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Abstract—The extensive recent research in protocols develop-
ment for wireless networks must be complemented with simple
yet efficient prototyping and evaluation mechanism. MiN7-2 is a
miniaturized multi-hop wireless network testbed that addresses
this challenge by combining the benefits of existing protocol
evaluations strategies: simulations and custom built large scale
wireless network testbeds. A key component of MiN7-2 is the
ability of testbed nodes to move around in the testbed space,
whether to reconfigure the network topology or to emulate node
mobility patterns. Consequently, we need to devise accurate
mechanisms for node localization - the ability of a node to
be aware of its exact location in the testbed space. This paper
presents the details of the current RFID-based node localization
mechanism in MiNT-2. We describe the sources of inaccuracy
encountered when using RFID tags due to the error margin
associated with the reading range of tags. We then present the
implementation and evaluation of two approaches which can be
combined to improve the overall accuracy of the RFID-based
localization system. Through our experimental evaluation, we
show that the proposed approaches improve the accuracy of
RFID-based localization mechanisms by up to 58.22% for dense
deployment of RFID tags. Though described in the context of the
MiNT-2 testbed, our localization techniques are also applicable in
more general settings where accurate and inexpensive positioning
of mobile nodes is important.

I. INTRODUCTION

As research and development in wireless networking pro-
tocols gains importance, it is ever more essential to carefully
test the performance of protocols under situations closely re-
sembling the real world. Two currently predominant evaluation
mechanisms are software simulations and large-scale testbeds,
Although simulations [1]-[3] offer control and repeatability
of experiments, they do not reflect the real-world radio prop-
agation effects such as non-uniform path loss, multi-radio
interference, multi-path fading, etc. On the other hand, custom-
built large-scale testbeds [4]-[6] accurately reflect the time-
and space-varying characteristics of RF propagation, but incur
large setup costs, offer limited reconfigurability to reflect a
range of experimental scenarios for evaluation, and require
extensive manual maintenance.

In the MiNT-2 project [7], we aim to combine the con-
venience of software simulations with the realism of real-
world testbeds. There are two central architectural features
of the MiINT-2 testbed. First is support for node mobility
and reconfiguration of network topology through the use of
commodity iRobot Create robots. Second is the miniaturization

of the physical space required for the testbed by shrinking
each node’s wireless transmission range through the use of
radio signal attenuators [8] and transmission power control.
This paper focuses on the enabling technology behind the first
feature — node mobility and testbed reconfigurability.

The ability of the nodes to move around in the testbed
space enables the user to reconfigure the network topology
and to specify various node mobility patterns so as to evaluate
network protocols under a number of different scenarios. The
effectiveness of this capability is dependent on the accuracy
of the node localization mechanism, that is, the ability to
accurately pinpoint the position of each node within the testbed
space. Thus accurate localization of nodes is one of the
fundamental requirements of the MiNT-2 testbed.

The design goal of our localization technique is to achieve
a high level of accuracy while at the same time keeping
the cost of localization hardware low. The iRobot Create
already comes with two built-in sensors — for distance and
angle measurements — to track the robot’s movement. These
sensors can be queried via the serial interface, and return both
the distance traveled by the robot and angle the robot has
rotated through since the last query. In principle, if the initial
position of the robot is known accurately, the data returned
by these two sensors should be sufficient for tracking the
position of the robot as it moves through the testbed space. In
practice, however, the accumulated error in distance and angle
measurements grows over time due to a number of factors such
as rounding errors, wheel slippage, and encoder inaccuracy.
Furthermore, a node might be manually picked up and moved
to a new location. Thus we cannot entirely rely on internal
sensor readings from the robot. Rather we need additional
mechanisms to perform accurate localization over time.

The MiNT-2 testbed employs a Radio Frequency Identifica-
tion (RFID) tag-based mechanism for node localization. An
RFID tag consists of an integrated circuit and a radio antenna,
that can be used to store a unique identification identifier and
is capable of returning this information in response to a radio-
frequency (RF) signal emitted by an RFID reader device. RFID
tags can be either active (containing a battery), or passive
(without a battery). Passive RFID tags, in particular, use the
external RF signal emitted from an RFID reader device to
induce a minute electrical current in their antenna, which is
just sufficient for the integrated circuit in the tag to transmit



Fig. 1. Picture of the MiNT-2 testbed. RFID cards are marked red.

the stored unique identification value. As a result, compared
to active tags, passive RFID tags also tend to have a smaller
range within which their values can be read. This property of
passive tags turns out to be very well-suited for the localization
mechanism in the MiNT-2 testbed.

A rudimentary algorithm for RFID-based localization in
MiNT-2 was described in our earlier work [7]. The basic idea
is to deploy a grid of RFID tags on the floor area of the
testbed and assign an (z,y) coordinate to each tag value in
the testbed area. Thus, when a robot, carrying an RFID reader,
passes over an RFID tag, it calibrates its position by assigning
the coordinate of that tag to itself. Between two tags, the
robot uses its internal angle and distance sensors to estimate
its position. This hybrid approach, while simple and more
accurate than using sensors values alone, still suffers from non-
negligible inaccuracies. These inaccuracies arise from several
sources, including the fact that the RFID tag value can be
sensed by the reader device within a circle of radius 2.25¢m.
This, when coupled with the inherent inaccuracy of the robot’s
internal angle sensors, leads to significant inaccuracy in posi-
tion estimates over time. We describe the details of our earlier
localization technique and its limitations in Section II.

In this paper, we propose two schemes to improve the
accuracy of RFID-based localization mechanism in MiNT-2
by allowing nodes to refine their position upon detection of
multiple RFID tags over a straight line movement, and adap-
tively choosing accurate position estimate from RFID- and
sensor-based readings. We describe the proposed mechanisms
in Section IIT and Section IV and their evaluation in Section V.
The related work is presented in Section VI, and conclusions
along with directions for future work are given in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we provide a brief overview of the MiNT-2
architecture and earlier RFID-based localization mechanism,
and subsequently elaborate on problems with earlier approach.

[Overview of MiNT-2 ] The main components contributing
to the new design of the MiNT-2 node are the iRobot Create
platform to achieve node mobility and the Soekris net5501 x86
embedded board (with multiple wireless cards attached) to run

t2=0r {><> Sensor Only ]
(G© RFID + Sensor based ]

1000}
750}

500F

Distance Error (milimeters)
ra
a

Fig. 2. Errors in sensor-only vs. RFID+sensor-based localization with time.

networking applications, simulation packages (e.g. NS2), and
applications to control movements of the robot. For automatic
recharging of the node’s battery, Create robots are designed to
use docking stations. Each node has at least two wireless com-
munication interfaces: one to exchange control packets and one
or more to exchange data packets. The wireless interfaces used
in the node design are Routerboard R52 802.11a/b/g cards
based on the Atheros AR5414 chipset. Each wireless interface
is attached to an external antenna through a fixed attenuator,
in order to miniaturize the radio communication range. A low
frequency RFID reader (125K Hz) is also attached to each
node in order to be able to localize itself upon detection of an
RFID tag. Figure 1 presents the details of the MiNT-2 node
and testbed design.

The key features offered by the MiNT-2 testbed include:
miniaturization of the physical space by attenuating the radio
signals, support for automatic reconfiguration and manage-
ment, support for testing robustness of protocols by using
network fault injection, and compliance with the existing NS2
based simulation code.

[MiNT-2 Localization Mechanism] The earlier localization
mechanism [7] enables a node to re-calibrate its position using
the coordinates of the detected RFID tag. To enable position
estimation between successive detection of two tags, the built-
in distance and angle sensors of robots are used. While a
robot’s position calibration can be performed upon detection
of a single RFID tag (just by assigning the (z,y) coordinates
of the tag to itself), its orientation calibration needs the
positions of at least two RFID tags that are traversed in a
straight line movement. Essentially, if (z1,y1) and (z2,y2)
are the coordinates of the two tags encountered in a straight
line, the robot’s orientation can be calculated as follows:

0 — <tcm1 <y2 - yl) + MRFID) %360 (1)
To — T1 2

where the term Aeﬁ% is used to account for constant
radius arc movement of the robot. Thus, when a robot is
placed anywhere in the testbed, it needs to travel in a straight
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Fig. 3. The figure shows that the maximum error in angle using closely
spaced tags T1 and T2 (0) is greater than the maximum error in angle using
farther tags T1 and T3 (¢).

line until it crosses two RFID tags, to initialize its position
and orientation (we term this as an initialization process in
the paper). Figure 2 shows the effectiveness of RFID-based
localization over one purely based on robot’s in-built sensors.

As can be seen from the figure, although RFID-based local-
ization clearly outperforms the pure sensors based localization,
the average error obtained through RFID-based mechanism is
still approximately 25cm, which is a fairly large error value,
especially for its applications in automatic topology formation
based on the given coordinates information of nodes, robot
collision avoidance, etc. The reason behind this error value
can also be conjectured as the error in orientation calibration,
since the maximum error in position calibration is limited by
the uncertainty in the RFID-tag reading range (2.25cm).

III. RFID-BASED CONTINUOUS REFINEMENT APPROACH
(RCRA)

Two factors affecting the accuracy of RFID tags based
orientation calibration mechanism are the reading range of
each RFID tag and the density of tags deployment. Since,
the reading range of a tag is constant in our case — a circle of
2.25cm radius — the deployment density of RFID tags is the
only parameter that can be adjusted to improve the accuracy.
Figure 3 shows the relationship between tags density and max-
imum error bound in orientation calibration. If two consecutive
tags encountered by the robot when travelling in a straight
line are close to each other, then the resulting uncertainty in
orientation is # at the second tag. If the two consecutive tags
are further apart, then the resulting uncertainty is . Since
© < 0, the farther the consecutive tags are, the better will be
the orientation accuracy.

However, while increasing the distance between tags may
reduce the orientation calibration, it may increase the overall
error in robot’s position estimate. More specifically, lower
density of RFID tags increases the average time interval
between successive detection of two RFID tags. As a result,
the error in position estimates purely based on sensor values
starts accumulating as shown in the Figure 2.

To address this problem, we use a continuous refinement
based approach for orientation calibration. Essentially, we
neither reduce the tag density nor calibrate the orientation
at every two successive detections of RFID tags. Instead,
the robot calibrates its orientation using the coordinates of

the first and the latest tag encountered on a straight line
movement. Thus, as long as the robot travels in a straight line,
it can successively refine its orientation estimate with each tag
encountered on its path, without compromising the accuracy
of its position estimate.

IV. ADAPTIVE LOCALIZATION SCHEME (ALS)

RCRA continuously improves the orientation estimates
when the robot travels in a straight line. However, if the robot
makes frequent turns or encounters obstacles (such as other
robots), the orientation refinement process would be reset at
each turn, resulting in larger error bounds of the magnitude
seen with the scheme described in Section II. The resulting
error could be even greater than the maximum error observed
for with purely sensors-based estimation.

To address this general situation, when the robot could
often turn or encounter obstacles, we propose to adaptively
select between the RFID based calibration and the sensors
based calibration, depending on the maximum error bound
offered by the schemes. Essentially, there needs to be a
lower bound on the number of RFID tags to be used for
orientation-calibration, based on the tags’ deployment density.
If the maximum number of tags detected during a straight
line movement is less than this threshold, robot can fall back
to the sensors based orientation calibration. Please note that
we deploy the RFID tags uniformly in the testbed area, thus
the lower bound in terms of number of tags is the same
as the lower bound on the distance between two RFID tags
encountered along a straight line path.

Since the reading range of RFID tags is constant, we
can estimate the maximum error bound using RFID based
orientation-calibration for a given deployment scenario as:

errormar = 2 * sin™! (2) 2)

where, r is the radius of the reading range circle of an RFID
tag, and d is the distance between two RFID tags. However,
since the error in sensors based estimations is not dependent
on the constant or predictable parameters (it can occur due
to rounding errors, wheel slippage, and encoder inaccuracy),
it is difficult to choose between the sensors and RFID based
estimations at the run-time.

In order to address this problem, we propose to use a static
method to calculate the lower bound on the number of RFID
tags to be considered for calibration. Essentially, we perform
a measurements based study, in which each experiment is
performed for a fixed value of the lower bound on number
of tags for the random mobility pattern of a robot. For each
experiment, the average localization error is noted down and
the threshold that gave lowest localization error is chosen
as the lower bound on the number of tags for the given
deployment scenario. Here, we take advantage of the fact that
the RFID tags deployment is going to be static and thus the
measurement incurs only a one-time cost.



160 T T T T T T T

150 N . Density1 ]
140 - L +— Density2 H
130 L e—e Density3|]
120F ]
11oF ? ]

Avg. Error (in mm)

50; =

L ! L ! ! 1 1 1 l !
4'01 1.5 2 2.5 3 35 4 4.5 5 5.5 6

Distance (in ft.)

Fig. 4. Measurements based study of ALS to determine the lower bound on
the number of RFID tags to be used. Here, number of tags is mapped to the
distance between the first and the last tag, in order to normalize across the
readings for multiple densities.

V. EXPERIMENTAL EVALUATION

This section presents an evaluation of RCRA and ALS based
localization. Specifically, we first evaluate ALS for different
densities of RFID tags deployment to determine the lower
bound for the number of RFID tags to be considered. We
then incorporate this information in the ALS, and compare
its performance against the other policies, namely the pure
sensors based readings, two-tags based calibration (original
approach), and RCRA.

A. Study of ALS for Different Tags Densities

As discussed before, the angle and distance sensors mounted
on iRobot Create are not sufficient in themselves to accurately
track the position of the robot in real-time. Thus, we rely on
an RFID-based external mechanism to improve the localization
accuracy of robots. Although, detection of an RFID tag enables
position calibration of the robot with a fixed maximum error
margin, the robot has to wait until it crosses the second RFID
tag in a straight line in order to determine its orientation.
Since, the RFID tag’s reading range is not a point, but a
circle of fixed radius, orientation calculation using two tags can
have large error margin compared to the pure sensors based
orientation, depending on the distance between those tags. This
error margin reduces as the number of tags encountered on a
straight line increases. Thus, the goal of this experiment is
to study this tradeoff, and determine the average number of
tags that should be crossed by the robot in order to use the
RFID-based calibration. We perform this experiment for three
different densities of RFID tags deployment. Essentially, we
deploy the tags uniformly such that the horizontal and vertical
distances between pairs of tags is varied to create different
densities.

In order to conduct the experiment, we run the robot
with a random mobility pattern over the testbed of deployed
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RFID tags. Once the robot is initialized with its position
and orientation (after the initialization process), it keeps track
of the position estimates generated by the RFID-based cal-
ibrated readings with continuous refinement enabled, while
it is mobile. When the robot encounters an RFID tag, we
note down the error for the RFID-based calibration, which
we average out at the end of the robot’s mobility script. We
conduct this experiment for different values of the lower bound
on the number of RFID tags for the ALS, and chose the
value of the lower bound on the number of RFID tags that
results in the smallest average localization error. Figure 4
shows the average localization error observed for the ALS,
for experiments conducted over different RFID tags densities.
Please note that, the experiments were conducted for different
values of the lower bound of the number of RFID tags, but in
order to normalize the readings across multiple tags densities,
we used distance as a metric, instead. For this experiment,
tags are deployed uniformly with the horizontal and vertical
distances between pairs of tags set to 0.5ft. for Densityl,
1.0ft. for Density2, and 1.5ft. for Density3.

As the graph indicates, the smallest error was observed
when the RFID-based orientation calibration was performed
using tags that were spaced apart with distances close to 2.5 ft
or 3ft, across all the tags densities. Thus, we can conclude that
if the robot crosses two RFID-tags that are spaced apart by at
least 3ft. distance, the robot can use RFID-based calibration
to calibrate its orientation, while it can fall back to its sensors
based orientation value if the distance between tags is less
than 3ft.. Here, 3ft. of distance constitutes 6, 3, and 2 RFID
tags for Densityl, Density2, and Density3, respectively.

In the next section, we present comparison of the different
localization policies, and we configure ALS to use the value
of the lower bound on the number of tags that need to be
detected over a straight line movement obtained through this
study.
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Density | Inter-tag | Sensors Original RCRA ALS
distance based 2-tags based
in ft. in mm. in mm. in mm. | in mm.
Density 1 0.5 148.59 147.2 70.33 62.08
Density?2 1.0 130.28 143.92 73.56 82.49
Density3 1.5 100.05 108.57 108.57 108.57
TABLE I

AVERAGE LOCALIZATION ERRORS FOR DIFFERENT POLICIES.

B. Comparison of Different Localization Policies

The goal of this experiment is to compare the performance
of different localization policies. As mentioned before, the
experiment is conducted for three different densities of uni-
formly deployed RFID tags. We move the robot in random
fashion over the testbed area of deployed RFID tags, after
the initialization process, and keep track of the positions
estimated by different localization policies: (1) Sensors-based:
position is updated solely based on the values of the angle
sensor and the distance sensor, (2) Original (2-tags based):
this scheme was used in our previous work [7], in which the
robot calibrates its position by assigning the coordinates of
the RFID tag to itself, and orientation, when it crosses two
RFID tags in a straight line, (3) RCRA: it differs from the
previous in its orientation calculation procedure as explained in
Section III, and (4) ALS: it selects between the sensors-based
and RCRA-based orientation value, depending on the lower
bound on the number of RFID tags to be used for calibration,
as obtained in the previous experiment. We keep track of the
estimated positions obtained from each policy, and use their
instantaneous value at the time of an RFID tag detection to
calculate their errors against the coordinate of the RFID tag.
Figures 5, 6, 7 show the comparison of the four localization
policies for different RFID tags densities.

As it can be observed from the figures, the performance of
Original policy is mainly dependent on the density of RFID
tags deployment, and thus for larger densities, it performs
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Fig. 7. Comparison of different policies for Density3.

poorly even compared to the pure Sensors based approach.
In comparison, RCRA and ALS give much better accuracy
most of the times. We can also notice that ALS outperforms
RCRA when the RFID tags deployment is dense. However,
as the density of RFID tags becomes sparse, all the RFID-
based localization schemes nearly give the same accuracy
level. Table I presents localization error values observed for all
the policies over different RFID tags densities, averaged across
multiple tries. As it can be observed from Table I, the average
localization error for RCRA and ALS increases as the density
of tags becomes sparser. Thus, ALS for dense deployment of
RFID tags appears to give the best performance among the
four localization policies used in this work.

VI. RELATED WORK

The goal of localization is to allow a node to accurately
determine its own absolute position and orientation as well as
understand positions of the other robots in the testbed. The
Roomba robots used in the original MiNT [9], [10] prototype
could not sense their own positions. As a result, they relied
exclusively on a central controller which used a vision-based
position/orientation tracking system consisting of six ceiling-
mounted webcams with overlapping image planes. This system
was used to track node location and to command the robots
on which direction to move at any instant. To account for
growing discrepancy over time between the central controller’s
per-node position information and the actual node positions,
mobile robots were periodically manually brought to fixed
locations to re-synchronize their logical and physical node
positions. Each node was identified using unique color patches
mounted on the mobile nodes. Since this system relied on
visual identification, it tended to develop inaccuracies over
time if any of the six cameras moved slightly, or if the color
patterns on the nodes faded or lighting varied.

We researched and designed a completely new localization
mechanism for the MiNT-2 testbed to overcome the limitations



of its predecessor. Our system uses inexpensive RFID technol-
ogy coupled with enhanced mobility sensors within the Create
robot to reduce maintenance overhead and simultaneously
achieve high levels of accuracy. Since the RFID tags are
distributed within the testbed area, a node can localize itself
whenever it crosses an RFID tag by assigning the position of
the tag to itself, and uses the proposed algorithm to determine
its orientation from its movement and RFID history.

Extensive research has been performed [11] on localization
in the context of ubiquitous computing, location-aware ser-
vices and robotics research, which we examined in choosing an
appropriate system for MiNT-2 . The focus of the MiNT-2 and
MiNT testbeds has been on developing a simple, inexpensive,
and practical localization technique for robots used in wireless
protocol development and testing context. For our MiNT-2
testbed we considered active and passive infrared triangulation,
as well as an infrared version of Stony Brook’s MiNT vision
system that would use patterns of infrared LEDs instead of
colored cards to identify each robot and determine its location
and heading. Mobile Emulab [12] also uses a vision-based
image processing technique for localization, using two color
pattern on top of each robot. In addition to sharing the same
drawbacks as the original MiNT testbed, the two color patterns
cannot uniquely identify the robots. MIT’s Cricket ultrasonic
localization system [13] was also considered. However the
cost of each module combined with the significant associated
computation burden rendered it unsuitable for our applica-
tion. A pressure-based system called SmartFloor [14] would
have been unable to differentiate between the unique nodes,
although it is well-suited to determine the precise location of
each (anonymous) node. MiNT-2 nodes do not encounter these
problems because an inexpensive RFID reader is mounted on
each robot and thus the node itself can detect/compute its
location without relying on any external data. RFID based
localization techniques have also proven effective in other
contexts for both large-scale localization [15] and more limited
table-sized applications [16].

VII. CONCLUSION AND FUTURE WORK

In this paper, we address the sources of inaccuracy associ-
ated with the RFID-based localization approach proposed in
our previous work, MiNT-2. Although, RFID-based calibration
helped assigning correct position to the robot upon detection
of an RFID tag, the location error observed between two
successive tags detections was significant, mainly because of
the large error margin associated with the robot’s orientation
calibration mechanism. In order to address this limitation, we
proposed RCRA, a continuous orientation-refinement based
approach, and ALS, an hybrid approach which adapts between
sensors-based values and the RCRA to get better orientation
accuracy. Through our experimental evaluation, we show that
the proposed approaches improve the accuracy of RFID-
based localization mechanisms by up to 58.22% for dense
deployment of RFID tags.

The current mechanism to determine the lower bound on
the number of RFID tags required for orientation calibration

in ALS is static — based on the measurements. In future, we
plan to extend the ALS to dynamically determine the lower-
bound on minimum number of RFID tags required, in order
to make the scheme more generic.

REFERENCES

[1] Information Sciences Institute, “The Network Simulator — NS-2
http://www.isi.edu/nsnam/ns/.”

[2] X.Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A Library for Parallel
Simulation of Large-Scale Wireless Networks,” in Workshop on Parallel
and Distributed Simulation, May 1998.

[3] Scalable Network Technologies Inc., “QualNet WiFi simulator,” in
http://www.scalable-networks.com/products/qualnet_wifi.php, 2004.

[4] D. Maltz, J. Broch, and D. Johnson, “Experiences Designing and
Building a Multi-Hop Wireless Ad-Hoc Network Testbed,” in Technical
Report 99-116, School of Computer Science, CMU, Mar 1999.

[5] H. Lunndgren, D. Lundberg, J. Nielsen, E. Nordstrom, and C. Tscudin,
“A Large-scale Testbed for Reproducible Ad Hoc Protocol Evaluations,”
in Proceedings of Wireless Communications and Networking (WCNC),
2002.

[6] Daniel Aguayo et al., “MIT Roofnet Implementation
http://www.pdos.lcs.mit.edu/roofnet/design/,” August 2003.

[7]1 C. Mitchell, V. Munishwar, S. Singh, X. Wang, K. Gopalan, and N. Abu-
Ghazaleh, “Testbed design and localization in mint-2: A miniaturized
robotic platform for wireless protocol development and emulation,” in
Proc. First International Conference on Communication systems and
Networks (COMSNETS), Jan. 2009.

[8] JFW Industries, Inc., “Fixed Attenuators
http://www.jfwindustries.com/Cat2000/Fixed Attenuators-
Terminations.pdf.”

[9] P. De, R. Krishnan, A. Raniwala, K. Tatavarthi, N. A. Syed, J. Modi,

and T. cker Chiueh, “Mint-m: An autonomous mobile wireless experi-

mentation platform,” In Proceedings of Mobisys, 2006.

P. De, A. Raniwala, S. Sharma, and T. cker Chiueh, “Mint: A miniatur-

ized network testbed for mobile wireless research,” In Proceedings of

IEEE Infocom, 2005.

J. Hightower and G. Borriello, “Location systems for ubiquitous com-

puting,” Computer, vol. 34, no. 8, pp. 57-66, Aug 2001.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,

M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental

environment for distributed systems and networks,” in Proc of OSDI’02,

Boston, MA, Dec. 2002, pp. 255-270.

N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket

location-support system,” in MobiCom ’00: Proceedings of the 6th

annual international conference on Mobile computing and networking.

New York, NY, USA: ACM, 2000, pp. 32-43.

R. J. Orr, “SmartFloor, http://www.cc.gatech.edu/fce/smartfloor/.”

J. Bohn, “Prototypical implementation of location-aware services based

on a middleware architecture for super-distributed rfid tag infrastruc-

tures,” Personal Ubiquitous Comput., vol. 12, no. 2, pp. 155-166, 2008.

S. Hinske and M. Langheinrich, “An RFID-based Infrastructure for Au-

tomatically Determining the Position and Orientation of Game Objects

in Tabletop Games.”

[10]

(1]

(12]

[13]

[14]

[15]

[16]



