainder of this paper, we focus on the infrastructure mode of 802.11 because this is the typical scenario in the

field of positioning systems. We mainly focus on 802.11g because this is the one most frequently used and it is the latest

substandard of the 802.11 standard family. However, our results are also applicable to 802.11b. Furthermore, we assume a

scenario where we are located in Europe and 802.11 operates on 13 channels.

2.1.1 Active Scanning

A mobile device follows the subsequent procedure for each channel to perform an active scan: It tunes the wireless interface

to the particular channel. Depending on the network card used, switching the channel requires 5 to 19 milliseconds [24].

The mobile device waits for either incoming frames generates by other devices due to data transmission or for the so-called

ProbeDelay timer to expire. The timer makes sure that the mobile device is only waiting a certain period of time for

incoming frames. After that, it uses the 802.11 medium access procedure to gain access to the channel and sends a Probe

Request frame. It waits for the MinChannelTime to elapse, and if no frame is received it proceeds to the next channel. If a

frame is received, the mobile device processes any Probe Response frame until the MaxChannelTime elapses.

The IEEE 802.11 standard does not define default values for these timers, however, [1] and [25] empirically studied the

values used by wireless network card manufactures. In total, the exact time required to perform an active scan can vary

significantly based on the number of available access points and hardware capabilities. In our measurements, we found



that at most 20 milliseconds are required to scan one channel. In total, an active scan over all channels takes less than

260 milliseconds to complete.

Active scanning relies on the support of access points. If an access point runs in the so-called “cloaked mode” it replies

only to Probe Request frames that are looking for access points of the network it belongs to. A mobile station that is unaware

of this particular network and uses active scanning is not able to learn anything about the presence of this particular access

point and network. This behavior might be preferable in some circumstances (e.g., in order not to attract attention to

someone who does not know the name of a privately owned wireless network), but for positioning systems the knowledge

of every access point in communication range is desirable. This problem can be solved by performing passive scans.

2.1.2 Passive Scanning

Passive scanning has been introduced to reduce the workload of mobile devices and hence save battery power. As indicated

by the name, passive scanning does not require any active communication of the mobile device. While scanning passively,

a device listens to each channel and waits for a given period of time. If an access point is assigned to a particular channel,

the mobile station should receive a so-called Beacon frame. Every access point broadcasts Beacon frames on a regular

basis to maintain the network. Beacons usually contain the same information as Probe Response frames, such as supported

data rates, supported extended data rates, and the name of the network. By examining the received Beacon frames a mobile

device is able to recognize neighboring access points and their capabilities.

Once in a while, an access point sends out a Beacon frame that carries additional management information: A Delivery

Traffic Information Map (DTIM). The idea is that battery powered mobile devices may sleep in low power mode while the

access point buffers frames for theses stations. The DTIM indicates which stations have buffered traffic waiting to be picked

up and hence this map should be received by every mobile device associated to a given access point. This means, that a

mobile device should never miss such a Beacon regardless if it is sleeping or scanning. In case a scan is performed while a

DTIM is scheduled by the access point, the mobile device is associated with, it is forced to cancel the scan process and wait

for the map. For this, Beacons contain the beacon interval as well as how many regular Beacons will be transmitted before

the next DTIM. This information allows a mobile device to determine the point in time when a DTIM will be transmitted

by the access point it is associated with. The rate of DTIMs is often configurable, and commonly every 10th Beacon is used

for this purpose.

Access points usually broadcast a Beacon packet every 100 milliseconds which means that a mobile station should stay

on a particular channel at least for the same period to make sure not to loose a Beacon from an unknown access point. Once

again, note that this configurable value is not defined in the IEEE 802.11 standard. In total, a passive scan requires at least

1.3 seconds to be completed. This is nearly five times the length required for an active scan.

Another interesting fact arises from a privacy point of view: The infrastructure is not able to recognize a (mute) mobile

station even if it utilizes the infrastructure for positioning. This has many implications on privacy and has already been

discussed in [16]. Furthermore, passive scanning can even be used if a mobile station communicates with the infrastructure

but does not want to reveal that it is computing its position based on 802.11.



2.2 Effects on Communication Performance

Among other tracking systems, 802.11-based positioning systems rely on a steady stream of signal strength measurements

to determine the position of the user. This means, that active or passive scans are executed at a high rate and hence the

network card is quite busy with scanning. In this subsection, we investigate how active and passive scanning affect regular

data transmission of a mobile device in terms of throughput and round trip time.

2.2.1 Experimental Environment

To achieve interpretable results we simplified our environment: Only one mobile device communicates with one access

point. This simplification allows us to investigate how scanning affects concurrent data transmission and to draw general

conclusions. In a more complex scenario with additional mobile devices, throughput and round trip time may even be worse

and more volatile.

We used a Fujitsu Siemens Lifebook T4010 laptop as a mobile device running Linux kernel 2.6.16 and Wireless

Tools 28pre13. We implemented passive scanning support into the ipw2200 1.1.3 network interface driver [13], so that

we were able to use the build-in Intel PRO/Wireless 802.11b/g network card of the laptop.

A Linksys / Cisco WRT54GS access points assigned to channel 8 has been used to gain access to the local network of

the University of Mannheim whilst two enterasys RBT-4102-EUR access points set to channel 1 and 6, respectively, are

used as landmarks. The WRT54GS access point was running the Alchemy firmware version 1.0 and was configured for

802.11b/g mode with a beacon interval of 100 milliseconds and a Delivery Traffic Indication Map every 10th Beacon. The

distance between the laptop and the access point was approximately 3 meters, and during the measurements a 54 MBit/s

link between the laptop and the access point was established.

We conducted data transmission measurements with iperf 2.0.2 [9] to gauge throughput for both UDP [20] and TCP [21]

and measured the round trip time with a UDP application. For this, we used an iperf server within the local network and an

iperf client running on the laptop. The iperf server was connected to the access point via a 100 MBit/s switched Ethernet,

so that the wireless link was the only bottleneck. Iperf was configured to measure the throughput every 0.5 seconds and

to transmit data for 60 seconds. Our simple UDP application running on the laptop transmitted an UDP packet every

0.5 seconds and measured the time until it was echoed back from the same machine running the iperf server. For all the

graphs presented in this paper, we carried out the experiments at least three times and selected the result showing the highest

throughput.

2.2.2 Experimental Results

In this section, we investigate how scanning affects concurrent data transmission. For this, we first focus on UDP traffic

and then analyze TCP data transmissions. Throughput and round trip delay are the main objectives and are first measured

without any scanning at all to get a reference. Based on this reference, throughput and round trip time are quantified

for various scan intervals and different scan schemes. The relation between the maximum throughput and the throughput

achievable for a particular scan interval gives a well-balanced estimate on how common data communication is affected



by scanning. Additionally, the round tip time measurements indicate how interactive data communication is strained by

concurrent scans.

UDP First of all, we measure the maximum throughput that is achievable with UDP over an 802.11g link. For this, we

stepwise increase the bandwidth acquired by iperf from 15 MBit/s to 30 MBit/s. Our results show that the throughput

reaches the peak at a sending data rate of 27 MBit/s. Figure 1 shows the achieved throughput and round trip time. As

we see from this figure, the throughput varies between 22.25 and 26.75 Mbit/s while the round trip time is between 3 and

323 milliseconds. On average, the throughput is 25.155 MBit/s and the round trip delay is 82.30 milliseconds. Variations

in throughput and delay are due to retransmissions on the MAC layer and changing radio channel characteristics.

In our next experiment, we perform active scans at a high rate to meet the requirements of tracking systems. Our wireless

network card requires at least 260 milliseconds to perform an active scan, so we set the scan interval to 0.3 seconds. This

means that only 40 milliseconds can be used for data transmissions between two consecutive scans. As we see from

Figure 2, the throughput does not exceed 7 MBit/s and is very often lower than 1 MBit/s, resulting in an average throughput

of 797 KBit/s with a standard deviation of 1.571 MBit/s. In other words, only 3 percent of the throughput is available

in comparison to performing no scanning at all. The throughput peaks around seconds 6, 13, 22, 45, and 49 are due to

canceled scans. The reason for this is that a Delivery Traffic Indication Map is scheduled by the access point as mentioned

in Section 2.1.2. Furthermore, if we look at the round trip time we see that it varies between 23.5 and 6656 milliseconds

resulting in an average delay of 2400 milliseconds with a standard deviation of 1331 milliseconds. With such a high round

trip time in conjunction with low throughput, meaningful communication is often not feasible, especially if we consider

typical applications in the field of mobile devices such as video streaming or Voice over IP.

Our next experiment shows the trade-off between active scan intervals and throughput. For this, we carried out mea-

surements with active scan intervals ranging from 0.3 seconds to 4 seconds. Figure 3 depicts the results. As we see from

the figure, an active scan interval of 0.5 seconds still produces a round trip delay of nearly 500 milliseconds and limits the

throughput to 3.5 MBit/s. However, an active scan interval equal to or greater than 2 seconds produces acceptable results.

On average, a throughput of more than 20 MBit/s (this corresponds to nearly 80 percent of the throughput that is available if

no scanning is performed) and a round trip delay of less than 150 milliseconds is achievable, rendering network conditions

well enough to allow meaningful communication. Dependent on the positioning system used and network applications

running, an active scan interval can be selected to fit the needs of both applications.

In addition, we also investigate how passive scanning affects concurrent data transmission. While an active scan can

be completed in less than 300 milliseconds, a passive scan requires at least 1300 milliseconds to terminate. For instance,

the wireless network card we use stays 120 milliseconds on each channel while performing a passive scan, resulting in

a overall passive scan time of 1560 milliseconds. Being busy with scanning such a long time may dramatically limit the

achievable throughput. To investigate this phenomenon, we carried out experiments with a passive scan interval between 2

and 9 seconds. As shown by Figure 4, with a passive scan interval of 2 seconds only an average throughput of slightly more

than 5 MBit/s is achievable while the round trip delay is approximately 700 milliseconds. Such a network condition is far

from being usable. Especially, the high round trip delay makes interactive data communication useless. It takes at least



a scan interval of 7 seconds to obtain an average throughput and round trip time that is sufficient to allow common data

transmissions. Even with a scan interval of 7 seconds the standard deviation is so large that the network condition cannot be

considered stable. Compared to the active scanning approach, we see that passive scanning disturbs throughput and round

trip delay even more.

TCP In this paragraph, we analyze how scanning affects TCP data transmissions. We distinguish between UDP and TCP

traffic because UDP does not have any flow control mechanisms and hence in our simple scenario it shows the maximum

achievable throughput. On the other side, TCP is the most frequently used transport protocol, and its flow control algorithms

might be confused about communication dropouts caused by frequent scanning operations.

To get a reference value of how much data can be transferred over a 802.11g link, we invoked iperf in TCP mode

and sampled the throughput and round trip delay for 60 seconds. Our measurements show, on average, a throughput of

17.1 MBit/s and a round trip time of 39.3 milliseconds; the standard deviation of the measurements is 768 KBit/s for

throughput and 11.82 milliseconds for delay. We see a large difference between TCP and UDP throughput; this difference

has already been studied by George Xylomenos et al. in [27] and by other researchers.

To make the results of the TCP measurements comparable to the ones obtained for UDP, we used the same scan intervals.

Figure 5 shows average throughput and average round trip time as well as standard deviations for both measures in the

active scanning scenario. An active scan interval of 0.3 seconds results in 547 KBit/s and a round trip time of 1.7 seconds.

547 KBit/s correspond to nearly 3 percent which is comparable to the UDP results. However, with an active scan interval of

1 second and TCP as transport protocol 10.4 MBit/s are achievable. In other words, more than 60 percent of the throughput

can be obtained if no scanning is performed. The round trip delay also shows relatively stable values around 90 milliseconds

with a small standard deviation of nearly 60 milliseconds. These are interesting results, especially in comparison to the

UDP results, where stable network conditions can be observed only with an active scan interval larger or equal to 2 seconds.

For the sake of completeness, we compare TCP and UDP data transmission while performing passive scans. With a

passive scan interval of 2 seconds TCP nearly achieves 2.2 MBit/s; that is less than 35 percent of what is achievable with

UDP (see Figure 6). If we further compare the throughput of TCP and UDP, we see that the ratio nearly converges against

equality if the scan interval is increased. For instance, for a scan interval of 5 seconds the ratio is 1:2 and a scan interval of

9 seconds shows a ratio of 1:1.27. To sum up, we see that small passive scan intervals impose a larger burden on TCP than

on UDP and that with larger scan intervals UDP and TCP produce nearly the same throughput and delay.

3 Overhearing the Wireless Interface

An important and desirable feature of a good scan scheme for positioning systems is that it should result in minimal client

service disruption as well as deliver a high rate of signal strength measurements of access points within communication

range. Note that service disruption incorporates communication dropouts, declined throughput and increased delays from

an end-user point of view. Unfortunately, these two requirements are mutually exclusive. Consequently, any scanning

approach needs to balance the trade-off between these two requirements.



In the previous section, we already presented how active and passive scanning balance these features. Both approaches

mainly focus on a high rate of signal strength measurements and care less about client service disruptions. To address a

scan scheme that handles the client service disruption with care, we present a novel scan approach called Monitor Sniffing.

Monitor Sniffing exploits overlapping channels of 802.11 to cut down client service disruptions while at the same time

delivering a high rate of signal strength measurements of at least a subset of neighboring access points.

3.1 Monitor Sniffing

Our Monitor Sniffing scan scheme works as follows:

• We configure the wireless network card to work in monitor mode while associate it at the same time with a given

access point for data communications. Monitor mode means that the network card driver does not block management

frames such as Beacons, Acknowledgments, Probe Request and Probe Response. Instead, the network card driver

forwards management frames to the network interface socket, so that these frames can be captured by a user space

program.

In the past, a wireless network interface could not be used to monitor the wireless channel while at the same time

transmit data. For instance, the Lucent Orinoco Silver network card works only in monitor mode or in data com-

munication mode, but not in both modes at the same time. Since recently, wireless network cards are available that

support both modes concurrently (e.g., cards based on the Intel Pro/Wireless 2200BG or Atheros AR5xxx chipsets).

• We wiretap the wireless network interface by switching it into promiscuous mode to receive all frames and not only

the ones addressed to the network card’s MAC address.

• We add a filter to the network interface socket, so that only Beacons get through.

• We examine any Beacon we receive and offer the signal strength as well as the MAC address of the access point to

the application layer.

The following sections discuss the concept of overlapping channels used by 802.11 and present an experiment that

investigates how this concept can be exploited by overhearing the wireless interface to meet our needs.

3.2 Overlapping Channels

The IEEE 802.11b/g standards utilize the frequency spectrum between 2.4 and 2.5 Ghz. This spectrum is subdivided into

13 overlapping channels whose center frequencies are 5 Mhz apart while each channel has a spread of 22 Mhz around the

center frequency. For instance, channel 6 spreads from 2.426 to 2.448 Mhz while channel 4, 5, 7, and 8 also utilize parts

of this spectrum by having their center at 2.427 Mhz, 2.432 Mhz, 2.442 Mhz, and 2.447 Mhz, respectively. As a result, a

transmission on one channel becomes detectable on an adjacent one. While overlapping signals from neighboring channels

are undesirable for undisturbed data transmission it is preferable for positioning systems if the signals can be decoded.



Broadcasts such as Beacons or Probe Requests are usually sent with a data rate of 2 MBit/s in 802.11b/g networks. For

this data rate, a Direct Sequence Spread Spectrum (DSSS) encoding is used. In general, DSSS spreads a signal over a

wider frequency band which means in our case that the signal is spread over a complete channel. Therefore, transmissions

encoded with DSSS are well protected against noise. Noise tends to take the form of relatively narrow pulses and hence

destroys only a part of the spread signal. Even if only parts of a DSSS encoded signal can be heard, it is often still feasible

to decode the signal.

3.3 Experimentation in a Real Environment

We carried out an experiment to investigate how well frames from adjacent channels can be decoded. The experimental

environment as well as the results are described in the subsequent sections.

3.3.1 Experimental Environment

In addition to the experimental environment already described in Section 2.2.1, we set up four Netgear WG102, three D-

Link 700AP, and three Cisco / Linksys WRT54G access points to cover all 802.11 channels. The access points were placed

on a table in our lab, and the distance between the laptop and the access points was approximately 5 meters. Furthermore,

we configured the Intel PRO/Wireless 802.11b/g network card of the laptop to work in monitor mode.

We developed a user space program to wiretap the wireless network card and collect Beacon frames from the network

card socket. Additionally, the application also associates the network interface with a given access point for a given amount

of time and logs every Beacon (e.g., signal strength and MAC address of the originating access point).

3.3.2 Experimental Results

For each channel, we collected the Beacons that were received during 60 seconds. Given a beacon interval of 100 millisec-

onds, an access point is supposed to emit 600 Beacons during a measurement cycle. Table 1 shows how many Beacons were

received from which access point while the laptop switched through the channels. Note that we name the access points A,

B, . . ., M corresponding to the channels they are assigned to (e.g., access point A is assigned to channel 1, the access point

with name M is assigned to channel 13).

From the table we see that only a few Beacons are lost from the access point the network interface is associated with.

The number of received Beacons ranges from 394 (see channel 6) to 582 (see channel 11). The reasons for this are a high

interference rate due to the large number of access points located in close proximity as well as a high number of Beacon

collisions. On the MAC layer, Beacons are broadcasted and hence no acknowledgments are used causing a colliding Beacon

not to be retransmitted, and therefore to be missed.

Furthermore, we see that at least the Beacons from two neighboring channels in ascending and descending order can be

heard even if a larger number of Beacons get lost. For instance, if the wireless network interface is assigned to channel 8

it only receives about 35 percent of the Beacons the access point of channel 9 is broadcasting. In contrast, if the wireless

interface is tuned to channel 9 it is able to decode more than 87 percent of the Beacons access point H is emitting.



The variations are even larger if we look at the channels two steps away from the channel the wireless network interface

is assigned to. For example, if the network card listens on channel 5 it is only capable to decode nearly 7 percent of the

Beacons access point G is broadcasting. This is in contrast to channel 11 where nearly 85 percent of all Beacons broadcasted

on channel 13 can be decoded.

Sometimes it is still feasible to decode Beacons from channels three steps away. As listed in Table 1, we see that it works

for ten channels and only in three cases it is not possible to decode frames from channels three steps away (see channel 6,

channel 9, and channel 10). If we calculate the percentage of received Beacons we see that there is a large variation. For

example, only 1 percent of all broadcasted Beacons from access point L can be decoded if the network interface is tuned to

channel 9. In contrast, nearly 64 percent of all Beacons from channel 1 can be decoded if the interface listens to channel 4.

The reason for this is that channels three steps away do not directly overlap, instead, only side lobes as radiation of the main

signal lobe are detectable. However, it is pretty difficult for the wireless interface to detect these low-powered signals and

correctly decode them.

Additionally, we measured the signal strength of Beacons to explore if the reception power of Beacons transmitted on

adjacent channels can be properly measured (see Table 2). An accurate signal strength measurement is a crucial feature

for positioning systems because most 802.11-based positioning systems rely on signal strength measurements to determine

positions. Due to the arrangement of the access points and the nearly equal distances between the access points and the

laptop, we expected a low variation of the signal strength between channels during a measurement cycle. This is exactly

what we see if we look at the columns of Table 2. The average signal strength measurements differ between 2 and 0 dBm.

Signal strength measurements with less than three readings are omitted because less than three samples cannot be considered

as a stable representative of the signal strength.

3.4 Discussion

On the basis of the experience we gained from the data collections, we learned that even in a different environment or if

different hardware is used, the number of Beacons receivable from adjacent channels may vary but the general tendency

remains valid. So, the experiment presented here shows that it is feasible to collect Beacons from adjacent channels by

overhearing the wireless network card without switching channels.

Our most striking departure from previous work is that we wiretap the wireless network interface running in monitor

mode to receive Beacons from adjacent channels as well as the channel the network card is assigned to. We chose this course

for several reasons: First, based on the analysis presented in Section 3.2 we see that it is possible to receive Beacons from

more than half of all 802.11 channels while staying on the channel the network card uses for communication. Depending on

which channel is used for communication, an additional number of 3 to 6 adjacent channels can be received. For instance,

for the channels between 4 and 10, 6 additional channels are accessible, and for all other channels at least 3 channels are

receivable. Secondly, the rate of signal strength measurements is increased as compared to active and passive scanning.

With Monitor Sniffing, a signal strength measurement is available every 100 milliseconds. For active and passive scanning



nearly 260 and 1300 milliseconds are required. Eventually, Monitor Sniffing is 2.6 times faster than active scanning and

13 times faster than passive scanning, at the expense of scanning all channels completely.

To analyze the performance of Monitor Sniffing with data communication at full speed, we repeated the experiment

described in the previous section in such a way that we applied the iperf setup discussed in Section 2.2.1 to create the data

communication. The average TCP throughput dropped around 4 MBit/s as compared to the experiment in Section 2.2.2

to nearly 12.5 MBit/s. The reason for this are frame collisions due to regular traffic on adjacent channels. For the same

reason, the average round trip time slightly increased to a still acceptable value of 58 milliseconds. If we compare the

number of adjacent channels from which Beacons can still be received, we notice that the numbers are comparable to the

values presented in the previous section. We see that Monitor Sniffing produces scan results at high rate even if data is

transferred at full speed.

Nowadays, mobile users are often covered by many access points at the same time. In such a scenario, the performance

of positioning systems is affected slightly if only a subset of access points is recognized. For instance, a study of 802.11-

based positioning algorithms [6] states that if a mobile device is covered by more than three access points the positioning

accuracy only increases marginally. In case only one or two additional access points can be recognized by our approach,

the mobile device is still able to perform active or passive scans.

4 Related Work

Several previously published studies investigate throughput and delay on 802.11. Xylomenos and Polyzos [27] explore the

throughput of UDP and TCP achievable with several early 802.11 hardware devices. Their research focuses on throughput

limitations caused by software implementation issues. The researchers recommend changes in the implementations of

network protocols as well as in drivers. Duchamp and Reynolds measure throughput while varying the distance between a

mobile device and an access point [8]. In [4], Bing measures delay and throughput for two early 802.11 network interfaces

in a lab environment. A performance degradation is observed by Heusse et al. [10] if some mobile devices use a lower

bit rate than the other devices. The authors analyzed the problem theoretically as well as empirically and derived a simple

expressions for the useful throughput. Compared to our work, all these approaches do not consider scanning at all and use

rather out-dated 802.11 or 802.11b hardware.

Scanning has been investigated mainly in the field of handover and roaming optimizations. Ishwar Ramani et al. [24]

proposed SyncScan, a technique that tries to reduce the time required to perform an active scan by synchronizing the time

when access points transmit Beacons. In their solution, access points are synchronized and broadcast Beacons in a pre-

decided order. A mobile device is able to predict the time when a neighboring access point will broadcast a Beacon by

listing to a Beacon of the access point it is associated with.

The IEEE 802.11k task force specification proposes that access points should not only advertise their own presence but

should also provide a neighboring access points report upon request. Such a report contains a list of all access points as

well as their assigned channels that are available in the neighborhood of a given access point. By knowing on how many

access points can be expected at each channel, the time required to perform an active scan can be highly reduced.



These two techniques require support from the infrastructure in some kind which raises adoption hindrances. In contrast

to this, a client side solution is proposed in [17]. The authors state that in typical urban and enterprise environments the

access point density is fairly high, so that a mobile device often faces the opportunity of handover within the currently used

channel. This approach is comparable to our Monitor Sniffing technique, however, we additionally exploit the fact that

802.11 defines overlapping channels and hence a mobile device is able to receive frames from access points assigned to

neighboring channels.

5 Conclusions and Future Work

The primary contributions of this paper are an empirical analysis of how active and passive scanning affect concurrent data

transmission, and we propose a novel scanning technique for 802.11-based positioning systems called Monitor Sniffing.

We found out that with an active scanning interval of 2 seconds the resulting network conditions can be considered stable

enough and suitable for common data transmission. The same is true for a passive scanning if a scan interval of 7 seconds

is applied. For smaller scan intervals, the resulting network conditions cannot be considered as stable.

Our novel scanning technique allows 802.11-based positioning systems to stay on a certain channel while concurrently

receiving Beacons from access points assigned to adjacent channels. We achieved this by overhearing the wireless interface

running in monitor mode. This allows undisturbed data transmissions and high rate signal strength measurements to support

precise position estimates.

In our ongoing work, we are trying to conceive an algorithm that automatically switches between active and monitor

sniffing scans to maintain undisturbed data transmission and to deliver a minimum number signal of strength measurements

from different access points. In the future, we also plan to work on improved active and passive scanning approaches that

utilize overhearing to receive additional information and hence provide a higher measurement rate for these scan schemes.
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Figure 1: Throughput and round trip time of UDP data transmission over an 802.11g link.
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Figure 2: Throughput and round trip time of UDP traffic while concurrently performing active scans every 0.3 seconds.
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Figure 3: Average and standard deviation of UDP throughput and round trip time while concurrently performing active

scans every 0.3, 0.5, 1.0, . . ., 4.0 seconds.
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Figure 4: Average and standard deviation of UDP throughput and round trip time while concurrently performing passive

scans every 2.0, . . ., 9.0 seconds.
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Figure 5: Average and standard deviation of TCP throughput and round trip time while concurrently performing active

scans every 0.3, 0.5, 1.0, . . ., 4.0 seconds.
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Figure 6: Average and standard deviation of TCP throughput and round trip time while concurrently performing passive

scans every 2.0, . . ., 9.0 seconds.
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