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Abstract—In this paper, we consider privacy challenges in arise when users do not fully trust the pervasive environment.
event-driven pervasive spaces where multimedia streams cap- Measures to establish trust, such as explicit policies to prevent
tured by sensors embedded in the infrastructure are used 10 a5y age or sharing of personalizing information may alleviate,

detect a variety of application-specific media events. In particular, but d t eliminat h Indeed tudi
we develop techniques to detect events without disclosing any ut do not eliminate such concerns. Indeed, numerous studies

identifying information unless necessary. We characterize the have identified such privileged users as the primary source of
nature of inference channels that arise and model privacy corporate data thefts.

preserving event detection as an optimization problem that |f the pervasive space is untrusted, event detection systems
attempts to balance disclosure with performance. We design and st address a larger challenge; that of event detection from
test efficient communication protocols that realize this tradeoff. . > ; . . .
multi-modal streaming data without violating the privacy of
individuals captured in the streams. Note that if the pervasive
|. INTRODUCTION space is entirely untrusted, the goal of privacy preserving event
Emerging sensing, embedded computing, and networkidgtection will remain elusive. In our approach, we assume the
technologies have created opportunities to blend compupresence of tamper-proof sensing devices capable of limited
tion with the physical world and its activities. The resultinggomputation that can be programmed to generate a stream of
pervasive environments offer numerous opportunities incluevents while hiding the raw signals from which such events
ing customization (e.g., personalized advertising), automatiare generated. Such an assumption is not unreasonable given
(e.g., inventory tracking and control) and access control (e.gdvances in sensor technologies (e.g. research on low-cost
biometric authentication, triggered surveillance). Multimodairyptographic schemes [25], [14], [29]); smart surveillance
event detection is an integral component of pervasive envir@gystems such as IBM'sS3 [13] already employ tamper-
ments. Such systems capture and process raw streams of getaf sensors. Privacy-preserving techniques, such as those
(e.g. video, speech) and then convert them into semanticaiat manipulate raw video stream data, (e.g face masking,
meaningful events. For instance, the entry of an unauthorizeminoving/replacing identities) can be incorporated into the
person (detected from a video stream) into a sensitive regicapture devices themselves [30]. These techniques are ef-
may raise an alarm. Such events, once detected, may resufettive when one wants to detect simple events that can be
further actions that realize the functionality of the pervasivevaluated based on the current event data itself. For instance,
space. capturing the entry of unauthorized personnel into a protected
Event-driven approaches have recently become a popupace can be accomplished through credential-driven access
paradigm in which pervasive applications are implementecbntrol. However, for more complex events which requires one
The VERL system developed a language to specify amalstore past event data, the problem is not so simple. Consider
detect multimedia events [19]. The IBBB smart surveillance the case where one wants to detect repeated entries (say more
system [13] offers event-based retrieval in order to manatfean ten) of an employee into a certain room within a 8 hour
surveillance data. The Cayuga system and accompanyimigpdow; here, a record of all previous entries in that window
language, CESAR [6] proposed an event stream language amgst be maintained. A significant amount of raw data from
detection system that uses finite state automata to realize tdgltiple sensors may be required for evaluation and handling
detection of complex events for publish/subscribe applicatiotiss data securely becomes a critical issue that needs to be
[22]. An event-based approach offers a general framewaakidressed.
using which a wide variety of pervasive applications can be Complex event detection on streams can be implemented
built. by either storing the incoming data in the form of a log and
In this paper, our focus is on human-centric pervasiavaluating predicates on it, or by taking an automaton-based
spaces. In such spaces, the collected environmental data mpgroach as proposed in the Cayuga system [6]. Either way,
include personalizing information about individuals immersetthe question is where and how to store the data or the automata
in the space. This naturally leads to concerns of privacy. For an untrusted environment? Sensors being the only trusted
instance, information about a person’s location used to cussmponents in our model, would be the first candidates for
tomize the space could potentially be misused as evidenceseture storage of data. Instead, we argue that a centralized
his/her presence/absence at a given location and time (whethetem is more viable for the following two reasons: (i) A
or not it is in their best interest). Such privacy concernsomplex event may evolve over an extended period of time



and might be distributed over spatial regions. For examplsubject),s denotes a region, denotes a resource,specifies
say we want to detect the event when a particular individutdile category of the activity, anddesignates the time the event
comes into the third floor of a building for th#” time within  occurred. The event is interpreted as a userperformed ac-
a day. If the floor has multiple access points, the individu#lity a, in spaces, involving resource at timet. For instance,
might enter the floor via different access points. Such @ media even{BoB, LOADING_DOCK, *, ENTRY):3:00pm in a
distributed event-detection involves multiple sensors accessBgveillance setting represents that “Bob” entered the “loading
a common set of records (or automata) to correctly determideck” at “3:00pm”. The resource here, could be anything
when the specified individual enters the floor for #e time. (*) (could be of null value). With media evenis we will
A centralized architecture is therefore more convenient. (#ssociate the following notation. We will refer to the user
Also, a centralized database offers greater scalability thas the user associated with event-urthermore, a particular
a distributed set of sensors with limited storage capaciipstantiation ofs, r, a in the event will be referred to asype
On the down side, the central server is neither a tampefthe media event. For instance, in the above exampie,
proof hardware, nor does is reside in a trusted environmeist.the user associated with the media event, and the event is
This makes the information stored on the server vulneraldéthe type (loading dock, *, entry). The set of possible media
to attacks. In this paper, we develop an automaton basmdnts depend upon the pervasive application and are limited
approach for event detection, where the challenge lies by what the sensing infrastructure can detect. In general, media
designing a secure scheme for evaluating automata on #&wents are domain dependent, with the specification of and
sensor-generated stream of events. The security goal beimgchanisms to detect them being implemented by the designer
that no confidential information regarding the nature of event$ the pervasive application. Using such mechanisms, a media
should be available to entities in the untrusted regions. V¥&ream can be converted into a stream of media events. We also
outline the contribution of this paper below. notice that the set of all media events that can be generated
In the remainder of the paper, we adopt an automaton basedhis space is a finite, enumerable set. For instance, a media
approach to event detection (described in Sec. Il). We assuevent belongs to the cartesian product of the set ofisdirs
that sensors detect basic media events and engage in an espatial regions resourcesand activities that can be detected
detection protocol with an (untrusted) server that maintains &8y the sensors. The finiteness of this set has consequences on
the state information including instantiated (partially executethe privacy-analysis as we will see in Section IlI-B and IV.
automata information. In Sec.lll, we characterize the nature Bfimitive and Composite Events: A pervasive space is
privacy and inference channels in composite event detecti@ssociated with a set of policies (or rules). A policy consists
We then design a secure communication protocol betweeha description of an event and the corresponding action that
trusted and untrusted components that enables (compositeist occur if the event is detected. An event could either be
event detection (Section IV). Since the trusted compongmtimitive or compositeA primitive eventsimilar to the media
is limited in its capabilities (i.e. storage, processing), thevent is modelled as a 4-tuple u,s,r,a > and is further
challenge lies in designing an efficient, scalable solution thassociated with a temporal conditiop, wherew refers to a
ensures a desired level of privacy while minimizing execwgroup of (one or more) usersto the spacer to the resource,
tion overhead. The trade-off between level of privacy andto the type of activity.d is a simple operator of the form
system performance is modeled as a constrained optimization-}, which indicates before—{) or after ¢) time ¢. For
problem, where the objective is to minimize communicatiomstance,< u € STUDENT s € CS I, * ENTRY>:15:00.
overhead and the constraint is to ensure the required leigelan example of a primitive eveéntA media event is said
of privacy. We develop a heuristic in solving this NP-hartb matcha primitive event, if a media evertstantiatesthe
optimization problem which gives good results in practicprimitive event. Consider, a media evemtog Room113,
(also described in Section 1V). We provide insights into theriIEFCASE, ENTRY:16:46that represents the fact that “Bob”
performance of our protocol and describe an experimentahlked into room 113 carrying a briefcase at 286 Such a
deployment (Section V). We present some related work media event will match the aforementioned primitive event, if
Section VI and conclude in Section VII with some discussioBOB € STUDENT, ROOM 113 € CS II and the time of

and outline some open problems. entry is after 3:00M. A result of the match is a “binding” of
the variables., s, r in the primitive event by the corresponding
Il. AN EVENT MODEL & SYSTEM ARCHITECTURE individual “Bob”, “briefcase” and “Room 113" specified in the

We envision a pervasive environment as a physical spavedia event.
with an embedded sensing infrastructure which is used toA composite everis a combination of one or more primitive
monitor its state. The pervasive space is modelled as a eeents. We restrict composite events to those that can be
of users (), a set of physical regions or spac®)( and expressed as regular expressions over primitive events. Regular
resourceskf). Sensing in the pervasive space happens througkpressions, while limited in expressibility, have been deemed
a variety of mediums (e.g., video cameras, radio-frequentgybe sufficiently powerful for a large class of pattern and event
identification (RFID), motion detectors etc.). We refer to thdetection systems [22], [6].
raw sensor data gathered by the sensomadia streamsA Composite Event DetectionComposite events are translated
media strean® is analyzed to extraahedia events 1 _ _ o R ,

dia Events: A media events modelled as a timestampe We will, _f(_)r n_otatlonal _S|r_n_pI|C|ty, sometimes ignore temporal_constralnts
Media Ev : pedy, e specification of primitive events if the temporal constraints are not
4-tuple, e = (u,s,r,a) : t wherew corresponds to a userintegral to the concept being discussed.



into their corresponding finite state automata (FSA) referred

to as anevent automatanAn event automaton is a directed

multigraph, where nodes correspond to states and edges to

state transitions. Edges (transitions) are adorned with a corre-

sponding primitive event that cause the state transitions. The

automatonF’, executes as followsF, when initiated is in

the initial statesy. At any states;, F' has a set of possible

transitionst; each of which is associated with a corresponding _

primitive eventp;. Let p; = (up, sp, 7p,ap) : tp, ande = Fig- 2. Automaton for scenario 2.

(Ue, Se, Te, ae) : t. be @ media event thatatcheghe primitive

eventp;. Such a media event will cause (E) to transition

from states; along the transition;, and (2) bind the variables . o ) ) )

associated with the primitive events based on the matchigW consider the following incoming media everfilice,

media event. serverroom, laptop, entry: 09:13. This media event instanti-
Let us illustrate the automaton execution model via tHi€S the automaton in Fig. 1 by binding Alice to it (assume

use of an example. Consider a shared “smart” office spdb@t Alice is indeed identified to be a member of the group

setting which is used by a number of research groups andAFP)- At this point, the automaton is well-specified and

staff of the office. The area is instrumented with varioudound to Alice (i.e = Alice).

sensors (that monitor inhabitants, resource usage/consumptiof/e€ make following observations about our automata:

etc.). For example, workers wear RFID badges [30] to inform ¢ For every state of the automata, there is always a transi-

the building of their movements. We illustrate our event and tion for all possible media events. Létbe an automata,

execution models with the following application scenarios. s be any state of’, and letty,ta, ..., tx be the set of

Scenario 1i(Surveillance) is done in the server room to detect ~ transitions associated with stateof I with the corre-

if any member ofSTAFF enters the server room, and accesses SPonding primitive eventgs, ps, ...p;. For all media

the payroll database. Note thatefers to the instantiated value ~ €ventse there exists a primitive event;, 1 < j < k,

of u. We identify the following primitive events such thatp; matchese. We need the above condition
. since our automata are utilized for pattern recognition
€1 = < u € STAFF, SERVERROOM, 7, ENTRY> in an event stream. We differentiate between edges of

e2 = < u, SERVERROOM, *, EXIT>

es = < T, SERVERROOM, PAYROLLDB, ACCESS> the automata that are used to drive the automata to its

successor statex(edges) from the edges that are self-

loops used to filter out media events unrelated to the
—(eyVe,) progression of the automat& é€dges). A similar concept
of filter edges was used in [6], which consume events
that do not drive a particular automaton to advancing its
current state. Note that while implementing automata of
this kind, we can effectively ignorg edges as they do
not alter the state of the automata. We will henceforth

2 ignore 3 edges of automata.

Fig. 1. Automaton for scenario 1. « The automata aréndividual-centric That is, for any
sequence of media events, es, ..., e, that transitions
an automatal” from the initial states, to its final state
sr (using only thea edges),e;.u = es.u--- = ey.u,

Scenario 2:(Inventory Tracking) is done on two floors of a
building to determine if any member of tliatabaseresearch
group enters either of these floors and then leaves with a
projector. The corresponding automata can change states ot the remainder of the paper we will require the follow-
the following primitive events. This is an example of a morfd notation. For an automat&’, we define the notion of
distributed automaton where we need to look at two possidieSER(F). USER(F) C U, is the set of individuals in
paths that can trigger the transition to the final state. The satig system such that € USER(F) if and only if there

wheree;.u refers to the user associated with the event
€;.

notation as Scenario 1 applies here. exists a sequence of media evellis= ey, es,...,e,, €¢; =
(z,si,7,a;) : t that can be recognized b (that is, they can
€1 = < u € DATABASE, FLOOR 2, *, ENTRY> transition ' from its initial state to a final state). For instance,
e2 = < u € DATABASE, FLOOR4, *, ENTRY> in the example above, “Alice” would be in the SER(F),
ez = < W, FLOOR 2, *, EXIT> for the automata depicted in Fig. 1. In contrast, “Bob” would
e4 = < U, FLOORA, *, EXIT> not be inUSER(F) if “Bob” was not a member of the staff.
€5 = e¢ = < U, STORAGEROOM, PROJECTORACCESS> We generalize the concept 6fSER to the set of automata.

Let Fs be an automaton setl/SER(Fs) = J; USER(F;),

2x designates a wildcard and refers to the fact that there is no constrafiit € ES' FO!‘ a given user, we denote the set of aUtomata
on the resource or time in matching this primitive event for which « is in the USER set as the automata associated



number of automata in the state-table is fixed, which we denote
by NUM_RULES. Each encrypted automaton is tagged by a
label that is used only for lookup purposes. The tag is used
only for set-membership queries and does not divulge any
information beyond membersHipBy default, each automaton
in the state-table is in its start-state. After an automaton
reaches the final state (and suitable action is taken) it is
reset to its start state. Since the encryption scheme used
is non-deterministic in nature, the start and final states are
indistinguishable from any other state of the automaton. We
also assume that there is no explicitly identifying information
(like observable action-execution on reaching the final state
for an automaton) available to an adversary that lets him
discriminate one state from another.

Communication protocol B: Fig. 4 shows the generic

Our event detection system consists of multiple componengsnplate of the communication protocol between a SSN and
(depicted in Fig. 3). The two primary components of intereshe server in order to service a media event generated by the
are the secure sensor nodes (SSN) and the untrusted seB&N. Since SSN is the only secure (trusted) component, all
with large storage and computational capacity that stores statenmunication data between the server and a SSN needs to
information about the pervasive space. be encrypted. We make the assumption that, the automata can

SSNs:The secure sensor nodes (SSNs) are also the melokia“safely” tagged by the set of media events on which it can
event generators that convert the media stream into sequemake a transition (from its current state), without revealing
of corresponding media events. The SSNs consist of onetbe media events. It retrieves a subset of rows from the
more sensors, limited storage, and computational resourcstate-table whose tags match the selection criteria (generally
For example, a SSN may consist of a video camera attactssine equality predicate) specified by the SSN. It can carry
to a processor and storage that can do some limited processing encrypted-matching if necessary (using secure keyword
on the stream [30], [13] (e.g., image processing computationsjatching schemes like the one in [26]). Following are the
It could also consist of a RFID reader which is responsibkequential steps in an event-servicing protocol initiated by the
for detecting a set of RFID tags. We require the presence oE8N:

Secure
Sensor node
(SSN)

D
===
1T

Secure State
Sensor node

(SSN)

'

Information
(Encrypted) P -

Thin trusted middleware to
obfuscate origin of events

Fig. 3. System Architecture
with the useru. An automatonF' is associated with a user
if we USER(F).

A. System Architecture

trusted (thin) middleware that is able to obfuscate the origin of o
events. We will currently assume that media event generation
can be performed without revealing any potentially harmful
information to the server. (This assumption may not hold in
general — we discuss its implications as well as methods to
resolve the resulting privacy challenges in the extender version
of the paper [12]). The SSNs are trusted and assumed to be
tamper proof. Encryption (decryption) can only be performed
within the secure perimeter of an SSN using a symmetric key,
encryption scheme (like DES). The encryption keys are also
stored exclusively within the secure perimeters. .
A central server (referred to simply as a server) stores the
automaton objects. The server also communicates with all the
SSNs deployed in the space using the secure protocol (to be

On evente, the SSN generates a messabke) that
uniquely identifies the event and encrypts and sends them
to the server. The ciphertext is denoted By(M (e)).

The server on receipt of the message, returns the set
of encrypted automata to the SSN that are tagged by
Ei(M(e)). (This can be implemented using a crypto-
graphically secure keyword matching scheme similar to
those proposed in [26]).

The SSN decrypts the set of automata one at a time and
advances the state of each automaton if necessary.

The SSN re-encrypts the automata (non-
deterministicallj) and sends them back to the server. If
any automaton reaches its final state, the SSN notifies
the server of event detection.

described later) to update state information. (The serverNte: A non-deterministic encryption is used which ensures
responsible for generating messages for the “action executgfat re-encryptions of the same plaintext are distinct from
when a complex event of interest is determined, but we do nsiie another. Encryption (decryption) can only be performed

discuss that aspect in this paper).

within the secure perimeter of an SSN using a symmetric key

We denote an instantiation of our event detection system Bkicryption scheme (like DES). The encryption keys are also
&, which comprises the following two components discussetored exclusively within the secure perimeters.

below: (i) a data model & storage schen®){ (ii) a suite of
communication protocols).

Data component®: The state information (automata) are
always stored in encrypted form on the server in a table

We will refer to the above description of the system and
protocol as theeference implementatioftom here onwards.

1. PRIVACY REQUIREMENTS

where each row is mapped to a distinct automaton. Eachin an event-processing system such as ours, the knowledge
automaton corresponds to a “rule-individual” pair, where ruldat an individual is associated with an event is considered

denotes a composite event, for exampl@y tups of coffee
in a day, TomY, “(Server-room entry with trolley after 6:00

3The notion of set membership will become clear in Section IV
“non-deterministic encryption ensures that multiple encryption of the same

pm, BoB)” etc. The size of the table is constant i.e., totgllaintext generate different ciphertexts.



Return automatons

that (possibly) match e Store updated A. Security & Adversary Model

(encrypted match) automatons

SERVER y T ) The key challenge we address is this paper is that the server-
! ' K side environment is untrusted. In real life, there maybe one
SECURE 1 \ ’ or more malicious insiders on the server-side who can be
SENSOR NODE ] A / . -
) regarded as adversaries e.g., database administrators. The goal
Generate basic Query for set of Decrypt automatons, associate encrypted ) ) . A .
event ¢ (encrypted) advance the state of label with new state. of the adversary is to deduce the identity of the individuals
automatons that automatons if ‘Write - back encrypted . . . .
match event ¢ necessary automatons involved in every media event that is generated by the SSNs.

We will assume apassive adversary.e., the adversary is
only interested in gleaning information about the events, and
does not disrupt the normal functioning of the system in any

o ) ) o manner. There maybe one or more entities on the server-side
sensitive. Our goal is to disallow association of event t0 g 4 ' database administrators) who are regarded as adversaries.
individual. So complete privacy is achieved when an eve{ie assume passive adversarianodel, where the adversary
could be potentially attributed to any of th¥ individuals s gnly interested in gleaning information about the events, and
associated with the system. Of course, one cannot ensure fajgs not disrupt the functioning of the system in general. We
as long as there is 'external information. For instance, say AYue that, the passive adversarial model is the most appropri-
event occurred and if the adversary knew thatin was absent 416 for our application because of the following reasons: (i)

on the particular day, thedoHN is eliminated from the set of prgpapilistically speaking, active adversaries are more likely
possible users, thereby violating-anonymity. We make Our 15 he caught if they change the state of the system that
goal a bit simpler. We consider that adversary knows onlyttects/disrupts its functionality, whereas passive adversaries
the encrypted event logs and also has complete knowledge myuch more likely to go un-noticed, and therefore they
of the environment (i.e., of all the automata). His goal igre more probable. (i) Most real-life incidences of privacy-
to determine from the event log which event correspongiseach are due to passive adversaries (insiders), who leak
to which individual. We will show complete privacyM  sensitive information without getting detected (right away).

anonymity) can be achieved very simply but at a very higfnogh, this information maybe used in other contexts later
cost, and therefore we will explore a way to tradeoff privacy, “actively” harm the owner, the adversarial model is a

with performance. Specifically, we develop and algorithm t9,5sjve one. (jii) Majority of the literature in research also

achievek-anonymity wherek < N. We will exploit this re-  congider the adversary to be passive, and design solutions in
laxation to gain efficiency. Formally, the-anonymity criteria (e same which is considered as the most appropriate model.
for event-processing systems is the following: E.g., keyword-search over encrypted text data in remote email

Criteria 1: (k-anonymity Criteria) Given a media stream Storage applications [26], Database-as-a-service model [11],
S and a sequence of corresponding media events wifipst of the work in statistical databases, etc.
timestamps{el:tl, . en:t”}, a solution is k-anonymous if Addltlona”y, we will assume the fOIIOWing baCkgrOUnd
it ensures thati € [1, 7], e;.USER cannot be mappedwith knowledge is available to the adversary: (i) the set of media

certainty to a set of less than k individuals at anyj > i events that can be generated by the sensors; (ii) allXhe
(i.e., at any time instant after; is generated). individuals that interact with the space; (iii) the rules-to-

individuals mapping (i.e., which rules apply to which indi-

~ Note that, the above criteria ensures that each individuglas): (iv) the details of the automata that implement these
is indistinguishablefrom at least k-1 others at all times. Weyjjes.

note that the above concept of privacy (i|e/SEE(e)| > k) Now, we take a closer look at the nature of inference and

is similar in spirit to the concept of-anonymity in data tormally define the inference mechanism that can be employed
publishing [21], [27] wherg:-anonymous dataset implies thaby an adversary described above.

each record could be associated withor more individuals.

It was soon realized that simply the notion/efinonymity is

not good enough in a publishing scenario since the sensitRe Inference channels

attribute of all members of an anonymity set might have It is easy to see that a simple “scrubbing” of the data
the same value (e.g., “disease = AIDS"). This led to momoes not prevent disclosure from an adversary who has the
stringent criteria such akdiversity [2], t-closeness [15] etc. above mentioned background knowledge. For instance, if the
to be proposed. Howevek-anonymity works in our case for adversary sees the following scrubbed representation of an
2 main reasons: (i) There is no specific sensitive field (likevent — “<X, SERVERROOM, *, ENTRY>: 8:35 pm” and also
“disease”); (ii) Unlike in data publishing where the adversargnows that onlyToM has access to the server-room after
may knows wether a record corresponding to a person is4D0 pm, he can easily infer the identity of the individual
the database or not, in our case, such knowledge is not theXe.Information about a particular eveat may be indirectly

For instance, there may be no event correspondintpteN at  inferred by observing the effects of other events before and
time ¢; even thoughJoHN is in the anonymity group ofOM  after e¢*. In particular the adversary may be able to identify
who is associated with an eventiat As a result, inferences the individual involved ine* by combining the observed

of the kind that occur in data publishing do not occur in thautomaton access patterns and the background information that
our setting. he has as illustrated in the following example.

Fig. 4. A generic protocol to service events.



Example: Let there be two rulesF; and F, such that A pattern denotes a sequence of row/automaton accesses

USER(F,) = {I,,I,} and USER(F,) = {I,Is}. On a on consecutive events. For example i, F’ and F"

media evente, let the SSN execute the protocol of Fig. 4are /3 9utomgta, a p/gtterm;? could be the following.

In the second step of the protocol, if the SSN retrieve§F ,F },{F },{F ,F } {F }}.

exactly one row from the server, it could be an automatgh pattern templatés defined as follows.

belonging to either one of the 3 individuals and therefore 3- Definition 2: (Pattern-template) The template of a pattern

anonymity is guaranteed. However, if it retrieves two rowslenotes the generic class to which the given pattern belongs.

the adversary is able to instantly deduce that the individuialis denoted by replacing the actual literals in the pattern by

involved (i.e.,e.USFER) could only have beet,, leading to a variable.

privacy violation.<> For example, the above pattern follows the terr)lplate
In general, an event may be identified by determining {{z1, 72}, {1}, {1,235}, {w2}} wherew, — F', z — F

one or more of the automata retrieved while servicinggut, andzs — F° (We assume that a suitable sequence of events

in order to identify an automaton, one might need to looRXists which generates this pattern of automaton access). In

at how it is being accessed over a period of time (i.e., ovéeneral there maybe multiple patterns following the same

a long sequence of events). This is what we refer to astenplate. Acharacteristic patterrof an automaton is defined

characteristic access pattemf an automaton. Depending onas follows:

the structure and transition edges in an automaton, its acces@efinition 3: (Characteristic Pattern) A characteristic

patterns may have unique signatures (“row-access patterriggjtern of lengthn for an automatont’ is an instance of a

even when all the rows in the state-table are encrypted. H&itern-template (of lengthn) whereF' is present in each of

is another example that illustrates what comprises an unicfi€ » sets in the pattern. ) ;

(observable) signature of an automaton. For ~example the pattern {{F* F'}, {F" F },

Example Let there be a set of 5 automatall G F L F 1} is a ch_aractenspc pattern of the automaton

{A*, Ay, Ay, A3, Ay} that make a transition on eveat. Let F*. Each automaton is associated with a (possibly infinite)

there be another set of 5 automdtd*, As, Ag, A7, Ag} that set of such characteristic patterns depending on its structure.
make a transition ores. Then A* is the or’1ly automaton Theset of all characteristic patternsf each automaton might

that can make a transition on both and 2. Also, assume be unique. We will use the term “characteristic set” of an
that there are no other events (besidgsand 62)'that are automatonf’ to refer to the set of all characteristic patterns

common to any set of 5 automata. Now, if the adversary sedis!” @nd denote it byCP(F).

a row (in the row-encrypted state table) that is accessed aldrifmple: The figure below shows 3 automata (denoted

with 2 distinct sets of 4 automata (rows), he can be sure tﬁéﬁndz for short) corresponding to 3 rules applicable to an

this row corresponds tol*. As a result, this characteristic'ndi\’id”al ToM. The figure also shows some of the character-
access pattern of* has an unique signa,ture and is thereforéSﬁC patterns of these automata. In general the characteristic
identifying. ¢ set of an automaton (as well as some subsets of it) could be

unique
Inference channels are observable feature®©obr 3 or queo

a combination of both on a sequence of events generated in

Characteristic patterns of x

the space. Inference channels exist due to the very naturexdf )~ Q—’T(’cmor'fﬁees @ PL O,y 2 (6 )
the rules (composite events) that are defined in the space. For I [ om,

. s . T aKes, Cory aves

instance, if all rules applleq to alV individuals then any N %QN haracteristic patterns of y
solution that does not explicitly reveal the contents of the Rt P2 {x, ¥y, 2} {x ¥} {y)

Tom %ens .
state table and non-deterministically encrypts all the messages I R @ ey e
exchanged between SSN and the server, is able to guarantee i
N-anonymity. The differential nature of the rule set, i.ez © e () @ Characteristic patterns of 2
the fact that “different set of rules can apply to different o ’
individuals” makes inferencing possible. As illustrated byig 5. characteristic patterns.
the previous example, the important point to note is th@attern analysis by the adversary: An adversary with a
encryption by itself is not enough to obfuscate the accegery large storage and computational power can be expected
patterns of automata which can give away enough informatiem know (determine) all characteristic patterns (say, of all
to uniquely link an event to an individual. Now, we formallylengths up to some large) for each automaton. As a result,
characterize how access patterns allow inferencing and presaftér observing sufficiently long sequence of events and the
an approach to obfuscate these patterns. corresponding row accesses he is able to nmatotvs in the

1) Access patterns & characteristic pattern&n observed table to SpeCifiC automata a.nd thereby determine the |dent|ty

formally defined as follows. indistinguishability between two automata.

Observable indistinguishability: Two automata are said to

Definition 1: (Pattern) A pattern is any sequence of set S 9 . o .
of literals, where a literal denotes an automaton-id. A patteTW observably indistinguishabler simply indistinguishable if

Pn,m denotes a sequence of sets, each with at most 5Matching can be done by comparing the characteristic pattern of the row
literals. and those of the automata which he can pre-compute




their characteristic sets aidentical We now definepattern identify the corresponding automaton uniquely”. Condition (I1)
isomorphismbetween two sets of automata as follows. specifies the “degree” of indistinguishability that is required.
Definition 4: (Pattern Isomorphism) Let A and.A" be 2 It ensures that thk-anonymity criteria (criteria 1) is satisfied:
sets of automata whergd| = |A| andG : A — A be a “The diversity of the set of automata up to which an encrypted
bijective (i.e., 1-1 and onto) map from to A". ThenG is automaton can possibly be identified is at lefst
called a pattern isomorphism lffautomataz € .4 andG(a) € From the adversary’s viewpoint, tHe sequencesHy, ...,
A', there is a natural bijectioft, o) : CP(a) — CP(G(a)) Ex_1) are indistinguishable. In other words, for each of these
where (i) patternp € CP(a) and T\, ¢)(p) € CP(G(a)) k sequences if there exists an assignment (map) of automata
are instances of the same templatemplate(p) and (i) v to rows such that for all rows in the table, thieautomata
variablesz,; appearing intemplate(p), if z; < t in p then that are mapped to it (in thede instances) are observably
x; — G(t) in Ty, (p) Wheret € A andG(t) € A indistinguishabl® from each other and correspond to distinct
Under a given isomorphic mag: between two sets of individuals, then the k-anonymity criteria is met. Therefore
automata, the pre-image and image automaton are observatbigcking for the k-anonymity condition is same as determining
indistinguishable from each other. Now if such aatomor- if & “suitable” pattern automorphisms exist on the set of
phismexists for A (i.e., pattern-isomorphism from the set ofiutomata<>
automata onto itself), then each automaton and its image undethe problem of detecting whether a given set of automata
this map will be observably indistinguishable to the adversamsatisfies the:-anonymity conditions is difficult. Even the case
Let G* : A — A be afixed-point freeautomorphism (i.e., of 2-anonymity (i.e., wherk = 2) is NP-Complete as shown
a # G*(a),Ya € A) such thata.USER # G*(a).USER in the following theorem. (Our conjecture is that the problem
Va € A. If such an automorphism exists, then each automatnhard for other values ot (> 2) as well.)
pertaining to any individual is observably indistinguishable Theorem 2:(Hardness of checking for k-anonymity):
from some automaton belonging to another individual. ABhe problem of recognizing whether a given set of automata
a result, the true identity of the individual associated witfelong with the corresponding set of events) is 2-anonymous
any automaton can never be uniquely determined by simpgyNP-Complete.
observing the access patterns of the encrypted automata. Bveof outline: The NP-Complete problem of D'eciding
will call such automorphism (if it exists), aon-identifying whether a graph G has a fixed-point free automorphism
automorphism can be reduced to an instance of the problem of “Detecting a
Given a media event, the adversary can only infer the iden{ixed-point free pattern automorphism on a set of automata”.
tity of e.USER indirectly by determining the set of automatalhe reduction is presented in appendix<B.
that were affected while servicing. He can only identify = The problem now is to come up with an automaton annota-
an automaton by its characteristic access patterns. We non scheme that on one hand guarantees that correct automata
state the necessary and sufficient condition for achiewing are retrieved on each event and on the other to ensure that the
anonymity when the adversary can only see the characterigtgress patterns of the automata @nonymous. In the next
patterns. We will use the following definition afiversity of section, we provide solution that meet these constraints.
an automata set:
Deﬁnition 5: DiVerSity: The diVerSity Of a set Of automata |V A NONYMITY VIA PATTERN OBFUSCAT|ON

is the distinct number of individuals represented in the set. In the previous section, we saw that it is difficult to

Theorem 1:(k-anonymity: Necessary & Sufficient condi- . :
tion): Given an injective map (assignmeit), : A — R from determine whether the patterns generated by an arbitrary set
| ) of automata satisfy thé&-anonymity criteria. This forces us

set of automata to the set of rows in the state-table, a seque &“Consider only a restricted class of automaton annotation
of n media event&y = {Ey(1), ..., Eo(n)} (n — o0) and y

: : schemes where the set of observable access patterns are
the corresponding row-access pattefiy, Go), the solution . . )
schemeS = (, ) is k-anonymous iff there are at least I(_lprovablyk—anonymous. Consider the following scheme:

. Solution 1: (k-Individuals Partitioning) Let M = |N/k|.
other sequences of eventsEy, . .., E;_; and corresponding L S
Make M disjoint groups of individuals, where each group has

automaton-to-row mayr,, ..., Gx—1 such that (I) patterns L . : L

_ _ _ at least k individuals. Assign all the media events appearing in
p(Eo, Go) = p(F1,CGh) = ... = p(Ek—1,Gya) and (1) any automaton corresponding to an individual within a group
Ey(i)USER # E (i)USER # ... # Ex_1(i).USER, :
Vi—1 n to a single cluster.

oo . . . Note, that the above scheme assigns a static label to each au-
Proof outline: An adversary can only infer the identity of the . . ;
o, . . i iy tomata in the state-table (i.e., the index-tag does not reflect the
individual involved in an event; € E, by identifying the

associated set of automata (which are accessed)oiSince change of state). The SSN requests the server simultaneously

the only observable features about the encrypted automata];g(fgisam;t?;?;a flgr aaIFI) a;ﬂigg;gujvilti?:'gg tgrt?[iggmi?]gzpfggf
their access patterns, if the set of characteristic patterns of an P P ’

automaton are non-identifying, then it implies anonymity %rEaklng them indistinguishable from each other. As a result,

the event-level as well, i.ee;.USER cannot be determined. th::t Ssglllljjttli(c))r; Slagzzet')se():ir rljﬁgaor?t)lm:lr;y (r:(gl\tlteazaﬁ ’\:)ix'ithvtveerrigog\;
Condition (1) in the theorem is equivalent to the following fact: 9 ymp P
“For any row in the state-table, its observed characteristic paterpere exists sufficiently many pattern automorphisms on the set of

tern (embedded ip(Ey, Gy)) should not allow an adversary toautomata.



performance. The improved solution is based on the notion ofThus, the above partitioning scheme may assign two con-

a connected groupvhich we define below. nected groups of automata corresponding to the same individ-
Definition 6: (Connected Group) The connected groupsual to two distinct partition’s This added flexibility increases

of automata for an individual correspond to the set ofthe size of the solution space as compared to the more

connected components in an undirected gréph= (V;, E;), restrictive scheme proposed in solution 1, and in general leads

whereV; has one vertex corresponding to each automaton toflower cost (more efficient) solutions. The modified commu-

I denotedF! and there is an edge if; corresponding to nication protocol (for both, solution 1 and 2) is depicted in

every pair ¢! ,Fj) where both automata have at least onfgure 7.

common transition § edge) between states.

Example: Fig. 6 shows two connected components corre- Return all automatons Store updated

- - . belonging to Cluster(e ) automatons
sponding toTOM. All the 3 automata in the first group can [N -
make a transition on the evenTOM, KITCHEN, *, ENTRY” ,' Y ,1
and the second component corresponds to the automata w_ i \ !
the common edgeT'OM, SERVER ROOM, *, ENTRY”. ! !
Generate Determine Decrypt automatons, Write -back all
basic event e Cluster(e ) (separate  advance the statjciof automatons in
encrypted query  ssn automatons if Cluster(e )
<>server ) necessary

Fig. 7. Secure protocol for servicing events.

Difficulty of achieving k-anonymity using more
flexible schemes The NP-Completeness result makes
Fig. 6. Example: Connected Groups it computationally infeasible to design a more efficient

As illustrated in the example, a connected-group alwaysirtitioning scheme that achievésanonymity in the general
represents a single individual, but there may be multipt®se (where automaton structure may correspond to arbitrary
connected-groups corresponding to an individual. Now, tidirected graphs with cycles). For instance, consider the
second more efficient solution is the outlined below. following scheme:

Solution 2: (k-connected-group Partitioning) Partition
the connected-groups of automata into clusters such that e4Ehrtition the set of all media events into bins of size at
cluster has diversity> k (i.e., has automata representing deast k, such that each bin has events representing k different
least k different individuals). Assign all the media eventwdividuals (each bin ig:-diverse)
appearing in automata within a bin to a single cluster.

The above scheme guarantees k-anonymity as illustrated iJnlike solution 2, where all media events appearing in an

the theorem below. automaton are forced to be in the same partition, the above
Theorem 3:(Sufficient condition for k-anonymity) Solu- approach is more flexible and is a superset of the set of
tion 2 is k-anonymous. partitioning schemes resulting from solution 2. The question

Proof: The scheme proposed above creates a partitioningigfwhether such &-diverse event-clustering scheme achieves
the set of automata such that automata belonging to differén@nonymity? The answer is no! Such a partitioning scheme
partitions (clusters) are never accessed simultaneously on &iapsforms the set of automata by effectively adding many
event, whereas all automata within the same partition agelf-transitions to the states (nodes) and does not reduce the
always accessed together. This implies that the rows in themplexity of the k-anonymity verification” problem as such.
state-table are indexed statically irrespective of the state tHayappendix A we use an example to illustrate how such a

are in. As a result rows are accessed only at the cluster leddlerse partitioning scheme fails to achigi@nonymity. The

(i.e., the SSN either retrieves all or none of the automat@ason being, the characteristic set of the modified automata
belonging to a cluster). Therefore, the characteristic pattemmgy still be unique and therefore allow an adversary to infer
for all automata within a partition are the same makings true identity by observing row-access patterns in our model.
them observably indistinguishable from each other. E.g., (fFor security analysis, we need to assume that the event
the events of automatad;,..., A,, (say, corresponding to partitioning scheme is public knowledge and therefore known
rows ri,...,r, in DB) are grouped together, then eacho the adversary). It might be possible to come up with a more
A;,i=1,...,m has exactly one characteristic pattern of angfficient solution in special cases where the composite events
given length! (I = 1,...,00), where each element in thelead to simple automaton structures, but we do not pursue
sequence corresponds to simultaneous access of alinthethose issues here.

rows, e.0.,.5 = {{ri,...,rm}, {r1,...,"m},... L times}.

Each partition can be seen as a generator of one such C'A‘.S%inimizing Partitioning Cost

of patterns that is characteristic of every automaton in that
partition. It is easy to see, that there is no way for an
adversary to distinguish one automaton from another withinP°
cluster using any observable access patterns. Such a schg}%ef

will meet the k-anonymity criteria of theorem "This in effect allows multipleavatarsof a single individual to exist as if
they were completely different individuals

The solutions proposed above poses a natural optimization
blem: since different automata may be accessed at differ-
requencies, some partitioning schemes will have lower



averagecosts (i.e., number of false-positive retrievals) tharin appendix section C. We also note that, the more constrained
others. The goal is to partition connected groups of automataciase, where all automata of an individual are forced to be in the
order to minimize this cost while ensuring at leastlifferent same cluster, is also a NP-complete optimization problem as
individuals are represented in each bin. (Observe that, soluticem be shown by a similar reduction from the same minimum
1is a special case of solution 2, therefore, we will only discussim of squares partitioning problem.
the solution for the second scheme). We now model the above
problem as a novel set partitioning problem with some UNniqYe A Heuristic for Least-Cost Binning
constraints and show that it is NP-hard. Subsequently, wé
propose a heuristic algorithm that generates good (low cost)\Ve give a simple heuristic solution to the above optimiza-
partitions in practice. tion problem. In practice the algorithm leads to good solutions.
Modeling as a “minimum-cost partitioning” problem: In this paper we make no attempt to give a theoretical
Let us assign each of thé individuals in the system a guarantee on the approximation factor. Instead we provide an
distinct color. Let each automaton belonging to an individudntuition to the reader about the nature of performance scale-
be represented by a ball. Each ball has 3 attributesor, UP that can be expected through empirical results using a test
price andweight The color of a ball is same as that assigne$et of events, automata and individuals.
to the individual it corresponds to. Initially, each ball has unit The input to the problem are 3 arrays of size equal to the
price and a weight equal to the number of edges in the corfimber of balls B|. The first arrayColor(1 ... |B|] specifies
sponding automaton. The price of a ball represents the sp#@ color of each ball, the? array Weight|[1...|B|] spec-
that the corresponding automaton takes up in memory (aifi@s the weight of a ball and the last arrdrice[l...|B|]
consequently the transmission overhead in the communicatfiecifies the price of each ball. We also input the number of
protocol). The price is set to (unit cost) initially since each distinct individuals (colors) in the system whic¢t and the re-
automaton occupies a single row in the state table. The weigttired anonymity levek. The output is the cost of the binning
is a measure of how often an automaton is accessed in §§8eme and an arralgins (of size |BJ), which specifies the
environment. We set the weight equal to the number of edgésof the cluster assigned to each ball. When the anonymity
under the assumption that humber of edges is proportioﬁ:&]nstraint isk, it is easy to see that the number of distinct
to the probability with which an automaton is accessed @tusters (bins) cannot be more th@B|/k]. The algorithm
a randomly generated media-event. An alternative could beft@t starts with a randomly generated feasible solution and
use the number of distinct media events that can cause a stiften iteratively decreases the solution cost by carrying out
transition in the automaton. In any case it does not affect tfest-reducing “ball transfers” and “ball exchanges” between
partitioning algorithm. bins till no more such transfers and/or exchanges are possible.
In the pre-processing phase, the connected Components-a}@ detailed pseudo-code is presented in next as Algorithm 1.
computed as follows: all automata of the same color that haveln the algorithm, the candidate ball-transfers and their
at least one edge in common are fused into a new “larger” bagsociated cost reductions can be modeled as a directed graph
of same color. The weight and price of the fused ball are s&ith the nodes corresponding to bins and edges having integral
equal to the sum of the corresponding values of the compon#ights. A (directed) edge from a node to n, denotes
balls (i.e., the balls that were fused). This is correct since bdite best candidate ball-transfer from the bin corresponding
the measures are completely additive under our assumptié®gu1 to bin corresponding ta;. The edge weight denotes
and the system design (i.e., the probability of accessingth net cost reduction due to the corresponding transfer which
connected group of automata is equal to the sum of tA§sume that the source and target bins are not involved in
individual access-probabilities of the component automata, a8y other transfers. A feasible ball transfer refers to one
is the transmission overhead). Now, the optimization problewhich does not violate the k-anonymity constraint, that is,
can be stated as follows. each bin should have at least k colors represented at all times.
Problem Statement 1(Optimal k-anonymization) Parti- A linear-time graph matching algorithm (like [28]) can be
tion the set of colored balls into bins (allowing as many bintilized for computing themost profitable matching in the
as required) such that the number of distinct colors represeng@s@ph. Ball-exchang@sbetween bins can also be modeled
in each bin is at least k and the cost of the binning strategymilarly. Finally, since the ball transfers are only carried
(&) is minimized. out for positive cost-reductions, the iterative algorithm always
In the k-anonymous protocol since all rows within a clusteterminates. Finally, it can be seen that the algorithm terminates
(bin) are to be accessed together, the associatest of a by noting that the laswhile loop in Algorithm 1 will definitely
solution scheme is given by the following expression. terminate since only positive cost-reductions are allowed.

Cost(6) = Z ( Z weight(ball)) x ( Z price(ball))

BeDins bellen T V. IMPLEMENTATION & EVALUATION

The complexity of the optimization problem: The above op- Wefblﬁ”t gx_:_ototyp; of the Syﬁ temfdescrlbecli( |n1:)h|s Eapseg_(l?n
timization problem turns out to be NP-complete in the generta(ﬂp o the /1| Ware-Responspnere framewor .[ I, [1]. o

. ” 2" . ~ware is a middleware framework for programming and testing
case. The “minimum sum of squares” problem [8] which is a
known NP-hard problem, can be reduced to an instance of OwAgain, this operation is carried out only if it does not violate the k-diversity

balls-and-bins optimization problem. The reduction is showanstraint and leads to reduction in the cost.



Algorithm 1 Least cost k-diverse partition.

1: Input:Colof1, ..., |B|],Weigh{1, ..., |B|],Pricdl, ..., |B|], ,
NUM_COLORS;
2: Output: Cost, Bif, ..., |Bl];
3: if k > NUM_COLORSthen
4: Print: “No solution possible for given k”;
5: Return ¢;
6: end if
7: I* Generate an initial feasible solution */
8: X « set of all balls;i < 0;
9: while k or more distinct colored balls iX do
10: Initialize new bin B;;
11: Randomly put k distinct colored balls frol¥ to B;;
12: i—i+1; X — X\ Bi;
13: end while
14: Let M < i; /* num bins initialized */
15: if M =1 then
16: for i = 1 to |B| do
17: Binsli] = 1;
18: end for
19:  cost — (T2 Weight[i]) x (SIB! Pricel[i]);
20: Return ¢ost,Bins[l ... |B|]);
21: end if
22: if 3 balls not assigned to any bthen
23:  Assign each such ball to a random hiity, i € [1, M];
24: end if
25: /* Iteratively carry out cost-reducing transfers & exchanges */
26: while 1 do
27: C « ¢; I* set of candidate transfers */
28: for all 4,5 wherel <i,5 < M andi # j do
29: C «— C U best feasible ball transferfrom B; to B; with a positive cost
reduction;
30: end for
31: if |C| > 1then
32: P — mostprofitable set of compatible transfers i@';
33: Execute all transfers itP;
34: Reflect new bin assignments Bins[1...|B]|];
35: Compute the newost of partitions;
36:  endif
37: C «— ¢; I* set of candidate exchanges */
38: for all i,j wherel < i,j < M andi # j do
39: C «— C U best feasible ball exchangéetweenB; and B; with a
positive cost reduction;
40: end for
41:  if |C'| > 1 then
42: P — most profitable set of exchanges iri‘/;
43: Execute all exchanges Lﬁ’/;
44: Reflect new bin assignments Bins[1...|B]|];
45: Compute the newost of partitions;
46: end if ,
47: if |C| == 0 AND |C | == 0 then
48: /* No candidate transfers or exchanges */
49: Return (cost, Bing[1, ..., |B]]);
50: end if
51: end while
Fig. 8. The user's identity is concealed when he has Hi§ (a) and2™¢ cup of

coffee (b), but revealed when he has Bi& cup (c).

pervasive space applications. SATware is deployed on top of
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A. Evaluation

We modeled a real-world application based on some actual
observed activity on our floor in the office building. We defined
4 groups of peoplsSTUDENT, FACULTY, STAFF, VISITOR with
300 membersin all and defined 15 rules over these groups.
The instrumented part of the floor consisted of 3 rooms,
KITCHEN, SERVERROOM, FACILITIES-ROOM where events
could be detected using sensors. The 15 rules were categorized
into three sets of 5 each corresponding to each of the 3
rooms. The rules belonged to either of the two categories; (a)
Protection of resources and (b) Suspicious activity. These rules
were very similar in flavor to those presented in Section Il. We
then constructed the corresponding finite-state automata that
would implement these rules (i.e., detect the corresponding
composite events). All 5 automata within a rule-set had at least
one event in common and therefore induced a single connected
group at most. For e.g., each kitchen-rule fired on an “entry
into the kitchen” event. As a result, all the automata pertaining
to the kitchen rules that were applicable to an individual would
fire when the individual enters the kitchen. None of the rules
belonging to different sets had any event in common, for e.g.,
no automaton implementingERVERROOM Or FACILITIES-
ROOM are affected by any event that takes place within the
kitchen and like-wise for the other two sets. (As a result, there
could be at most three connected groups corresponding to each
individual.). The 15 rules that we used for our experiments are
listed below.

Kitchen Rules

1) An individual enters the kitchen and takes a cup of

coffee from the coffee machine.

2) An individual enters the kitchen and moves the location

of the coffee machine.

3) Anindividual enters the kitchen and exits with the coffee

machine.

4) An individual enters the kitchen and exits with the

microwave.

5) An individual enters the kitchen, opens the refrigerator

and exits without closing the refrigerator door.
Supply-room Rules

1) An individual enters the supply-room and takes print-

outs from the printer.

2) An individual enters the supply-room and exits with the

scanner.

3) An individual enters the supply-room and exits with the

projector.

4) An individual enters the supply-room and moves the

location of the copier.

5) An individual enters the supply-room and moves the
location of the printer.

Responsphere, which is a large communications, storage, cértver-room Rules
puting, and sensing infrastructure that covers almost a third ofl) An individual enters the server-room and moves the IBM

UCI campus. It includes more than 200 sensors (including

server.

cameras, RFID readers, temperature sensors, acoustic senso®y, An individual enters the server-room and moves the
gas sensors, accelerometers and people-counters), different DELL server.

communication technologies (such as Ethernet, Wi-Fi, Power-
line, and IEEE 802.15.4), and several storage and computig

servers.

9There were 48 individuals on the floor, but for our simulations we
E*icially increase the number to 300, keeping the proportions of each group
approximately the same.
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3) An individual enters the server-room and moves thaf the algorithm and system. The actual prototype addressed

SUN server.

several implementation level issues such as event-detection

4) An individual enters the server-room and logs in usingt runtime, key management, concurrent updates, etc. We

the DELL server.

describe some of these details later in this Section. Figure 8

5) Anindividual enters the server-room and moves the IBMlustrates a sample scenario — a series of snapshots of different

server.

states associated with composite event-detection as imple-

The corresponding automaton-structures are shown in figented in our system. The camera (which is the SSN in
ures 9, 10 and 11. We assigned rules to individuals by as$bis case) reveals an individual’s identity only when he/she
ciating each of the 3 rule-sets to one or more of the 4 groupe@nsumes more than 2 cups of coffee.

of individuals. That is, ifKITCHEN rules apply tOSTUDENT

Performance of clustering algorithm: To further study the

and STAFF groups, the system will instantiate 5 automata fderformance and security/scalability tradeoffs of the cluster-
each individual in either one of these groups correspondifitg algorithms however, we emulated event sequences based
to the SKITCHEN rules. Additionally, we introduced someon the above dataset. We compare the performance of two
outliers by randomly assigning (de-assigning) some rules 3elutions schemes: (ik-Individuals partitioningand (ii) k-

a small fraction of individuals. For example, say for 5% ogonnected-group partitioningVe use the clustering algorithm
the students, 3 out of 5 of the kitchen rules might not b@escribed in the previous section to compute the optimal
applicable, whereas they apply to the remaining 95%. Tig@lution in both cases. We then compare the performance
idea is that such outliers may exist in real scenarios.

X enters X dispenses X enters X exits with
Kitchen coffee Kitchen coffee
machine

o Xexits — e Xexits_—"
Kitchen Kitchen
X enters X exits with X enters X moves
Kitchen microwave Kitchen coffee
machine
—Xexits — X —
Kitchen Kitchen
_Xemers _Xopens _Xexits
Kichen md ze -door ichen
F— Xexits " ¥~ Xshus _—

Kitchen md ge -door

Fig. 9. Kitchen rules

X enters X takes X enters X exits with
supply room printout supply room scanner

X e\n X em
supply room supply room
X enters X exits with X enters X moves
supply room projector supply room with copier
supply room supply room
X enters X moves
supply room with printer
T~ Xexis_—

supply room

Fig. 10. Supply-room rules

X enters X moves X enters X moves
server room IBM server server room DELL server

X exus X eXIh
server room server room
_Xemers Xmoves Xeners Xlogsin_
~crvcr room gLI\ server \EI\ er room using DELL.
server
server room server room
X enters X logs in
Server room using IBM
sorver
T~ Xexits_—

server room

Fig. 11. Server-room rules
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characteristics predicted by the algorithm (i.e., cost estimates)
with the actual number of automata retrieved in servicing a
sequence of randomly generated 1000 events.

To generate the emulated event sequence, we associate a
weight with each automaton that reflects the frequency with
which it is accessed in the application. While in the real world,
the weight would be some function of the frequency with
which a set of specific events occur and how they are inter-
related, we simplify this mapping by associating a random
positive (small) integer as the weight of each automaton and
set the net weight of each ball (connected group) as the
sum of the weights of automata belonging to that connected
group. From this, we generated an event-sequence where each
event was simply denoted by the id of a ball picked with a
probability proportional to its weight.

Figure 12 shows thestimated costs(given in previous
section) of the 2 partitioning schemes for various values of
k (the required anonymity level) and compares them with the
naive algorithm. The dataset we generated had 300 people, 772
balls in the unconstrained case and 300 balls in the constrained
case (since all automata of an individual are forced to be in
the same bin). The graph shows that the cost differential is
expected to increase consistently with increasing valuk. of

Estimated cost of optimal partitioning

|+ k-Individuals —s— k-connected-Groups —— N-Anonymous |
35000000

30000000 A—A—A— A DA A A A
25000000
20000000
15000000 A
10000000

Estimated Cost Measure

50000004

0 - T T T T T T T T T |

10 20 30 40 50 60 70 80 90 100
K (Anonymity level)

Fig. 12. Cost estimates for the constrained (“Together”) and uncon-
strained (“Separate”) partitioning schemes

Through the implementation and its execution in a real-
world deployment, we were able to validate the functioning For the second plot, we generated a sequence of 1000 media
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Cost comparison using 1000 event simulation if both endpoints belong t&,. All vertices in S, are assigned

—+—k-Individuals —s— k-Connected-Groups—a— N-Anonymous the colorc, (which is unique for each individual). Thus, the
connected components 6f, denote the connected groups for

4000000

g 00000 ] At individual . These connected nodes are fused intsuper-

% 3000000 node (i.e., a ball in our terminology) such that the weight
@ 25000004 (price) of the new super-node @, is the sum of the weights

§ 2000000 (prices) of its constituent vertices. We generate such sets of
S 15000001 balls, each set having a new color corresponding to each
S 10000001 individual in the pervasive space. These balls along with their
£ 5000001 color, weight and price comprise the input to our clustering
- 0 77— algorithm.

10 20 30 40 50 60 70 80 90 100

) Fig. 14 shows theestimated absolute cost differencbe-
K (Anonymity level)

tween the 2 solution schemes for various values of the para-
Fig. 13. Total # automata retrieved in 1000 events meters:#_RULES, #_.PEOPLE ANONYMITY andAvG_NUM_RULES.

The #BaLLs denotes the total number of connected groups

generated from the set of all automata in the state-table. The
plot shows that the cost differential is expected to increase con-

) ] _sistently with increasing number of individuals and automata
events as described above. Figure 13 shows load characterigiCge state-table. but shows no clear trend across varying
of the two clustering schemes on this test sequence. The y-3xi§,es ofk.

is the total number of automata retrieved over the 1000 e ~rte

which represents the transmission-load due to the “SSN- performance (#balls, #people)
communication” in a real setting. [D(15230) m(253,50) 0(490,100) 1(966,200) |
The two important conclusions that can be drawn 250000 -

observing the two plots are that: (a) The simulated tran
sion overhead in Figure 13 varies (grows with in almos
an identical manner to what is predicted by the partitic
algorithm (cost estimate in Figure 12) and (b) With incre:
k, the load on the system increases at a much faster rate
k-Individuals partitioningbased anonymization approacl 04
compared to th&-connected-group partitioningne. While tr 20 30 40 50 100 150 200 300 40.0 500 100. 200.
simulation result displays a very high degree of conforn Anonymity
with the predicted results, we expect the load characterist‘_clg
to diverge from the model in a real-life setting. The reason
being that the weight of an automaton is always going to be
an approximation of the real value and can never be estimated
with complete accuracy.

Evaluation with different rule sets: The above experi- B. Implementation Issues
ments were conducted in the context of the pervasive space Detection of event clusters at runtime:On generating a
ployment discussed earlier with a limited number of rules anfledia evente the SSN needs to determine the cluster to
hence automata. To understand the performance of the chagich e is mapped. We implement this step using a secure
tering technique under varying rule conditions, we performeghcrypted keyword search scheme similar to that of [26] as
other experiments using synthetic data that was generatedfdijows: In a one-time pre-processing phase, the following
varying various parameters such as average “connectivityio-column tableTzc(media-event, cluster-jdis generated
between rules, number of individuals, and number of distin@ising oblivious interactions with the server) by one of the
rules. SSNs and stored on the servélz- is used only as a look-

The synthetic dataset generated involved a set of ruleg table (read-only) subsequently. The first columnlgf:
modeled using a random graghi = (V,E). V is the set storesEj, (“e!”) which is the encrypted representation of
of vertices which represent the set of distinct rules applicattlee evente]. The second column stores theLUsTERID” of
in the pervasive space. An edge between any two nodeghie cluster to whiche] is mapped. HereE ., denotes an
added with a predefined probabilippnnectednessAn edge encryption scheme using the secret keysy common to all
e = (u,v) € E represents the fact that two rulesandv are SSNs. Now, on generation of an evefit the SSN issues an
connected. Each vertex has two associated metrics describadrypted query to the server fék. ., (“e¥”) and the match
previously:price (set to 1) andveight(a random small positive is carried out by the server on entries of Column Igt. If
integer). To generate the set of rules applicable to an individimmatch is detected, the corresponding cluster of rows from the
x we create a new grapff, by considering each individual state-table (i.e., containing the encrypted automata belonging
z in the system at a time and selecting a subset of vertidesthe same cluster ag/) are returned to the SSN. Such a
Sz € V as being the rules that apply 10 Edges are retained retrieval model is secure and gives out no information about

200000 4

150000

100000 -

50000 -

Estimated Cost Reduction

. 14. Analytical estimate of performance improvement
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the media event that was generated beyond the identity of #evesdroppers and traffic analyzers. Our previous work [30]
cluster to which it belongs. sought to address issues in preserving the privacy of users
In the oblivious pre-processing phase, the SSN simpiy the context of real-time video surveillance. Some recent

writes the media-events into the tablésc in a random work on event otologies for video-based events (VERL) [19]
sequence so as to ensure that the row-id and events areaoohes very close to the type of event detection we envision for
correlated in any manner whatsoever beyond what can fervasive spaces. VERL allows one to capture various basic
gleaned from looking at the cluster-id of a row. and composite events using a formal language. Our imple-
Concurrent access:lt is quite possible that multiple sensoramentation uses automata for representing composite events
request the same group of connected automata at the salme to the natural fit with the type of activities of interest
time (since automata corresponding to different individuala a pervasive space. Other types of event-based systems
might be grouped together). Server will be required to empl¢9], [19] have implementations based on Petri Nets, which
a write-lock for this purpose. Some preliminary simulationsupport concurrent behavior and parametrization. However,
indicate that the performance degradation is graceful with ieven for simple expressions, they quickly become complicated
creasing load. Also, since the event generation in the pervasarel expensive to implement. Other recent work in ubiquitous
space is driven by humans, natural latency of human activitgmputing has also explored the use of event structures to
does not pose a great challenge to performance. monitor interactions, particularly in the trust domain [7].
Key-management in SSNs:The issues regarding key- A large body of work in privacy-preserving data mining
management of SSNs is an important aspect. Recall, that kterature propose algorithms for k-anonymous data publishing
need a shared secret key (between all SSNs) that is upedblem. Most of these techniques can be classified as either
for and encryption/decryption of the automaton objects. WWgeneralization, suppression or a mixture of both techniques
summarize our key-generation/update protocol below: [21], [27]. More recently, some work on location-privacy also
« Each SSN has a public-private key piub;, prv;) and incorporate similar measures for privacy [4], but none of them
the list of public keys of each sensor is stored on traye directly applicable to our kind of application.
server. More recently, there has been some work on private search-
« Periodically (could be daily) one SSN elects itself as thag on streaming data [20] which is of interest since we too
leadet®, say SSN; and generates a secret key for model the pervasive space as a stream of events. The authors in
encrypting the automata. [20] approach the problem in a similar manner, where the goal
« Leader communicates with the server to get public keysto prevent the adversary from knowing whether a document
of all the SSNs. It then encryptg with eachpub;, j #4¢ matches the search criteria or not by obfuscating the pattern
and communicates, to the respective SSN via the serverin which both matching and non-matching documents are
SSN; can then decrypt and retrievg using prv;. handled. Though, the problem in our case is more complicated
« The leader also executes another communication protodoie to two main reasons, one because, we not only need
with the server to re-encrypt all the current rows (aue carry out the matching, but also update the state of the
tomata) using the newly generated secret kgyln this automaton. Second, while the authors in [20] do not address
step, the leader can optionally also carry out a randotime problem of repeated access of the same document, we have
permutation of the row contents in the state table. (Thete address this issue as we need to deal with a fixed set of
are many possible algorithms for this, for instang,N; automatons. This leads to additional inference channels not
may read two rows at a time from the state table arafidressed in [20].
swap them while write back (after re-encryption) with
probability 0.5. VIl. CONCLUSION

VI. RELATED WORK In this paper, we addressed the privacy challenges that

There is a large body of work in the area of systems for peq[ise in human-oriented pervasive spaces when environmental
vasive computing environments [18]. GAIA [24] is an examplgata .ca_lptu_red via _sensjng infrastructurgs (that may contain
of a system designed inherently to enable pervasive computi .”“TY,'”Q information) is collected 'to drive per'vaswe.func—
Other systems such as CRICKET [23], tackled the proble nalities. The core of such pervasive spaces is multi-modal
of localization for embedded sensor and mobile contexiVeNt detection. We identified inference channels that arise in
aware applications. The importance of privacy to pervasiﬁ?tecnng m“'“‘m.o‘?""." events that cgrrespond o f.inite state
computing environments for system designers and users Rytomatons of primitive evept; described over media streams.
been raised in [5]. Langheinrich [17] stated the danger curre £ developed an anonymizing me‘FhodoIogy that e'xplores
pervasive systems research faces in continuing on withd i_trade-offs between mformatl_on disclosure and efflCle_npy.
considering privacy as an inherent part of system desi pyhile our paper represents a first .SUCh attempt at realizing
Research on privacy for pervasive computing environments a%%'V?S'VG funciionality while preserving sgbjec.t.s privacy, our
been looked at from multiple angles. For example, the MISTO UF'On makes a few assumptions and simplifications which
system [3] combines hop-to-hop routing based on handI¥§ list next.

with limited public-kev crvotography to preserve privac fronMedia Event generationNVe assumed that sensors (SSNs) can
P y cryptograpny fo b P y generate media events without disclosing information to the

10conflicts can be detected using a locking protocol. server. While this assumption is valid for certain sensor (e.g.,
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APPENDIX Clusters:
A. Example: k-diverse event-clustering Fo2 2 o~ @3 o~ c4 Cl={e,} e e e}
22 C U ©

© O
Example: Let there be three ruleB;, R, and R3 and three S0 1 &‘053/' o C2={e,} e;2 e,2 es);

individuals I, I and I3 such that ruleR; applies only to C3={es!, e &3}
individual I;. In our model, there will be one automaton object s2 ca={e e2 e,%
that is instantiated for each rule corresponding to the individual

the rule applies to. Let these be denoted, F} and F§ s (O)
respectively. These automaton objects are stored in 3 separate so
rows of the state-table (MAXSIZE = 3). Figure 15 shows
these three automatons. Now consider the pattern-template

p = {{z},{x}, {x}}. It has 3 possible instantiations:— F}

or x «— F} or x « F3. For each of these 3 instances, ther
is a sequence of events involving, I, and I3 respectively . .
such that the templatg can be realized. That is, there are Let the following sequence of two events be generated in

i (2 . 3. 2
sequences of media events efgl, el, el} which results in the pervasive space = {(e3 : t1), (€7 : o)} AL 1y wheney
a single row being accessed three times in succession. But' ene_rated,_the_SSN will map Fhe event to its cprr_espondlng
template{{z, y}, {x,y}, {z,y}} is not realizable since there® uster-id, which isCy(later we will explain how this is done

exists no event which results in retrieval of two automator?securely Wlthoutsriveallng (|3|the|r| the event orlth(_e glustgr—tl)d
(rows) simultaneously from this set. to the server). Subsequently, all rows currently indexed by

C, are to be retrieved, decrypted, updated, re-encrypted and
o @ e/ —~ e~ e~ e, @ writtv_en back into the state table: At timg _jus'g a single
' o () N row is accessed, that correspondingR$ (which is in state
s0 st s2 s3 ** 50). The state of the automaton is updatedstq the row
2 2 is indexed by two encrypted tagh(“C>") and Ey(“C5")
Fe* @ (O O =0 denoting C; and C3 respectively (for now assume that a
$3 2 s4 searchable encryption scheme allows this without revealing
the number of distinct tags, i.e., 2 in this case) and then the
row is written back. At this point, an adversary is not able

ca

O— "o
s1 sz\cl‘C)yv s4

s3

Eig. 16. Example - Automatons indexed by event clusters.

@ es o N e ) to determine which of the three automatons might have been
B o - I Y e s initiated, hence 3-anonymity is ensured for all individuals.
Now, at timet, when the second evenf is generated, all
s3 entries indexed byCluster(e3) = Cs are retrieved. This
_ set consists of two rows: one that was retrieved in the first
Fig. 15. Example - Automatons and event sequences. step (corresponding to automatd® currently in statesl)

and the row corresponding to automatd®, currently in
its initial state s0. In the write back phase, both the rows
Let the following 5 event types be defined for media eventare written back after suitable updates and re-encryption is
Eiypes = {e1, €2, €3, €4, es5}. Also, assume 3 individuals aredone. However, after the execution of the protocotatthe
associated with the space and represented as{/, I, I3}. anonymity of the individuals associated with the events at
Then, the complete set of event instandgs.q;, consist of ¢; andt, are lowered from 3 to 2 by making the following
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deduction (by working backwards): Ay, all automatons Since the set of edges in G completely specifies the set of
would have been in their initial states, indexed by distinetll observed automaton access patterns, it is easy to see that
cluster-ids (i.e., encrypted labels denoting, C» and C3 the two problem instances are equivalent.

corresponding to the clusters of the transition edges outr) Recall, under the definition of pattern automorphism, an
of the initial states of the 3 automatons) and any eveattomaton and its image (under this map) have the same set
would at most result in retrieving one row. Combining thisf observed patterns. But, since the set of length-1 patterns
information with the observation @t where two automatons represent exactly the set of edges in G, existence of a fixed-
are retrieved, the adversary can deduce that the eventpaint free automorphism in G will automatically imply the ex-
t; would have resulted in the state change of the retrieveslence of a fixed-point free pattern-isomorphic (automorphic)
automaton. He is now able to further deduce that,atthe map in the corresponding set of automatons (with respect to
automaton that was retrieved could not have b&gnsince the event-clustering scheme implied by the reduction).

then it would have been in statd beforet, and indexed («) The two problems being completely equivalent, the
by C4, which would never result in retrieval of two rowsreverse implication also holds:

simultaneously att2. By this analysis, the adversary can Fig. 17 shows an example of the reduction. The graph on left
deduce that the event at could have only belonged togenerates the set of 5 automatons on the right. The transition
I, or I, (and notl3) and the event at, could have been edges in the automatons are labelled by the cluster-ids of the
that of I, or I3 respectively (and not of;;). This brings event-clusters that are implicitly formed by this reduction. The
down the anonymity to unsafe level of 2. (Note that th& events comprising each cluster are shown on the right. Recall
inference is possible by simply observing the pattern of rothat the superscripts in each eveﬁltdenotes the individual
accesses from the state table. The leakage happens in spit® ofhom this event belongs. The subscript is simply used to
encrypting the contents and index tags of rows in the talile.)denote different events.

e
B. Proof of NP-Completeness of k-anonymity detection A Can
A
Here we present a proof of theorem 2 from section .. . C,, = (6.5 &
Actually, we show that for a candidate solution sche@he: A (@—— C,. =f{e,% e
i Che C,.={erc el}
(@, B, €) where denotes an event clustering scheme (sectio N = O e e
IV), the problem of checking whether it achievesinonymity o Cos = {or®, .7}
is NP-Complete. We present a simple reduction of any instanc

of the problem of checking the existence of a fixed-point fre&
automorphism in a graph G to an instance of our problem. e
The former is known to be a NP-Complete problem [16].

Reduction: Given a graph G = (V,E), generate an instance &fg. 17. Example: NP-Hardness reduction
our problem as follows:

o For each vertexu € V, let there be an individual,
associated with the pervasive space.

« For eachu € V, let generate an automatoh, with two  C. NP-Hardness of minimum-cost partitioning of balls into
statess,, and f,, (denoting start and final states). bins

« For every edge(u,v) € E, add two transition edges \ye show that the minimum cost ball partitioning problem

between start and end states of automatonand A,.  f section IV is NP-hard by reduction from the “minimum
Label these two transition§iu, v). sum-of-squares” problem [8]. The minimum sum-of-squares
The above construction gives rise to an instance of ogfoblem is the following.
problem containing a set of 2-state automatons. Since eacibefinition 7: (Minimum Sum-of-Squares) Given a finite
automaton is assigned to an unique individual, common traget A, sizes(a) € Z+ for eacha € A, and an integek’ > 2,
sition edges between two automatons can be interpreteddagermine a partition ofd into K disjoint setsA, ..., Ax,
formation of 2-event clusters. For example, a transition edg@ch that the following cost measure is minimized
IabeIIedC(u, v) can be assumed to correspond to two events K
er ande!, in the automatons corresponding to individuals Z( Z 5(a))?
andI respectlvely Therefore, the reduction implicitly deter- =1 acA
mines a set of appropriate events as well as an event-clusterinblow, any instance of the above mentioned problem can be
scheme. Also, note that by the nature of the construction, eaekuced to an instance of our problem as follows: For each
media event will lead to retrieval of exactly two automatonslement € A, let there be a “RED” bab,, with weight(b,) =
from this group. The following observation is critical. price(b,) = size(a). Also, introduceK “BLUE” balls, each
Observation 1: The characteristic set of an automaton cawith price = weight = 1. Then, an optimum partitioning of
be represented simply by the set of all its length-1 patterrihis set of balls that achieves 2-anonymity will also give an
All longer patterns are simply concatenation of these lengtheptimum solution to the corresponding “minimum sum-of-
patterns. squares” problem.



The BLUE balls impose the required restriction on the
number of bins. The monotonicity of the squares function
along with the uniformity of the BLUE balls effectively cancel
out the effect of their presence in each b{n.
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