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Abstract— In this paper, we consider privacy challenges in
event-driven pervasive spaces where multimedia streams cap-
tured by sensors embedded in the infrastructure are used to
detect a variety of application-specific media events. In particular,
we develop techniques to detect events without disclosing any
identifying information unless necessary. We characterize the
nature of inference channels that arise and model privacy
preserving event detection as an optimization problem that
attempts to balance disclosure with performance. We design and
test efficient communication protocols that realize this tradeoff.

I. I NTRODUCTION

Emerging sensing, embedded computing, and networking
technologies have created opportunities to blend computa-
tion with the physical world and its activities. The resulting
pervasive environments offer numerous opportunities includ-
ing customization (e.g., personalized advertising), automation
(e.g., inventory tracking and control) and access control (e.g.,
biometric authentication, triggered surveillance). Multimodal
event detection is an integral component of pervasive environ-
ments. Such systems capture and process raw streams of data
(e.g. video, speech) and then convert them into semantically
meaningful events. For instance, the entry of an unauthorized
person (detected from a video stream) into a sensitive region
may raise an alarm. Such events, once detected, may result in
further actions that realize the functionality of the pervasive
space.

Event-driven approaches have recently become a popular
paradigm in which pervasive applications are implemented.
The VERL system developed a language to specify and
detect multimedia events [19]. The IBMS3 smart surveillance
system [13] offers event-based retrieval in order to manage
surveillance data. The Cayuga system and accompanying
language, CESAR [6] proposed an event stream language and
detection system that uses finite state automata to realize the
detection of complex events for publish/subscribe applications
[22]. An event-based approach offers a general framework
using which a wide variety of pervasive applications can be
built.

In this paper, our focus is on human-centric pervasive
spaces. In such spaces, the collected environmental data may
include personalizing information about individuals immersed
in the space. This naturally leads to concerns of privacy. For
instance, information about a person’s location used to cus-
tomize the space could potentially be misused as evidence of
his/her presence/absence at a given location and time (whether
or not it is in their best interest). Such privacy concerns

arise when users do not fully trust the pervasive environment.
Measures to establish trust, such as explicit policies to prevent
leakage or sharing of personalizing information may alleviate,
but do not eliminate such concerns. Indeed, numerous studies
have identified such privileged users as the primary source of
corporate data thefts.

If the pervasive space is untrusted, event detection systems
must address a larger challenge; that of event detection from
multi-modal streaming data without violating the privacy of
individuals captured in the streams. Note that if the pervasive
space is entirely untrusted, the goal of privacy preserving event
detection will remain elusive. In our approach, we assume the
presence of tamper-proof sensing devices capable of limited
computation that can be programmed to generate a stream of
events while hiding the raw signals from which such events
are generated. Such an assumption is not unreasonable given
advances in sensor technologies (e.g. research on low-cost
cryptographic schemes [25], [14], [29]); smart surveillance
systems such as IBM’sS3 [13] already employ tamper-
proof sensors. Privacy-preserving techniques, such as those
that manipulate raw video stream data, (e.g face masking,
removing/replacing identities) can be incorporated into the
capture devices themselves [30]. These techniques are ef-
fective when one wants to detect simple events that can be
evaluated based on the current event data itself. For instance,
capturing the entry of unauthorized personnel into a protected
space can be accomplished through credential-driven access
control. However, for more complex events which requires one
to store past event data, the problem is not so simple. Consider
the case where one wants to detect repeated entries (say more
than ten) of an employee into a certain room within a 8 hour
window; here, a record of all previous entries in that window
must be maintained. A significant amount of raw data from
multiple sensors may be required for evaluation and handling
this data securely becomes a critical issue that needs to be
addressed.

Complex event detection on streams can be implemented
by either storing the incoming data in the form of a log and
evaluating predicates on it, or by taking an automaton-based
approach as proposed in the Cayuga system [6]. Either way,
the question is where and how to store the data or the automata
in an untrusted environment? Sensors being the only trusted
components in our model, would be the first candidates for
secure storage of data. Instead, we argue that a centralized
system is more viable for the following two reasons: (i) A
complex event may evolve over an extended period of time
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and might be distributed over spatial regions. For example,
say we want to detect the event when a particular individual
comes into the third floor of a building for the4th time within
a day. If the floor has multiple access points, the individual
might enter the floor via different access points. Such a
distributed event-detection involves multiple sensors accessing
a common set of records (or automata) to correctly determine
when the specified individual enters the floor for the4th time.
A centralized architecture is therefore more convenient. (ii)
Also, a centralized database offers greater scalability than
a distributed set of sensors with limited storage capacity.
On the down side, the central server is neither a tamper-
proof hardware, nor does is reside in a trusted environment.
This makes the information stored on the server vulnerable
to attacks. In this paper, we develop an automaton based
approach for event detection, where the challenge lies in
designing a secure scheme for evaluating automata on the
sensor-generated stream of events. The security goal being
that no confidential information regarding the nature of events
should be available to entities in the untrusted regions. We
outline the contribution of this paper below.

In the remainder of the paper, we adopt an automaton based
approach to event detection (described in Sec. II). We assume
that sensors detect basic media events and engage in an event
detection protocol with an (untrusted) server that maintains all
the state information including instantiated (partially executed)
automata information. In Sec.III, we characterize the nature of
privacy and inference channels in composite event detection.
We then design a secure communication protocol between
trusted and untrusted components that enables (composite)
event detection (Section IV). Since the trusted component
is limited in its capabilities (i.e. storage, processing), the
challenge lies in designing an efficient, scalable solution that
ensures a desired level of privacy while minimizing execu-
tion overhead. The trade-off between level of privacy and
system performance is modeled as a constrained optimization
problem, where the objective is to minimize communication
overhead and the constraint is to ensure the required level
of privacy. We develop a heuristic in solving this NP-hard
optimization problem which gives good results in practice
(also described in Section IV). We provide insights into the
performance of our protocol and describe an experimental
deployment (Section V). We present some related work in
Section VI and conclude in Section VII with some discussion
and outline some open problems.

II. A N EVENT MODEL & SYSTEM ARCHITECTURE

We envision a pervasive environment as a physical space
with an embedded sensing infrastructure which is used to
monitor its state. The pervasive space is modelled as a set
of users (U ), a set of physical regions or space (P ), and
resources (R). Sensing in the pervasive space happens through
a variety of mediums (e.g., video cameras, radio-frequency
identification (RFID), motion detectors etc.). We refer to the
raw sensor data gathered by the sensors asmedia streams. A
media streamS is analyzed to extractmedia events.
Media Events: A media eventis modelled as a timestamped
4-tuple, e = (u, s, r, a) : t where u corresponds to a user

(subject),s denotes a region,r denotes a resource,a specifies
the category of the activity, andt designates the time the event
occurred. The evente is interpreted as a useru performed ac-
tivity a, in spaces, involving resourcer at timet. For instance,
a media event(BOB, LOADING DOCK, *, ENTRY):3:00pm in a
surveillance setting represents that “Bob” entered the “loading
dock” at “3:00pm”. The resource here, could be anything
(*) (could be of null value). With media eventse, we will
associate the following notation. We will refer to the useru
as the user associated with evente. Furthermore, a particular
instantiation ofs, r, a in the evente will be referred to astype
of the media event. For instance, in the above example,Bob
is the user associated with the media event, and the event is
of the type (loading dock, *, entry). The set of possible media
events depend upon the pervasive application and are limited
by what the sensing infrastructure can detect. In general, media
events are domain dependent, with the specification of and
mechanisms to detect them being implemented by the designer
of the pervasive application. Using such mechanisms, a media
stream can be converted into a stream of media events. We also
notice that the set of all media events that can be generated
in this space is a finite, enumerable set. For instance, a media
event belongs to the cartesian product of the set of allusers,
spatial regions, resourcesand activities that can be detected
by the sensors. The finiteness of this set has consequences on
the privacy-analysis as we will see in Section III-B and IV.
Primitive and Composite Events: A pervasive space is
associated with a set of policies (or rules). A policy consists
of a description of an event and the corresponding action that
must occur if the event is detected. An event could either be
primitive or composite. A primitive event, similar to the media
event is modelled as a 4-tuple< u, s, r, a > and is further
associated with a temporal conditiontθ, whereu refers to a
group of (one or more) users,s to the space,r to the resource,
a to the type of activity.θ is a simple operator of the form
{+,-}, which indicates before (−) or after (+) time t. For
instance,< u ∈ S T U D E N T, s ∈ C S I I , * E N T R Y>:15:00+
is an example of a primitive event1. A media event is said
to matcha primitive event, if a media eventinstantiatesthe
primitive event. Consider, a media event (B O B, R O O M113,

B R I E F C A S E, E N T R Y):16:46that represents the fact that “Bob”
walked into room 113 carrying a briefcase at 4:46PM. Such a
media event will match the aforementioned primitive event, if
BOB ∈ STUDENT , ROOM 113 ∈ CS II and the time of
entry is after 3:00PM. A result of the match is a “binding” of
the variablesu, s, r in the primitive event by the corresponding
individual “Bob”, “briefcase” and “Room 113” specified in the
media event.

A composite eventis a combination of one or more primitive
events. We restrict composite events to those that can be
expressed as regular expressions over primitive events. Regular
expressions, while limited in expressibility, have been deemed
to be sufficiently powerful for a large class of pattern and event
detection systems [22], [6].
Composite Event DetectionComposite events are translated

1We will, for notational simplicity, sometimes ignore temporal constraints
in the specification of primitive events if the temporal constraints are not
integral to the concept being discussed.
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into their corresponding finite state automata (FSA) referred
to as anevent automaton. An event automaton is a directed
multigraph, where nodes correspond to states and edges to
state transitions. Edges (transitions) are adorned with a corre-
sponding primitive event that cause the state transitions. The
automatonF , executes as follows.F , when initiated is in
the initial states0. At any statesi, F has a set of possible
transitionstj each of which is associated with a corresponding
primitive eventpj . Let pj = (up, sp, rp, ap) : tp, and e =
(ue, se, re, ae) : te be a media event thatmatchesthe primitive
eventpj . Such a media event will cause (1)F to transition
from statesi along the transitiontj , and (2) bind the variables
associated with the primitive events based on the matching
media event.

Let us illustrate the automaton execution model via the
use of an example. Consider a shared “smart” office space
setting which is used by a number of research groups and
staff of the office. The area is instrumented with various
sensors (that monitor inhabitants, resource usage/consumption
etc.). For example, workers wear RFID badges [30] to inform
the building of their movements. We illustrate our event and
execution models with the following application scenarios.
Scenario 1:(Surveillance) is done in the server room to detect
if any member ofSTAFF enters the server room, and accesses
the payroll database. Note thatu refers to the instantiated value
of u. We identify the following primitive events2.

e1 ≡ < u ∈ STAFF, SERVER ROOM, *, ENTRY>
e2 ≡ < u, SERVER ROOM, *, EXIT>

e3 ≡ < u, SERVER ROOM, PAYROLLDB, ACCESS>
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Fig. 1. Automaton for scenario 1.

Scenario 2:(Inventory Tracking) is done on two floors of a
building to determine if any member of thedatabaseresearch
group enters either of these floors and then leaves with a
projector. The corresponding automata can change states on
the following primitive events. This is an example of a more
distributed automaton where we need to look at two possible
paths that can trigger the transition to the final state. The same
notation as Scenario 1 applies here.

e1 ≡< u ∈ DATABASE, FLOOR 2, *, ENTRY>

e2 ≡< u ∈ DATABASE, FLOOR 4, *, ENTRY>

e3 ≡< u, FLOOR 2, *, EXIT>

e4 ≡< u, FLOOR 4, *, EXIT>

e5 = e6 ≡< u, STORAGE ROOM, PROJECTOR, ACCESS>

2* designates a wildcard and refers to the fact that there is no constraint
on the resource or time in matching this primitive event
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Fig. 2. Automaton for scenario 2.

Now consider the following incoming media event;{Alice,
serverroom, laptop, entry}: 09:13. This media event instanti-
ates the automaton in Fig. 1 by binding Alice to it (assume
that Alice is indeed identified to be a member of the group
STAFF). At this point, the automaton is well-specified and
bound to Alice (i.e.u = Alice).

We make following observations about our automata:
• For every state of the automata, there is always a transi-

tion for all possible media events. LetF be an automata,
s be any state ofF , and lett1, t2, . . . , tk be the set of
transitions associated with states of F with the corre-
sponding primitive eventsp1, p2, . . .pk. For all media
eventse there exists a primitive eventpj , 1 ≤ j ≤ k,
such thatpj matchese. We need the above condition
since our automata are utilized for pattern recognition
in an event stream. We differentiate between edges of
the automata that are used to drive the automata to its
successor state (α edges) from the edges that are self-
loops used to filter out media events unrelated to the
progression of the automata (β edges). A similar concept
of filter edges was used in [6], which consume events
that do not drive a particular automaton to advancing its
current state. Note that while implementing automata of
this kind, we can effectively ignoreβ edges as they do
not alter the state of the automata. We will henceforth
ignoreβ edges of automata.

• The automata areindividual-centric. That is, for any
sequence of media eventse1, e2, . . . , en that transitions
an automataF from the initial states0 to its final state
sF (using only theα edges),e1.u = e2.u · · · = en.u,
where ei.u refers to the user associated with the event
ei.

In the remainder of the paper we will require the follow-
ing notation. For an automataF , we define the notion of
USER(F ). USER(F ) ⊆ U , is the set of individuals in
the system such thatx ∈ USER(F ) if and only if there
exists a sequence of media eventsE = e1, e2, . . . , en, ei =
(x, si, ri, ai) : t that can be recognized byF (that is, they can
transitionF from its initial state to a final state). For instance,
in the example above, “Alice” would be in theUSER(F ),
for the automata depicted in Fig. 1. In contrast, “Bob” would
not be inUSER(F ) if “Bob” was not a member of the staff.
We generalize the concept ofUSER to the set of automata.
Let FS be an automaton set.USER(FS) =

⋃
i USER(Fi),

Fi ∈ FS . For a given useru, we denote the set of automata
for which u is in the USER set as the automata associated
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with the useru. An automatonF is associated with a useru
if u ∈ USER(F ).

A. System Architecture

Our event detection system consists of multiple components
(depicted in Fig. 3). The two primary components of interest
are the secure sensor nodes (SSN) and the untrusted server
with large storage and computational capacity that stores state
information about the pervasive space.

SSNs:The secure sensor nodes (SSNs) are also the media
event generators that convert the media stream into sequence
of corresponding media events. The SSNs consist of one or
more sensors, limited storage, and computational resources.
For example, a SSN may consist of a video camera attached
to a processor and storage that can do some limited processing
on the stream [30], [13] (e.g., image processing computations).
It could also consist of a RFID reader which is responsible
for detecting a set of RFID tags. We require the presence of a
trusted (thin) middleware that is able to obfuscate the origin of
events. We will currently assume that media event generation
can be performed without revealing any potentially harmful
information to the server. (This assumption may not hold in
general – we discuss its implications as well as methods to
resolve the resulting privacy challenges in the extender version
of the paper [12]). The SSNs are trusted and assumed to be
tamper proof. Encryption (decryption) can only be performed
within the secure perimeter of an SSN using a symmetric key
encryption scheme (like DES). The encryption keys are also
stored exclusively within the secure perimeters.

A central server (referred to simply as a server) stores the
automaton objects. The server also communicates with all the
SSNs deployed in the space using the secure protocol (to be
described later) to update state information. (The server is
responsible for generating messages for the “action executor”
when a complex event of interest is determined, but we do not
discuss that aspect in this paper).

We denote an instantiation of our event detection system by
S, which comprises the following two components discussed
below: (i) a data model & storage scheme (D); (ii) a suite of
communication protocols (P).

Data componentD: The state information (automata) are
always stored in encrypted form on the server in a table
where each row is mapped to a distinct automaton. Each
automaton corresponds to a “rule-individual” pair, where rule
denotes a composite event, for example, “(5 cups of coffee
in a day, Tom)”, “ (Server-room entry with trolley after 6:00
pm, BOB)” etc. The size of the table is constant i.e., total

number of automata in the state-table is fixed, which we denote
by NUM RULES. Each encrypted automaton is tagged by a
label that is used only for lookup purposes. The tag is used
only for set-membership queries and does not divulge any
information beyond membership3. By default, each automaton
in the state-table is in its start-state. After an automaton
reaches the final state (and suitable action is taken) it is
reset to its start state. Since the encryption scheme used
is non-deterministic in nature, the start and final states are
indistinguishable from any other state of the automaton. We
also assume that there is no explicitly identifying information
(like observable action-execution on reaching the final state
for an automaton) available to an adversary that lets him
discriminate one state from another.

Communication protocol P: Fig. 4 shows the generic
template of the communication protocol between a SSN and
the server in order to service a media event generated by the
SSN. Since SSN is the only secure (trusted) component, all
communication data between the server and a SSN needs to
be encrypted. We make the assumption that, the automata can
be “safely” tagged by the set of media events on which it can
make a transition (from its current state), without revealing
the media events. It retrieves a subset of rows from the
state-table whose tags match the selection criteria (generally
some equality predicate) specified by the SSN. It can carry
out encrypted-matching if necessary (using secure keyword
matching schemes like the one in [26]). Following are the
sequential steps in an event-servicing protocol initiated by the
SSN:
• On evente, the SSN generates a messageM(e) that

uniquely identifies the event and encrypts and sends them
to the server. The ciphertext is denoted byEk(M(e)).

• The server on receipt of the message, returns the set
of encrypted automata to the SSN that are tagged by
Ek(M(e)). (This can be implemented using a crypto-
graphically secure keyword matching scheme similar to
those proposed in [26]).

• The SSN decrypts the set of automata one at a time and
advances the state of each automaton if necessary.

• The SSN re-encrypts the automata (non-
deterministically4) and sends them back to the server. If
any automaton reaches its final state, the SSN notifies
the server of event detection.

Note: A non-deterministic encryption is used which ensures
that re-encryptions of the same plaintext are distinct from
one another. Encryption (decryption) can only be performed
within the secure perimeter of an SSN using a symmetric key
encryption scheme (like DES). The encryption keys are also
stored exclusively within the secure perimeters.

We will refer to the above description of the system and
protocol as thereference implementationfrom here onwards.

III. PRIVACY REQUIREMENTS

In an event-processing system such as ours, the knowledge
that an individual is associated with an event is considered

3The notion of set membership will become clear in Section IV
4non-deterministic encryption ensures that multiple encryption of the same

plaintext generate different ciphertexts.
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sensitive. Our goal is to disallow association of event to an
individual. So complete privacy is achieved when an event
could be potentially attributed to any of theN individuals
associated with the system. Of course, one cannot ensure this
as long as there is external information. For instance, say an
event occurred and if the adversary knew thatJOHN was absent
on the particular day, thenJOHN is eliminated from the set of
possible users, thereby violatingN -anonymity. We make our
goal a bit simpler. We consider that adversary knows only
the encrypted event logs and also has complete knowledge
of the environment (i.e., of all the automata). His goal is
to determine from the event log which event corresponds
to which individual. We will show complete privacy (N -
anonymity) can be achieved very simply but at a very high
cost, and therefore we will explore a way to tradeoff privacy
with performance. Specifically, we develop and algorithm to
achievek-anonymity wherek ≤ N . We will exploit this re-
laxation to gain efficiency. Formally, thek-anonymity criteria
for event-processing systems is the following:

Criteria 1: (k-anonymity Criteria) Given a media stream
S and a sequence of corresponding media events with
timestamps{e1:t1, ..., en:tn}, a solution is k-anonymous if
it ensures that∀i ∈ [1, n], ei.USER cannot be mappedwith
certainty to a set of less than k individuals at anytj , j ≥ i
(i.e., at any time instant afterei is generated).

Note that, the above criteria ensures that each individual
is indistinguishablefrom at least k-1 others at all times. We
note that the above concept of privacy (i.e.,|USER(e)| ≥ k)
is similar in spirit to the concept ofk-anonymity in data
publishing [21], [27] wherek-anonymous dataset implies that
each record could be associated withk or more individuals.
It was soon realized that simply the notion ofk-anonymity is
not good enough in a publishing scenario since the sensitive
attribute of all members of an anonymity set might have
the same value (e.g., “disease = AIDS”). This led to more
stringent criteria such asl-diversity [2], t-closeness [15] etc.
to be proposed. However,k-anonymity works in our case for
2 main reasons: (i) There is no specific sensitive field (like
“disease”); (ii) Unlike in data publishing where the adversary
may knows wether a record corresponding to a person is in
the database or not, in our case, such knowledge is not there.
For instance, there may be no event corresponding toJOHN at
time t1 even thoughJOHN is in the anonymity group ofTOM
who is associated with an event att1. As a result, inferences
of the kind that occur in data publishing do not occur in the
our setting.

A. Security & Adversary Model

The key challenge we address is this paper is that the server-
side environment is untrusted. In real life, there maybe one
or more malicious insiders on the server-side who can be
regarded as adversaries e.g., database administrators. The goal
of the adversary is to deduce the identity of the individuals
involved in every media event that is generated by the SSNs.
We will assume apassive adversaryi.e., the adversary is
only interested in gleaning information about the events, and
does not disrupt the normal functioning of the system in any
manner. There maybe one or more entities on the server-side
(e.g., database administrators) who are regarded as adversaries.
We assume apassive adversarialmodel, where the adversary
is only interested in gleaning information about the events, and
does not disrupt the functioning of the system in general. We
argue that, the passive adversarial model is the most appropri-
ate for our application because of the following reasons: (i)
Probabilistically speaking, active adversaries are more likely
to be caught if they change the state of the system that
affects/disrupts its functionality, whereas passive adversaries
are much more likely to go un-noticed, and therefore they
are more probable. (ii) Most real-life incidences of privacy-
breach are due to passive adversaries (insiders), who leak
sensitive information without getting detected (right away).
Though, this information maybe used in other contexts later
to “actively” harm the owner, the adversarial model is a
passive one. (iii) Majority of the literature in research also
consider the adversary to be passive, and design solutions in
the same which is considered as the most appropriate model.
E.g., keyword-search over encrypted text data in remote email
storage applications [26], Database-as-a-service model [11],
most of the work in statistical databases, etc.

Additionally, we will assume the following background
knowledge is available to the adversary: (i) the set of media
events that can be generated by the sensors; (ii) all theN
individuals that interact with the space; (iii) the rules-to-
individuals mapping (i.e., which rules apply to which indi-
viduals); (iv) the details of the automata that implement these
rules.

Now, we take a closer look at the nature of inference and
formally define the inference mechanism that can be employed
by an adversary described above.

B. Inference channels

It is easy to see that a simple “scrubbing” of the data
does not prevent disclosure from an adversary who has the
above mentioned background knowledge. For instance, if the
adversary sees the following scrubbed representation of an
event – “<X, SERVER-ROOM, *, ENTRY>: 8:35 pm” and also
knows that onlyTOM has access to the server-room after
7:00 pm, he can easily infer the identity of the individual
X. Information about a particular evente∗ may be indirectly
inferred by observing the effects of other events before and
after e∗. In particular the adversary may be able to identify
the individual involved ine∗ by combining the observed
automaton access patterns and the background information that
he has as illustrated in the following example.
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Example: Let there be two rulesF1 and F2 such that
USER(F1) = {I1, I2} and USER(F2) = {I2, I3}. On a
media evente, let the SSN execute the protocol of Fig. 4.
In the second step of the protocol, if the SSN retrieves
exactly one row from the server, it could be an automaton
belonging to either one of the 3 individuals and therefore 3-
anonymity is guaranteed. However, if it retrieves two rows,
the adversary is able to instantly deduce that the individual
involved (i.e.,e.USER) could only have beenI2, leading to
privacy violation.♦

In general, an evente may be identified by determining
one or more of the automata retrieved while servicinge. But,
in order to identify an automaton, one might need to look
at how it is being accessed over a period of time (i.e., over
a long sequence of events). This is what we refer to as a
characteristic access patternof an automaton. Depending on
the structure and transition edges in an automaton, its access
patterns may have unique signatures (“row-access patterns”)
even when all the rows in the state-table are encrypted. Here
is another example that illustrates what comprises an unique
(observable) signature of an automaton.

Example: Let there be a set of 5 automata
{A∗, A1, A2, A3, A4} that make a transition on evente1. Let
there be another set of 5 automata{A∗, A5, A6, A7, A8} that
make a transition one2. Then A∗ is the only automaton
that can make a transition on bothe1 and e2. Also, assume
that there are no other events (besidese1 and e2) that are
common to any set of 5 automata. Now, if the adversary sees
a row (in the row-encrypted state table) that is accessed along
with 2 distinct sets of 4 automata (rows), he can be sure that
this row corresponds toA∗. As a result, this characteristic
access pattern ofA∗ has an unique signature and is therefore,
identifying.♦

Inference channels are observable features ofD or P or
a combination of both on a sequence of events generated in
the space. Inference channels exist due to the very nature of
the rules (composite events) that are defined in the space. For
instance, if all rules applied to allN individuals then any
solution that does not explicitly reveal the contents of the
state table and non-deterministically encrypts all the messages
exchanged between SSN and the server, is able to guarantee
N -anonymity. The differential nature of the rule set, i.e.,
the fact that “different set of rules can apply to different
individuals” makes inferencing possible. As illustrated by
the previous example, the important point to note is that
encryption by itself is not enough to obfuscate the access
patterns of automata which can give away enough information
to uniquely link an event to an individual. Now, we formally
characterize how access patterns allow inferencing and present
an approach to obfuscate these patterns.

1) Access patterns & characteristic patterns:An observed
access pattern(simply referred to as apattern for short) is
formally defined as follows.

Definition 1: (Pattern) A pattern is any sequence of sets
of literals, where a literal denotes an automaton-id. A pattern
pn,m denotes a sequence ofn sets, each with at mostm
literals.

A pattern denotes a sequence of row/automaton accesses
on consecutive events. For example ifF

′
, F

′′
and F

′′′

are 3 automata, a patternp4,2 could be the following.
{{F ′

, F
′′}, {F ′}, {F ′

, F
′′′}, {F ′′}}.

A pattern templateis defined as follows.
Definition 2: (Pattern-template) The template of a pattern

denotes the generic class to which the given pattern belongs.
It is denoted by replacing the actual literals in the pattern by
a variable.

For example, the above pattern follows the template
{{x1, x2}, {x1}, {x1, x3}, {x2}} wherex1 ← F

′
, x2 ← F

′′

andx3 ← F
′′′

(We assume that a suitable sequence of events
exists which generates this pattern of automaton access). In
general there maybe multiple patterns following the same
template. Acharacteristic patternof an automaton is defined
as follows:

Definition 3: (Characteristic Pattern) A characteristic
pattern of lengthn for an automatonF is an instance of a
pattern-templatep (of lengthn) whereF is present in each of
the n sets in the pattern.

For example the pattern {{F ∗, F ′}, {F ∗, F ′′},
{F ∗, F ′

, F
′′}} is a characteristic pattern of the automaton

F ∗. Each automaton is associated with a (possibly infinite)
set of such characteristic patterns depending on its structure.
Theset of all characteristic patternsof each automaton might
be unique. We will use the term “characteristic set” of an
automatonF to refer to the set of all characteristic patterns
of F and denote it byCP(F).
Example: The figure below shows 3 automata (denotedx,
y and z for short) corresponding to 3 rules applicable to an
individual TOM. The figure also shows some of the character-
istic patterns of these automata. In general the characteristic
set of an automaton (as well as some subsets of it) could be
unique.♦

Tom enters 
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Tom takes 
coffee

Tom enters 

kitchen


Tom 
take
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coff
ee

Tom enters 
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Tom opens 
fridge

x:

Tom leaves 

coffee pot 
empty


Tom  opens 
fridge Tom 
leav

es 


frid
ge o

pen


Characteristic patterns of x

P1: {x, y, z}  {x, y}


Characteristic patterns of y
P2: {x, y, z}  {x, y}  {y}

P3: {x, y, z}  {y, z}  {y}

Characteristic patterns of z
P4: {x, y, z}  {y, z}


y:

z:

Fig. 5. Characteristic patterns.

Pattern analysis by the adversary: An adversary with a
very large storage and computational power can be expected
to know (determine) all characteristic patterns (say, of all
lengths up to some largen) for each automaton. As a result,
after observing sufficiently long sequence of events and the
corresponding row accesses he is able to match5 rows in the
table to specific automata and thereby determine the identity
of the individuals. This leads to a definition of observable
indistinguishability between two automata.

Observable indistinguishability: Two automata are said to
be observably indistinguishableor simply indistinguishable if

5Matching can be done by comparing the characteristic pattern of the row
and those of the automata which he can pre-compute
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their characteristic sets areidentical. We now definepattern
isomorphismbetween two sets of automata as follows.

Definition 4: (Pattern Isomorphism) Let A andA′
be 2

sets of automata where|A| = |A′ | and G : A → A′
be a

bijective (i.e., 1-1 and onto) map fromA to A′
. Then G is

called a pattern isomorphism iff∀ automataa ∈ A andG(a) ∈
A′

, there is a natural bijectionT(a,G) : CP (a) → CP (G(a))
where (i) patternp ∈ CP (a) and T(a,G)(p) ∈ CP (G(a))
are instances of the same template,template(p) and (ii) ∀
variablesxi appearing intemplate(p), if xi ← t in p then
xi ← G(t) in T(a,G)(p) wheret ∈ A andG(t) ∈ A′

.
Under a given isomorphic mapG between two sets of

automata, the pre-image and image automaton are observably
indistinguishable from each other. Now if such anautomor-
phismexists forA (i.e., pattern-isomorphism from the set of
automata onto itself), then each automaton and its image under
this map will be observably indistinguishable to the adversary.
Let G∗ : A → A be a fixed-point freeautomorphism (i.e.,
a 6= G∗(a), ∀a ∈ A) such thata.USER 6= G∗(a).USER
∀a ∈ A. If such an automorphism exists, then each automaton
pertaining to any individual is observably indistinguishable
from some automaton belonging to another individual. As
a result, the true identity of the individual associated with
any automaton can never be uniquely determined by simply
observing the access patterns of the encrypted automata. We
will call such automorphism (if it exists), anon-identifying
automorphism.

Given a media evente, the adversary can only infer the iden-
tity of e.USER indirectly by determining the set of automata
that were affected while servicinge. He can only identify
an automaton by its characteristic access patterns. We now
state the necessary and sufficient condition for achievingk-
anonymity when the adversary can only see the characteristic
patterns. We will use the following definition ofdiversity of
an automata set:

Definition 5: Diversity: The diversity of a set of automata
is the distinct number of individuals represented in the set.

Theorem 1:(k-anonymity: Necessary & Sufficient condi-
tion): Given an injective map (assignment)G0 : A → R from
set of automata to the set of rows in the state-table, a sequence
of n media eventsE0 = {E0(1), . . ., E0(n)} (n → ∞) and
the corresponding row-access patternp(E0, G0), the solution
schemeS = (D, P) is k-anonymous iff there are at least k-1
other sequences ofn eventsE1, . . ., Ek−1 and corresponding
automaton-to-row mapG1, . . ., Gk−1 such that (I) patterns
p(E0, G0) ≡ p(E1, G1) ≡ . . . ≡ p(Ek−1, Gk−1) and (II)
E0(i).USER 6= E1(i).USER 6= . . . 6= Ek−1(i).USER,
∀i = 1, . . . , n.
Proof outline: An adversary can only infer the identity of the
individual involved in an eventei ∈ E0 by identifying the
associated set of automata (which are accessed onei). Since
the only observable features about the encrypted automata are
their access patterns, if the set of characteristic patterns of an
automaton are non-identifying, then it implies anonymity at
the event-level as well, i.e.,ei.USER cannot be determined.
Condition (I) in the theorem is equivalent to the following fact:
“For any row in the state-table, its observed characteristic pat-
tern (embedded inp(E0, G0)) should not allow an adversary to

identify the corresponding automaton uniquely”. Condition (II)
specifies the “degree” of indistinguishability that is required.
It ensures that thek-anonymity criteria (criteria 1) is satisfied:
“The diversity of the set of automata up to which an encrypted
automaton can possibly be identified is at leastk”.

From the adversary’s viewpoint, thek sequences (E0, . . .,
Ek−1) are indistinguishable. In other words, for each of these
k sequences if there exists an assignment (map) of automata
to rows such that for all rows in the table, thek automata
that are mapped to it (in thesek instances) are observably
indistinguishable6 from each other and correspond to distinct
individuals, then the k-anonymity criteria is met. Therefore
checking for the k-anonymity condition is same as determining
if k “suitable” pattern automorphisms exist on the set of
automata.♦

The problem of detecting whether a given set of automata
satisfies thek-anonymity conditions is difficult. Even the case
of 2-anonymity (i.e., whenk = 2) is NP-Complete as shown
in the following theorem. (Our conjecture is that the problem
is hard for other values ofk (> 2) as well.)

Theorem 2:(Hardness of checking for k-anonymity):
The problem of recognizing whether a given set of automata
(along with the corresponding set of events) is 2-anonymous
is NP-Complete.
Proof outline: The NP-Complete problem of “Deciding
whether a graph G has a fixed-point free automorphism”
can be reduced to an instance of the problem of “Detecting a
fixed-point free pattern automorphism on a set of automata”.
The reduction is presented in appendix B.♦

The problem now is to come up with an automaton annota-
tion scheme that on one hand guarantees that correct automata
are retrieved on each event and on the other to ensure that the
access patterns of the automata arek-anonymous. In the next
section, we provide solution that meet these constraints.

IV. A NONYMITY VIA PATTERN OBFUSCATION

In the previous section, we saw that it is difficult to
determine whether the patterns generated by an arbitrary set
of automata satisfy thek-anonymity criteria. This forces us
to consider only a restricted class of automaton annotation
schemes where the set of observable access patterns are
provablyk-anonymous. Consider the following scheme:

Solution 1: (k-Individuals Partitioning) Let M = bN/kc.
Make M disjoint groups of individuals, where each group has
at least k individuals. Assign all the media events appearing in
any automaton corresponding to an individual within a group
to a single cluster.

Note, that the above scheme assigns a static label to each au-
tomata in the state-table (i.e., the index-tag does not reflect the
change of state). The SSN requests the server simultaneously
for all automata in a partition, thus leading to a homogenous
access pattern for all automata within a partition, in effect
making them indistinguishable from each other. As a result,
this solution satisfies our k-anonymity criteria. Next, we show
that solution 1 can be significantly improved upon in terms of

6There exists sufficiently many pattern automorphisms on the set of
automata.
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performance. The improved solution is based on the notion of
a connected groupwhich we define below.

Definition 6: (Connected Group) The connected groups
of automata for an individualI correspond to the set of
connected components in an undirected graphGI = (VI , EI),
whereVI has one vertex corresponding to each automaton of
I denotedF I

. and there is an edge inEI corresponding to
every pair (F I

x , F I
y ) where both automata have at least one

common transition (β edge) between states.
Example: Fig. 6 shows two connected components corre-
sponding toTOM. All the 3 automata in the first group can
make a transition on the event “TOM, K ITCHEN, *, ENTRY”
and the second component corresponds to the automata with
the common edge “TOM, SERVER ROOM, *, ENTRY”.
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Tom enters 
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Tom exits 


with 


microwave


A

1


A

3


A
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Tom enters 


Server room


Tom logs in 


Tom enters 


Server room


Tom exits 


with server
A

5


A

4


Fig. 6. Example: Connected Groups

As illustrated in the example, a connected-group always
represents a single individual, but there may be multiple
connected-groups corresponding to an individual. Now, the
second more efficient solution is the outlined below.

Solution 2: (k-connected-group Partitioning) Partition
the connected-groups of automata into clusters such that each
cluster has diversity≥ k (i.e., has automata representing at
least k different individuals). Assign all the media events
appearing in automata within a bin to a single cluster.

The above scheme guarantees k-anonymity as illustrated in
the theorem below.

Theorem 3:(Sufficient condition for k-anonymity) Solu-
tion 2 is k-anonymous.
Proof: The scheme proposed above creates a partitioning of
the set of automata such that automata belonging to different
partitions (clusters) are never accessed simultaneously on any
event, whereas all automata within the same partition are
always accessed together. This implies that the rows in the
state-table are indexed statically irrespective of the state they
are in. As a result rows are accessed only at the cluster level
(i.e., the SSN either retrieves all or none of the automata
belonging to a cluster). Therefore, the characteristic patterns
for all automata within a partition are the same making
them observably indistinguishable from each other. E.g., If
the events of automata,A1, . . . , Am (say, corresponding to
rows r1, . . . , rm in DB) are grouped together, then each
Ai, i = 1, . . . , m has exactly one characteristic pattern of any
given length l (l = 1, . . . ,∞), where each element in the
sequence corresponds to simultaneous access of all them
rows, e.g.,Sl = {{r1, . . . , rm}, {r1, . . . , rm}, . . . l times}.
Each partition can be seen as a generator of one such class
of patterns that is characteristic of every automaton in that
partition. It is easy to see, that there is no way for an
adversary to distinguish one automaton from another within a
cluster using any observable access patterns. Such a scheme
will meet the k-anonymity criteria of theorem 1.♦

Thus, the above partitioning scheme may assign two con-
nected groups of automata corresponding to the same individ-
ual to two distinct partitions7. This added flexibility increases
the size of the solution space as compared to the more
restrictive scheme proposed in solution 1, and in general leads
to lower cost (more efficient) solutions. The modified commu-
nication protocol (for both, solution 1 and 2) is depicted in
figure 7.

Return all automatons 
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Fig. 7. Secure protocol for servicing events.

Difficulty of achieving k-anonymity using more
flexible schemes: The NP-Completeness result makes
it computationally infeasible to design a more efficient
partitioning scheme that achievesk-anonymity in the general
case (where automaton structure may correspond to arbitrary
directed graphs with cycles). For instance, consider the
following scheme:

“Partition the set of all media events into bins of size at
least k, such that each bin has events representing k different
individuals (each bin isk-diverse).

Unlike solution 2, where all media events appearing in an
automaton are forced to be in the same partition, the above
approach is more flexible and is a superset of the set of
partitioning schemes resulting from solution 2. The question
is whether such ak-diverse event-clustering scheme achieves
k-anonymity? The answer is no! Such a partitioning scheme
transforms the set of automata by effectively adding many
self-transitions to the states (nodes) and does not reduce the
complexity of the “k-anonymity verification” problem as such.
In appendix A we use an example to illustrate how such ak-
diverse partitioning scheme fails to achievek-anonymity. The
reason being, the characteristic set of the modified automata
may still be unique and therefore allow an adversary to infer
its true identity by observing row-access patterns in our model.
(For security analysis, we need to assume that the event
partitioning scheme is public knowledge and therefore known
to the adversary). It might be possible to come up with a more
efficient solution in special cases where the composite events
lead to simple automaton structures, but we do not pursue
those issues here.

A. Minimizing Partitioning Cost

The solutions proposed above poses a natural optimization
problem: since different automata may be accessed at differ-
ing frequencies, some partitioning schemes will have lower

7This in effect allows multipleavatarsof a single individual to exist as if
they were completely different individuals
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averagecosts (i.e., number of false-positive retrievals) than
others. The goal is to partition connected groups of automata in
order to minimize this cost while ensuring at leastk different
individuals are represented in each bin. (Observe that, solution
1 is a special case of solution 2, therefore, we will only discuss
the solution for the second scheme). We now model the above
problem as a novel set partitioning problem with some unique
constraints and show that it is NP-hard. Subsequently, we
propose a heuristic algorithm that generates good (low cost)
partitions in practice.

Modeling as a “minimum-cost partitioning” problem:
Let us assign each of theN individuals in the system a
distinct color. Let each automaton belonging to an individual
be represented by a ball. Each ball has 3 attributes:color,
price andweight. The color of a ball is same as that assigned
to the individual it corresponds to. Initially, each ball has unit
price and a weight equal to the number of edges in the corre-
sponding automaton. The price of a ball represents the space
that the corresponding automaton takes up in memory (and
consequently the transmission overhead in the communication
protocol). The price is set to1 (unit cost) initially since each
automaton occupies a single row in the state table. The weight
is a measure of how often an automaton is accessed in the
environment. We set the weight equal to the number of edges
under the assumption that number of edges is proportional
to the probability with which an automaton is accessed on
a randomly generated media-event. An alternative could be to
use the number of distinct media events that can cause a state-
transition in the automaton. In any case it does not affect the
partitioning algorithm.

In the pre-processing phase, the connected components are
computed as follows: all automata of the same color that have
at least one edge in common are fused into a new “larger” ball
of same color. The weight and price of the fused ball are set
equal to the sum of the corresponding values of the component
balls (i.e., the balls that were fused). This is correct since both
the measures are completely additive under our assumptions
and the system design (i.e., the probability of accessing a
connected group of automata is equal to the sum of the
individual access-probabilities of the component automata, as
is the transmission overhead). Now, the optimization problem
can be stated as follows.

Problem Statement 1:(Optimal k-anonymization) Parti-
tion the set of colored balls into bins (allowing as many bins
as required) such that the number of distinct colors represented
in each bin is at least k and the cost of the binning strategy
(S) is minimized.

In thek-anonymous protocol since all rows within a cluster
(bin) are to be accessed together, the associatedcost of a
solution schemeS is given by the following expression.

Cost(S) =
X

B∈Bins

(
X

ball∈B

weight(ball))× (
X

ball∈B

price(ball))

The complexity of the optimization problem: The above op-
timization problem turns out to be NP-complete in the general
case. The “minimum sum of squares” problem [8] which is a
known NP-hard problem, can be reduced to an instance of our
balls-and-bins optimization problem. The reduction is shown

in appendix section C. We also note that, the more constrained
case, where all automata of an individual are forced to be in the
same cluster, is also a NP-complete optimization problem as
can be shown by a similar reduction from the same minimum
sum of squares partitioning problem.

B. A Heuristic for Least-Cost Binning

We give a simple heuristic solution to the above optimiza-
tion problem. In practice the algorithm leads to good solutions.
In this paper we make no attempt to give a theoretical
guarantee on the approximation factor. Instead we provide an
intuition to the reader about the nature of performance scale-
up that can be expected through empirical results using a test
set of events, automata and individuals.

The input to the problem are 3 arrays of size equal to the
number of balls|B|. The first arrayColor[1 . . . |B|] specifies
the color of each ball, the2nd array Weight[1 . . . |B|] spec-
ifies the weight of a ball and the last arrayPrice[1 . . . |B|]
specifies the price of each ball. We also input the number of
distinct individuals (colors) in the system whichN and the re-
quired anonymity levelk. The output is the cost of the binning
scheme and an arrayBins (of size |B|), which specifies the
id of the cluster assigned to each ball. When the anonymity
constraint isk, it is easy to see that the number of distinct
clusters (bins) cannot be more thanb|B|/kc. The algorithm
first starts with a randomly generated feasible solution and
then iteratively decreases the solution cost by carrying out
cost-reducing “ball transfers” and “ball exchanges” between
bins till no more such transfers and/or exchanges are possible.
The detailed pseudo-code is presented in next as Algorithm 1.

In the algorithm, the candidate ball-transfers and their
associated cost reductions can be modeled as a directed graph
with the nodes corresponding to bins and edges having integral
weights. A (directed) edge from a noden1 to n2 denotes
the best candidate ball-transfer from the bin corresponding
to n1 to bin corresponding ton2. The edge weight denotes
the net cost reduction due to the corresponding transfer which
assume that the source and target bins are not involved in
any other transfers. A feasible ball transfer refers to one
which does not violate the k-anonymity constraint, that is,
each bin should have at least k colors represented at all times.
A linear-time graph matching algorithm (like [28]) can be
utilized for computing themost profitable matching in the
graph. Ball-exchanges8 between bins can also be modeled
similarly. Finally, since the ball transfers are only carried
out for positive cost-reductions, the iterative algorithm always
terminates. Finally, it can be seen that the algorithm terminates
by noting that the lastwhile loop in Algorithm 1 will definitely
terminate since only positive cost-reductions are allowed.

V. I MPLEMENTATION & EVALUATION

We built a prototype of the system described in this paper on
top of the SATware-Responsphere framework [10], [1]. SAT-
ware is a middleware framework for programming and testing

8Again, this operation is carried out only if it does not violate the k-diversity
constraint and leads to reduction in the cost.
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Algorithm 1 Least cost k-diverse partition.
1: Input:Color[1, . . . , |B|],Weight[1, . . . , |B|],Price[1, . . . , |B|], k,

NUM COLORS;
2: Output: Cost, Bin[1, . . . , |B|];
3: if k > NUM COLORSthen
4: Print: “No solution possible for given k”;
5: Return φ;
6: end if
7: /* Generate an initial feasible solution */
8: X ← set of all balls;i ← 0;
9: while k or more distinct colored balls inX do

10: Initialize new binBi;
11: Randomly put k distinct colored balls fromX to Bi;
12: i ← i + 1; X ← X \ Bi;
13: end while
14: Let M ← i; /* num bins initialized */
15: if M = 1 then
16: for i = 1 to |B| do
17: Bins[i] = 1;
18: end for
19: cost ← (

P|B|
i=1 Weight[i])× (

P|B|
i=1 Price[i]);

20: Return (cost,Bins[1 . . . |B|]);
21: end if
22: if ∃ balls not assigned to any binthen
23: Assign each such ball to a random binBi, i ∈ [1, M ];
24: end if
25: /* Iteratively carry out cost-reducing transfers & exchanges */
26: while 1 do
27: C ← φ; /* set of candidate transfers */
28: for all i, j where1 ≤ i, j ≤ M and i 6= j do
29: C ← C ∪ best feasible ball transferfrom Bi to Bj with a positive cost

reduction;
30: end for
31: if |C| ≥ 1 then
32: P ← mostprofitable set of compatible transfers inC;
33: Execute all transfers inP ;
34: Reflect new bin assignments inBins[1 . . . |B|];
35: Compute the newcost of partitions;
36: end if
37: C

′ ← φ; /* set of candidate exchanges */
38: for all i, j where1 ≤ i, j ≤ M and i 6= j do
39: C

′ ← C
′ ∪ best feasible ball exchangebetweenBi and Bj with a

positive cost reduction;
40: end for
41: if |C′ | ≥ 1 then
42: P

′ ← mostprofitable set of exchanges inC
′
;

43: Execute all exchanges inP
′
;

44: Reflect new bin assignments inBins[1 . . . |B|];
45: Compute the newcost of partitions;
46: end if
47: if |C| == 0 AND |C′ | == 0 then
48: /* No candidate transfers or exchanges */
49: Return (cost, Bins[1, . . . , |B|]);
50: end if

51: end while

Fig. 8. The user’s identity is concealed when he has his1st (a) and2nd cup of
coffee (b), but revealed when he has his3rd cup (c).

pervasive space applications. SATware is deployed on top of
Responsphere, which is a large communications, storage, com-
puting, and sensing infrastructure that covers almost a third of
UCI campus. It includes more than 200 sensors (including
cameras, RFID readers, temperature sensors, acoustic sensors,
gas sensors, accelerometers and people-counters), different
communication technologies (such as Ethernet, Wi-Fi, Power-
line, and IEEE 802.15.4), and several storage and computing
servers.

A. Evaluation

We modeled a real-world application based on some actual
observed activity on our floor in the office building. We defined
4 groups of peopleSTUDENT, FACULTY, STAFF, VISITOR with
300 members9 in all and defined 15 rules over these groups.
The instrumented part of the floor consisted of 3 rooms,
KITCHEN, SERVER-ROOM, FACILITIES-ROOM where events
could be detected using sensors. The 15 rules were categorized
into three sets of 5 each corresponding to each of the 3
rooms. The rules belonged to either of the two categories; (a)
Protection of resources and (b) Suspicious activity. These rules
were very similar in flavor to those presented in Section II. We
then constructed the corresponding finite-state automata that
would implement these rules (i.e., detect the corresponding
composite events). All 5 automata within a rule-set had at least
one event in common and therefore induced a single connected
group at most. For e.g., each kitchen-rule fired on an “entry
into the kitchen” event. As a result, all the automata pertaining
to the kitchen rules that were applicable to an individual would
fire when the individual enters the kitchen. None of the rules
belonging to different sets had any event in common, for e.g.,
no automaton implementingSERVER-ROOM or FACILITIES-
ROOM are affected by any event that takes place within the
kitchen and like-wise for the other two sets. (As a result, there
could be at most three connected groups corresponding to each
individual.). The 15 rules that we used for our experiments are
listed below.
Kitchen Rules

1) An individual enters the kitchen and takes a cup of
coffee from the coffee machine.

2) An individual enters the kitchen and moves the location
of the coffee machine.

3) An individual enters the kitchen and exits with the coffee
machine.

4) An individual enters the kitchen and exits with the
microwave.

5) An individual enters the kitchen, opens the refrigerator
and exits without closing the refrigerator door.

Supply-room Rules
1) An individual enters the supply-room and takes print-

outs from the printer.
2) An individual enters the supply-room and exits with the

scanner.
3) An individual enters the supply-room and exits with the

projector.
4) An individual enters the supply-room and moves the

location of the copier.
5) An individual enters the supply-room and moves the

location of the printer.
Server-room Rules

1) An individual enters the server-room and moves the IBM
server.

2) An individual enters the server-room and moves the
DELL server.

9There were 48 individuals on the floor, but for our simulations we
artificially increase the number to 300, keeping the proportions of each group
approximately the same.
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3) An individual enters the server-room and moves the
SUN server.

4) An individual enters the server-room and logs in using
the DELL server.

5) An individual enters the server-room and moves the IBM
server.

The corresponding automaton-structures are shown in fig-
ures 9, 10 and 11. We assigned rules to individuals by asso-
ciating each of the 3 rule-sets to one or more of the 4 groups
of individuals. That is, ifKITCHEN rules apply toSTUDENT

and STAFF groups, the system will instantiate 5 automata for
each individual in either one of these groups corresponding
to the 5 KITCHEN rules. Additionally, we introduced some
outliers by randomly assigning (de-assigning) some rules to
a small fraction of individuals. For example, say for 5% of
the students, 3 out of 5 of the kitchen rules might not be
applicable, whereas they apply to the remaining 95%. The
idea is that such outliers may exist in real scenarios.
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Fig. 9. Kitchen rules
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Fig. 10. Supply-room rules
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Fig. 11. Server-room rules

Through the implementation and its execution in a real-
world deployment, we were able to validate the functioning

of the algorithm and system. The actual prototype addressed
several implementation level issues such as event-detection
at runtime, key management, concurrent updates, etc. We
describe some of these details later in this Section. Figure 8
illustrates a sample scenario – a series of snapshots of different
states associated with composite event-detection as imple-
mented in our system. The camera (which is the SSN in
this case) reveals an individual’s identity only when he/she
consumes more than 2 cups of coffee.

Performance of clustering algorithm: To further study the
performance and security/scalability tradeoffs of the cluster-
ing algorithms however, we emulated event sequences based
on the above dataset. We compare the performance of two
solutions schemes: (i)k-Individuals partitioningand (ii) k-
connected-group partitioning. We use the clustering algorithm
described in the previous section to compute the optimal
solution in both cases. We then compare the performance
characteristics predicted by the algorithm (i.e., cost estimates)
with the actual number of automata retrieved in servicing a
sequence of randomly generated 1000 events.

To generate the emulated event sequence, we associate a
weight with each automaton that reflects the frequency with
which it is accessed in the application. While in the real world,
the weight would be some function of the frequency with
which a set of specific events occur and how they are inter-
related, we simplify this mapping by associating a random
positive (small) integer as the weight of each automaton and
set the net weight of each ball (connected group) as the
sum of the weights of automata belonging to that connected
group. From this, we generated an event-sequence where each
event was simply denoted by the id of a ball picked with a
probability proportional to its weight.

Figure 12 shows theestimated costs(given in previous
section) of the 2 partitioning schemes for various values of
k (the required anonymity level) and compares them with the
naive algorithm. The dataset we generated had 300 people, 772
balls in the unconstrained case and 300 balls in the constrained
case (since all automata of an individual are forced to be in
the same bin). The graph shows that the cost differential is
expected to increase consistently with increasing value ofk.
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Fig. 12. Cost estimates for the constrained (“Together”) and uncon-
strained (“Separate”) partitioning schemes

For the second plot, we generated a sequence of 1000 media
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Cost comparison using 1000 event simulation
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Fig. 13. Total # automata retrieved in 1000 events

events as described above. Figure 13 shows load characteristics
of the two clustering schemes on this test sequence. The y-axis
is the total number of automata retrieved over the 1000 events
which represents the transmission-load due to the “SSN-server
communication” in a real setting.

The two important conclusions that can be drawn from
observing the two plots are that: (a) The simulated transmis-
sion overhead in Figure 13 varies (grows withk) in almost
an identical manner to what is predicted by the partitioning
algorithm (cost estimate in Figure 12) and (b) With increasing
k, the load on the system increases at a much faster rate for the
k-Individuals partitioningbased anonymization approach as
compared to thek-connected-group partitioningone. While the
simulation result displays a very high degree of conformance
with the predicted results, we expect the load characteristics
to diverge from the model in a real-life setting. The reason
being that the weight of an automaton is always going to be
an approximation of the real value and can never be estimated
with complete accuracy.

Evaluation with different rule sets: The above experi-
ments were conducted in the context of the pervasive space de-
ployment discussed earlier with a limited number of rules and
hence automata. To understand the performance of the clus-
tering technique under varying rule conditions, we performed
other experiments using synthetic data that was generated by
varying various parameters such as average “connectivity”
between rules, number of individuals, and number of distinct
rules.

The synthetic dataset generated involved a set of rules
modeled using a random graphG = (V,E). V is the set
of vertices which represent the set of distinct rules applicable
in the pervasive space. An edge between any two nodes is
added with a predefined probabilityconnectedness. An edge
e = (u, v) ∈ E represents the fact that two rulesu andv are
connected. Each vertex has two associated metrics described
previously:price (set to 1) andweight(a random small positive
integer). To generate the set of rules applicable to an individual
x we create a new graphGx by considering each individual
x in the system at a time and selecting a subset of vertices
Sx ∈ V as being the rules that apply tox. Edges are retained

if both endpoints belong toSx. All vertices inSx are assigned
the colorcx (which is unique for each individual). Thus, the
connected components ofGx denote the connected groups for
individual x. These connected nodes are fused into asuper-
node (i.e., a ball in our terminology) such that the weight
(price) of the new super-node inGx is the sum of the weights
(prices) of its constituent vertices. We generate such sets of
balls, each set having a new color corresponding to each
individual in the pervasive space. These balls along with their
color, weight and price comprise the input to our clustering
algorithm.

Fig. 14 shows theestimated absolute cost differencebe-
tween the 2 solution schemes for various values of the para-
meters:# RULES, # PEOPLE, ANONYMITY and AVG NUM RULES.
The # BALLS denotes the total number of connected groups
generated from the set of all automata in the state-table. The
plot shows that the cost differential is expected to increase con-
sistently with increasing number of individuals and automata
in the state-table, but shows no clear trend across varying
values ofk.
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Fig. 14. Analytical estimate of performance improvement

B. Implementation Issues

Detection of event clusters at runtime: On generating a
media evente the SSN needs to determine the cluster to
which e is mapped. We implement this step using a secure
encrypted keyword search scheme similar to that of [26] as
follows: In a one-time pre-processing phase, the following
two-column tableTEC (media-event, cluster-id) is generated
(using oblivious interactions with the server) by one of the
SSNs and stored on the server.TEC is used only as a look-
up table (read-only) subsequently. The first column ofTEC

storesEkSSN
(“ej

i”) which is the encrypted representation of
the eventej

i . The second column stores the “CLUSTER-ID” of
the cluster to whichej

i is mapped. HereEkSSN denotes an
encryption scheme using the secret keykSSN common to all
SSNs. Now, on generation of an eventey

x, the SSN issues an
encrypted query to the server forEkSSN

(“ey
x”) and the match

is carried out by the server on entries of Column 1 ofTEC . If
a match is detected, the corresponding cluster of rows from the
state-table (i.e., containing the encrypted automata belonging
to the same cluster asey

x) are returned to the SSN. Such a
retrieval model is secure and gives out no information about
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the media event that was generated beyond the identity of the
cluster to which it belongs.

In the oblivious pre-processing phase, the SSN simply
writes the media-events into the tableTEC in a random
sequence so as to ensure that the row-id and events are not
correlated in any manner whatsoever beyond what can be
gleaned from looking at the cluster-id of a row.
Concurrent access:It is quite possible that multiple sensors
request the same group of connected automata at the same
time (since automata corresponding to different individuals
might be grouped together). Server will be required to employ
a write-lock for this purpose. Some preliminary simulations
indicate that the performance degradation is graceful with in-
creasing load. Also, since the event generation in the pervasive
space is driven by humans, natural latency of human activity
does not pose a great challenge to performance.
Key-management in SSNs: The issues regarding key-
management of SSNs is an important aspect. Recall, that we
need a shared secret key (between all SSNs) that is used
for and encryption/decryption of the automaton objects. We
summarize our key-generation/update protocol below:
• Each SSN has a public-private key pair(pubi, prvi) and

the list of public keys of each sensor is stored on the
server.

• Periodically (could be daily) one SSN elects itself as the
leader10, say SSNi and generates a secret keysk for
encrypting the automata.

• Leader communicates with the server to get public keys
of all the SSNs. It then encryptssk with eachpubj , j 6= i
and communicatessk to the respective SSN via the server.
SSNj can then decrypt and retrievesk usingprvj .

• The leader also executes another communication protocol
with the server to re-encrypt all the current rows (au-
tomata) using the newly generated secret keysk. In this
step, the leader can optionally also carry out a random
permutation of the row contents in the state table. (There
are many possible algorithms for this, for instance,SSNi

may read two rows at a time from the state table and
swap them while write back (after re-encryption) with
probability 0.5.

VI. RELATED WORK

There is a large body of work in the area of systems for per-
vasive computing environments [18]. GAIA [24] is an example
of a system designed inherently to enable pervasive computing.
Other systems such as CRICKET [23], tackled the problem
of localization for embedded sensor and mobile context-
aware applications. The importance of privacy to pervasive
computing environments for system designers and users has
been raised in [5]. Langheinrich [17] stated the danger current
pervasive systems research faces in continuing on without
considering privacy as an inherent part of system design.
Research on privacy for pervasive computing environments has
been looked at from multiple angles. For example, the MIST
system [3] combines hop-to-hop routing based on handles
with limited public-key cryptography to preserve privacy from

10Conflicts can be detected using a locking protocol.

eavesdroppers and traffic analyzers. Our previous work [30]
sought to address issues in preserving the privacy of users
in the context of real-time video surveillance. Some recent
work on event otologies for video-based events (VERL) [19]
comes very close to the type of event detection we envision for
pervasive spaces. VERL allows one to capture various basic
and composite events using a formal language. Our imple-
mentation uses automata for representing composite events
due to the natural fit with the type of activities of interest
in a pervasive space. Other types of event-based systems
[9], [19] have implementations based on Petri Nets, which
support concurrent behavior and parametrization. However,
even for simple expressions, they quickly become complicated
and expensive to implement. Other recent work in ubiquitous
computing has also explored the use of event structures to
monitor interactions, particularly in the trust domain [7].

A large body of work in privacy-preserving data mining
literature propose algorithms for k-anonymous data publishing
problem. Most of these techniques can be classified as either
generalization, suppression or a mixture of both techniques
[21], [27]. More recently, some work on location-privacy also
incorporate similar measures for privacy [4], but none of them
are directly applicable to our kind of application.

More recently, there has been some work on private search-
ing on streaming data [20] which is of interest since we too
model the pervasive space as a stream of events. The authors in
[20] approach the problem in a similar manner, where the goal
is to prevent the adversary from knowing whether a document
matches the search criteria or not by obfuscating the pattern
in which both matching and non-matching documents are
handled. Though, the problem in our case is more complicated
due to two main reasons, one because, we not only need
to carry out the matching, but also update the state of the
automaton. Second, while the authors in [20] do not address
the problem of repeated access of the same document, we have
to address this issue as we need to deal with a fixed set of
automatons. This leads to additional inference channels not
addressed in [20].

VII. C ONCLUSION

In this paper, we addressed the privacy challenges that
arise in human-oriented pervasive spaces when environmental
data captured via sensing infrastructures (that may contain
identifying information) is collected to drive pervasive func-
tionalities. The core of such pervasive spaces is multi-modal
event detection. We identified inference channels that arise in
detecting multi-modal events that correspond to finite state
automatons of primitive events described over media streams.
We developed an anonymizing methodology that explores
the trade-offs between information disclosure and efficiency.
While our paper represents a first such attempt at realizing
pervasive functionality while preserving subjects privacy, our
solution makes a few assumptions and simplifications which
we list next.
Media Event generation: We assumed that sensors (SSNs) can
generate media events without disclosing information to the
server. While this assumption is valid for certain sensor (e.g.,
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events detected by RFID readers), in general, generating a
media event may require sensors to communicate with the
server. Current solutions does not ensure non-disclosure in
such a case. We further note that a slightly different model
for event generation is possible, in which the state of the
automatons is instead stored on the distributed sensors directly
(instead of being stored on the untrusted server). Such an
approach is also interesting, and we believe that the solutions
we have developed for a server-oriented protocol could provide
insights into designing a distributed solution as well.

Anonymous Sensor-Server Communication: Identity of the
sensor sending information to the server could lead to disclo-
sure. In general, the server could infer additional information
about the type of the incoming event (e.g. location, type
of action, etc.) from the identity of the sensor sending the
request. We have assumed that some anonymous sensor-server
communication [3] is in place, which in reality still needs to
be integrated into the current solution. This will potentially
have an overhead on the performance. Note that this type of
disclosure affects both the naive as well as the cluster-based
algorithm.

Generalization of Media Events: We assumed state transi-
tions in a specific automaton are instantiated by the events
associated with a single individual. In general, we may also
be interested in detecting complex events involving multiple
individuals. For instance, we may wish to detect the composite
event where any 4 people belonging to 4 different groups
come together in a particular room. There are a number of
different ways (combination of different individuals) in which
this might occur. A secure implementation would need to
have an automaton for each possible combination of 4 people
belonging to the 4 groups. Additionally, one must consider
which individual should be associated with each automaton.
Similar issues arise if one has to detect a combination of
multiple resources in a single media event (e.g. multiple items
would be required to be tracked in Scenario 2, found in Section
II), in which case the “detection of event-clusters” using
encrypted matching becomes a challenge. Another interesting
issue is when an actual single basic event can satisfy multiple
primitive event specifications. In such a case, multiple events
need to be generated by the SSN which can then form an
alternative inference channel if the adversary can detect that
these events are correlated in time. As one can see, the
complexity of the event specification and detection increases
as we start defining more varied rules. Extending our model
to support such events is a key direction of our future work.

Rule Execution: We focused on only the detection of media
events scoping out the issue of action execution. The visibility
of actions that execute as a result of the event detection might
have privacy implications.

Model of Privacy: We only considered anonymity as the
definition of privacy in this paper. Extensions to our approach
that address the problems of other notions of privacy are also
very interesting.

Our current research is exploring approaches to relax the
above assumptions which will significantly enhance the gen-
erality of our solution.
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APPENDIX

A. Example: k-diverse event-clustering

Example: Let there be three rulesR1, R2 andR3 and three
individuals I1, I2 and I3 such that ruleRi applies only to
individual Ii. In our model, there will be one automaton object
that is instantiated for each rule corresponding to the individual
the rule applies to. Let these be denotedF 1

1 , F 2
2 and F 3

3

respectively. These automaton objects are stored in 3 separate
rows of the state-table (MAXSIZE = 3). Figure 15 shows
these three automatons. Now consider the pattern-template
p = {{x}, {x}, {x}}. It has 3 possible instantiations:x ← F 1

1

or x ← F 2
2 or x ← F 3

3 . For each of these 3 instances, there
is a sequence of events involvingI1, I2 and I3 respectively
such that the templatep can be realized. That is, there are
sequences of media events e.g.,{e1

1, e1
2, e1

3} which results in
a single row being accessed three times in succession. But the
template{{x, y}, {x, y}, {x, y}} is not realizable since there
exists no event which results in retrieval of two automatons
(rows) simultaneously from this set.
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Fig. 15. Example - Automatons and event sequences.

Let the following 5 event types be defined for media events,
Etypes = {e1, e2, e3, e4, e5}. Also, assume 3 individuals are
associated with the space and represented as:I = {I1, I2, I3}.
Then, the complete set of event instancesEmedia consist of

the following 15 eventsEmedia = {e1
1, e1

2, . . ., e2
1, . . ., e3

5},
where the superscript denotes the individual and the subscript
denotes the event type. Let there be 3 distinct rules,R1, R2

andR3 such thatRi applies only toIi, i.e., there is only one
instantiation of each rule. The three corresponding automatons
are denoted by the setF = {F1, F2, F3} and shown in Fig. 15
(self-loops are not shown).

Now, consider the following clustering of the events into
four 3-diverse clusters (i.e., all 3 individuals are represented
in each of the clusters):C1 = {e1

1, e
2
5, e

3
4, e

3
5}, C2 =

{e1
2, e

2
1, e

2
2, e

3
3}, C3 = {e1

3, e
2
3, e

3
1} and C4 = {e1

4, e
2
4, e

3
2}.

Fig. 16 shows the modified tags for the automatons. (Note
that we do not need to consider events that do not appear in
any rule, e.g.,e1

5 in the above case).

C1 C2 C3 C4

C2

C2

C3 C4

C3 C4 C2

C1

C1 C1

s0 s1 s2 s3 s4

s0 s1

s2

s3 s4

s0 s1 s2

s3

s4

F1
1:

F2
2:

F3
3:

Clusters:

C1 = {e1
1, e5

2, e4
3, e5

3}; 

C2 = {e2
1, e1

2, e2
2, e3

3}; 

C3 = {e3
1, e3

2, e1
3};

C4 = {e4
1, e4

2, e2
3} 

Fig. 16. Example - Automatons indexed by event clusters.

Let the following sequence of two events be generated in
the pervasive space:S = {(e2

1 : t1), (e3
1 : t2)}. At t1 whene2

1

is generated, the SSN will map the event to its corresponding
cluster-id, which isC2(later we will explain how this is done
securely without revealing either the event or the cluster-id
to the server). Subsequently, all rows currently indexed by
C2 are to be retrieved, decrypted, updated, re-encrypted and
written back into the state table. At timet1 just a single
row is accessed, that corresponding toF 2

2 (which is in state
s0). The state of the automaton is updated tos1, the row
is indexed by two encrypted tagsEk(“C2”) and Ek(“C3”)
denoting C2 and C3 respectively (for now assume that a
searchable encryption scheme allows this without revealing
the number of distinct tags, i.e., 2 in this case) and then the
row is written back. At this point, an adversary is not able
to determine which of the three automatons might have been
initiated, hence 3-anonymity is ensured for all individuals.
Now, at time t2 when the second evente3

1 is generated, all
entries indexed byCluster(e3

1) = C3 are retrieved. This
set consists of two rows: one that was retrieved in the first
step (corresponding to automatonF 2

2 currently in states1)
and the row corresponding to automatonF 3

3 , currently in
its initial state s0. In the write back phase, both the rows
are written back after suitable updates and re-encryption is
done. However, after the execution of the protocol att2, the
anonymity of the individuals associated with the events at
t1 and t2 are lowered from 3 to 2 by making the following
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deduction (by working backwards): Att0, all automatons
would have been in their initial states, indexed by distinct
cluster-ids (i.e., encrypted labels denotingC1, C2 and C3

corresponding to the clusters of the transition edges out
of the initial states of the 3 automatons) and any event
would at most result in retrieving one row. Combining this
information with the observation att2 where two automatons
are retrieved, the adversary can deduce that the event at
t1 would have resulted in the state change of the retrieved
automaton. He is now able to further deduce that att1, the
automaton that was retrieved could not have beenF 3

3 , since
then it would have been in states1 before t2 and indexed
by C4, which would never result in retrieval of two rows
simultaneously att2. By this analysis, the adversary can
deduce that the event att1 could have only belonged to
I1 or I2 (and notI3) and the event att2 could have been
that of I2 or I3 respectively (and not ofI1). This brings
down the anonymity to unsafe level of 2. (Note that the
inference is possible by simply observing the pattern of row
accesses from the state table. The leakage happens in spite of
encrypting the contents and index tags of rows in the table.)♦

B. Proof of NP-Completeness of k-anonymity detection

Here we present a proof of theorem 2 from section III.
Actually, we show that for a candidate solution schemeS =
(D, P, C) whereC denotes an event clustering scheme (section
IV), the problem of checking whether it achievesk-anonymity
is NP-Complete. We present a simple reduction of any instance
of the problem of checking the existence of a fixed-point free
automorphism in a graph G to an instance of our problem.
The former is known to be a NP-Complete problem [16].
Reduction: Given a graph G = (V,E), generate an instance of
our problem as follows:

• For each vertexu ∈ V , let there be an individualIu

associated with the pervasive space.
• For eachu ∈ V , let generate an automatonAu with two

statessu andfu (denoting start and final states).
• For every edge(u, v) ∈ E, add two transition edges

between start and end states of automatonAu and Av.
Label these two transitionsC(u, v).

The above construction gives rise to an instance of our
problem containing a set of 2-state automatons. Since each
automaton is assigned to an unique individual, common tran-
sition edges between two automatons can be interpreted as
formation of 2-event clusters. For example, a transition edge
labelledC(u, v) can be assumed to correspond to two events
eu
v and ev

u in the automatons corresponding to individualsIu

andIv respectively. Therefore, the reduction implicitly deter-
mines a set of appropriate events as well as an event-clustering
scheme. Also, note that by the nature of the construction, each
media event will lead to retrieval of exactly two automatons
from this group. The following observation is critical.

Observation 1: The characteristic set of an automaton can
be represented simply by the set of all its length-1 patterns.
All longer patterns are simply concatenation of these length-1
patterns.

Since the set of edges in G completely specifies the set of
all observed automaton access patterns, it is easy to see that
the two problem instances are equivalent.
(→) Recall, under the definition of pattern automorphism, an
automaton and its image (under this map) have the same set
of observed patterns. But, since the set of length-1 patterns
represent exactly the set of edges in G, existence of a fixed-
point free automorphism in G will automatically imply the ex-
istence of a fixed-point free pattern-isomorphic (automorphic)
map in the corresponding set of automatons (with respect to
the event-clustering scheme implied by the reduction).
(←) The two problems being completely equivalent, the
reverse implication also holds.♦

Fig. 17 shows an example of the reduction. The graph on left
generates the set of 5 automatons on the right. The transition
edges in the automatons are labelled by the cluster-ids of the
event-clusters that are implicitly formed by this reduction. The
2 events comprising each cluster are shown on the right. Recall
that the superscripts in each eventej

i denotes the individuali
to whom this event belongs. The subscript is simply used to
denote different events.
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Fig. 17. Example: NP-Hardness reduction

C. NP-Hardness of minimum-cost partitioning of balls into
bins

We show that the minimum cost ball partitioning problem
of section IV is NP-hard by reduction from the “minimum
sum-of-squares” problem [8]. The minimum sum-of-squares
problem is the following.

Definition 7: (Minimum Sum-of-Squares) Given a finite
setA, sizes(a) ∈ Z+ for eacha ∈ A, and an integerK ≥ 2,
determine a partition ofA into K disjoint setsA1, . . . , AK ,
such that the following cost measure is minimized

i=K∑

i=1

(
∑

a∈Ai

s(a))2

Now, any instance of the above mentioned problem can be
reduced to an instance of our problem as follows: For each
elementa ∈ A, let there be a “RED” ballba with weight(ba) =
price(ba) = size(a). Also, introduceK “BLUE” balls, each
with price = weight = 1. Then, an optimum partitioning of
this set of balls that achieves 2-anonymity will also give an
optimum solution to the corresponding “minimum sum-of-
squares” problem.
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The BLUE balls impose the required restriction on the
number of bins. The monotonicity of the squares function
along with the uniformity of the BLUE balls effectively cancel
out the effect of their presence in each bin.♦


