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Abstract—This paper presents a model-driven approach to
developing pervasive computing applications that exploits design-
time information to support the engineering of planning and
optimisation algorithms that reflect the presence of uncertainty,
dynamism and complexity in the application domain. In par-
ticular the task of generating code to implement planning
and optimisation algorithms in pervasive computing domains is
addressed.

We present a layered domain model containing a set of object-
oriented specifications for modelling physical and sensor/actuator
infrastructure and state-space information. Our model-driven
engineering approach is implemented in two transformation algo-
rithms. The initial transformation parses the domain model and
generates a planning model for the application being developed
that encodes an application’s states, actions and rewards. The
second transformation parses the planning model and selects
and seeds a planning or optimisation algorithm for use in the
application.

We present an empirical evaluation of the impact of our
approach on the development effort associated with a pervasive
computing application from the Intelligent Transportation Sys-
tems (ITS) domain, and provide a quantitative evaluation of the
performance of the algorithms generated by the transformations.

I. INTRODUCTION

This paper addresses the challenges involved in engineering

pervasive computing applications that make use of planning

and optimisation algorithms. We define a pervasive computing

environment as a region of the physical environment that is

augmented with sensor and actuator devices, and pervasive

computing applications as those that execute in such an aug-

mented physical space. Canonical examples of such applica-

tions are the control of transportation infrastructures, activities

such as region-wide pollution monitoring, and emergency-

service management.

The complexity of real-world domains, the inference of sys-

tem state from noisy sensor data, and the possible unreliability

of actuator platforms used for action execution motivates the

use of stochastic planning algorithms [1] in pervasive com-

puting applications. Although the formal foundations of large-

scale planning and acting algorithms are well established, the

practical task of applying these formal foundations to large-

scale problems remains challenging [2]. Furthermore knowl-

edge of such algorithms is not widespread among software

development practitioners being more typically confined to the

research community.

Our work focuses on those pervasive computing applications

that use sensor data to infer values for application states in

order to plan and take action in accordance with user-specified

objectives or to optimise application states. An example would

be to optimise traffic light settings in an urban traffic control

(UTC) system to minimise waiting time for vehicles.

In this paper we first present a layered domain model that

provides a set of object-oriented specifications for modelling

physical and sensor/actuator infrastructure and application

state spaces in pervasive computing environments. These spec-

ifications are implemented using the XML and SQL standards.

All domain-model elements are tagged with a spatial context

and are combined using spatial queries to support state infer-

ence routines.

We then present two transformation algorithms that parse

domain models to generate application code providing plan-

ning and optimisation functionality. The initial transformation

algorithm parses a domain model and populates a planning

model whose components provide an API for accessing appli-

cation states, actions, and rewards.

The second transformation algorithm uses planning model

components and generates control units for an application. A

control unit is a piece of executable code implementing the

planning or optimisation algorithms used in the decision/exe-

cution cycle of an application. Planning model components

provide an API, invoked by control units at runtime, that

exposes application states as likelihood values given the spread

and quality of sensor infrastructure in the environment.

The broad range of potential applications precludes a uni-

fied algorithmic approach to the solution of such problems.

Our approach supports an extensible library of planning and

optimisation algorithms. Application developers can specify an

algorithm to be used or they can allow the transformations to

automatically select an appropriate, although not necessarily

optimal, algorithm for the application. We provide a library of

algorithms and the automated transformations seed instantia-
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tions of these algorithms with data from the planning model.

The criteria used to select appropriate algorithms are derived

from encoding existing best practice from the literature.

Our work synthesises concepts from the fields of model

driven engineering (MDE) and automated planning. Auto-

mated planning focuses on the design and use of information

processing tools that give access to affordable and efficient

planning resources [2]. Automated planners take as input a

description of the problem to be solved and produce as output

a plan to govern the actions taken by an application. Because

we wish to support a wide variety of problem types, we also

provide support for optimisation algorithms.

The MDE component of our work addresses software engi-

neering challenges associated with developing the target class

of pervasive computing applications by raising the level of

abstraction at which applications are developed and providing

automated generation of code. The automated planning com-

ponent allows specialist knowledge to be encoded in the tool-

chain and reduces the knowledge of planning and optimisation

algorithms required by developers. We believe that the MDE

and automated planning components combine to provide a

novel programming model that simplifies the provision of

planning and optimisation functionality in pervasive comput-

ing applications.

The remainder of this paper is structured as follows. In

section II we present the development process supported by

our approach. In section III we summarise the design of our

domain model, an earlier version of which, has been presented

in [3]. In Section IV we present the transformation algorithms

used to generate application control units. Finally, we evaluate

the impact of the programming model on algorithm devel-

opment effort and describe the performance of a generated

algorithm for a representative application scenario.

II. DEVELOPMENT PROCESS

The development process accommodates two development

roles and one testing role. A domain expert defines the

application state space and specifies the application policy.

Domain experts are not required to be proficient in the field

of planning and optimisation. A planning expert adds new

planning and optimisation algorithms to the library and defines

mappings from our planning model API to algorithm logic.

The planning expert can add algorithms without reference

to pervasive computing middleware services or sensor and

actuator placement. A tester evaluates the performance of the

generated code.

Fig. 1 shows a data flow diagram for the development

process. The following tool support is provided:

• A suite of domain model XML schemas.

• A validation engine to check the validity of domain

models.

• A transformation engine to parse a domain model and

populate a planning model that provides an API for use

by planning and optimisation algorithms.

• A transformation engine to choose a suitable algorithm

and generate application code.
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Fig. 1. Development process roles and tool support.

• A library of planning and optimisation algorithms.

• An evaluation platform to test the performance of gener-

ated application code. This platform provides simulated

sensor data and run-time middleware services for sensor

and actuator discovery and access.

The tool chain is used as follows:

1) Construct a domain model using the XML schemas

provided.

2) Write a policy file specifying the desired behaviour of

the application.

3) The first transformation supports the validation of the

domain model and policy and the generation of a plan-

ning model for the application.

4) The second transformation supports the validation of the

planning model and the taxonomy linking problem to

algorithm type. It can also select an algorithm type to

use and can generate the control units for an application.

The planning expert adds new planning and optimisation

algorithm implementations to the library and updates the

algorithm taxonomy to specify the problem type and set of

environmental conditions in which the algorithm is suitable

for use. When an algorithm is added to the taxonomy a

function is defined by the planning expert to map algorithm

logic onto planning model components. This is a one-time

effort and once the mapping has been specified, the algorithm

can be repeatedly applied to new matching problem instances.

The mapping logic varies with the algorithm type. Planning

model components provide an API to planning experts that

abstracts away from sensor and actuator placement and quality

to expose run-time application state values as discrete and

continuous likelihood functions. Planning model components

also provide access to reward model and state-transition infor-

mation, defined by the domain expert using the domain-model

specifications.

The use of sensor and actuator infrastructure requires that
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the control units make use of a middleware for access and

query operations. The control units operate by providing

information for sensor/actuator selection and identification and

assume middleware abstractions for discovery and lookup ser-

vices. Such abstractions are provided by a range of pervasive

computing middlewares such as [4] [5] and are not directly

addressed in this paper.

III. DOMAIN MODEL AND POLICY SPECIFICATION

The domain model contains abstractions for specifying

the sensors and actuators present and the state space of a

pervasive computing application. The domain model uses a

topographical approach to model the spatial relationships of

sensors, actuators, policies, and states as geometric shapes

defined by sequences of coordinates based on a chosen, well-

known coordinate system.

The domain model specifications are organised in four

logical layers. Layer 1 holds static data about application

relevant artefacts in the environment that is known at design-

time. Layer 2 holds meta-data on the sensors and actuators in

the environment that are used at runtime when determining and

modifying application state. Layer 3 describes the application

state space and layer 4 holds domain-specific knowledge that

can be used to select and customise planning and optimisation

algorithms.

To help clarify the presentation of the domain model and

transformations, we first introduce a scenario in which our

development process is applied to developing an application

to optimise the use of CCTV camera infrastructure in a city.

A. Scenario

We assume that the city contains hundreds of CCTV sensors

placed at various traffic junctions and that at any one time there

may be up to 10 council staff on duty to monitor and detect

traffic accidents and congestion using 30 screens that can be

used to display CCTV image streams. The desired behaviour is

to select the 30 most interesting CCTV data streams to display

from the hundreds of available cameras. The criteria by which

a CCTV camera is considered interesting, are defined by the

domain expert to be a function of weather, traffic demand and

pedestrian presence. There is a further requirement that the set

of useful CCTV cameras should be chosen to also provide the

maximal geographic spread or coverage over the city transport

network.

This application therefore requires a bi-criteria optimisation

algorithm to be deployed in a pervasive computing environ-

ment and the use of inference techniques to infer application

states from sensor data.

B. Domain Model Specifications

Layer 1 is used to specify infrastructural elements that

exist in the deployment environment. Infrastructural elements

characterise physical artefacts relevant to the application being

developed. All layer 1 elements have a spatial attribute.

Layer 1 of the scenario domain model specifies the city’s

static road network infrastructure specified as a series of

Model Element

type : int

dataSourceID : int

Actuator Element

name : String

mobile : boolean

Sensor Element

name : String

mobile : boolean

Location Reference

referenceSystemID : int

location : String

Data

name : String

cost : int

confidence : float

Action

id : String

cost : int

confidence : float

transition : String

1
1..* 1

1..*
1

0..1

1
1

1
1

Fig. 2. Domain model sensor and actuator layer.

signalised junctions connected by road links that allow traffic

to flow from one junction to another. A standard model is

used to represent the road network based on the Paramics

traffic simulator1. This data is formatted using the SFS spatial

data standard and stored in a PostgreSQL GIS database.

There are 247 junction elements whose spatial attributes are

represented as circles of radius 20 metres from junction centre

points and 2800 road link elements whose spatial attributes

are represented as multi-polygon geometries summing the

geometries of road links. Layer 1 data was obtained from a

Paramics model of Dublin city.

Layer 2 specifications are used to model the sensor and

actuator infrastructure in the deployment environment. Layer

2 holds meta-data describing the data produced by the sensor

and actuator infrastructure. All layer 2 elements have a spatial

attribute. The spatial attribute of a sensor includes both its

physical location and sensing range. Layer 2 data is used to

build queries to middleware services for accessing sensors and

actuators at runtime. The domain model does not hold sensor

data readings or information on actions being executed by

actuator infrastructure. Sensor data will be accessed at runtime

through a pervasive computing middleware service.

The design of this layer is shown in Fig. 2. Sensor and

Actuator classes inherit from a base Model Element class and

both have an associated spatial attribute. Layer 2 sensor objects

contain one or more data objects used to specify what values

the sensor provides, and an actuator object contains zero or

more data objects and one or more action objects used to spec-

ify what actions an actuator supports. Data and action objects

are used at runtime when interpreting sensor and actuator data.

Data objects have a confidence attribute indicating the degree

of confidence associated with individual sensor readings. For

discrete sensor data the confidence measure is a probability

value between 0 and 1 indicating the likelihood of sensor data

being correct. For continuous sensor data the confidence value

is the variance associated with sensor readings. Determining

1http://www.paramics-online.com
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the confidence value for a particular sensor will require either

the use of self-describing sensors [6], or else may be obtained

from sensor specifications and manufacturer documentation.

Actuators implement actions that may effect a change in the

state of a system. The spatial attribute of an actuator includes

its location and the region of the environment over which

its actions have an effect. Action objects have a confidence

attribute which is a probability assigned to a successful state

transition caused by the actuator.

The effects of actions are specified using state charts. The

domain model implementation uses a modified version of the

State Chart XML (SCXML) language, which specifies state

transition information based on Harel State Tables and which

supports composite state spaces and probabilistic transitions

[7], thus making it suitable for specifying state charts for

pervasive computing environments.

Layer 2 of the scenario domain model contains three sensor

elements and one actuator element. An Inductive Loop sensor

[8] provides sensor data on traffic demand and travel times.

Weather station sensors are modelled to provide data on rain

fall levels at each junction. We also assume that a stationary

pedestrian presence sensor is present at each junction to

provide data on pedestrian levels. The spatial attribute of

the weather and pedestrian sensors is specified as an ellipse

representing their sensing areas.

Layer 3 is used to specify the state-space of a pervasive

computing application. Determining state values typically re-

quires access to sensors and actuators distributed throughout

the environment, the quality and spread of which will often

be unknown at design time. Layer 3 system-state elements are

used by domain experts to specify the logic for calculating

the values of application states, independently of run-time

conditions. System-state elements are composed using layer 1

and 2 elements to specify the types of sensor data and actuator

actions, and the types of infrastructure in the deployment

environment, that are required to calculate run-time values for

the application state space.

Examples of system-states include vehicle throughput at a

traffic junction, journey time along a road link and power

consumption in a room. The design of this layer is shown in

Fig. 3. Each system-state has a scope that indicates the region

of the deployment environment over which it is defined. Layer

1 and 2 elements referenced in a system-state definition are

mapped at runtime onto physical entities in the region of the

deployment environment described by the scope.

A system-state specification includes an inference function

whose logic is used to calculate state values from the run-time

values of sensor data and actuator actions. Sensor and actuator

meta-data are used in the inference function to quantify

the uncertainty associated with state values. Uncertainty is

specified using discrete and continuous likelihood functions

for the true value of the system-state given the available sensor

data.

System-state elements have a problemClass attribute in-

dicating that the element belongs to either a planning or

optimisation problem. Deployment environment conditions

Model Element
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dataSourceID : int

System-State Element

name : String
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problemClass : String
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dynamism : boolean
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Fig. 3. Domain model system-states layer.

are specified using dynamism, complexity, and observability

attributes that are used to indicate respectively: that the state’s

value can be affected by uncontrolled state-transition events;

that it may be computationally difficult to compute the value

of a system-state; and that the application state space values

are expressed as probabilities rather than direct observations.

In the event that the domain expert does not specify which

planning or optimisation algorithm to use, the transformations

will use these four attributes to select an appropriate planning

or optimisation algorithm for the problem.

Layer 3 of the scenario domain model contains specifi-

cations of three system-states: JunctionInterest, MaximalDis-

tance, and DegreeofInterest. A JunctionInterest system-state is

specified to be a monotonically increasing function of wors-

ening weather conditions, pedestrian presence, and increasing

traffic demand. Domain experts specify system-states in XML

and the XML specification of the JunctionInterest system-

state is shown in Listing 1. The dynamism and observability

attributes are specified to be “true” and “partial” respectively,

and the complexity attribute is set to “false”. The scope of the

system-state is defined as being of type “element” and of value

“junction”, meaning that a value for this system-state is to be

calculated at each instance of a junction infrastructure element

contained in the scenario domain model. The implementation

attribute contains a reference to an inference function that uses

a Bayesian network to combine the inputs to produce an output

value for the system-state.

Fig. 4 shows the conditional probability tables specified

in the inference function. The hybrid Bayesian network con-

tains a discrete Boolean Pedestrian node indicating whether

pedestrians are present or not and a discrete TrafficVolume

node taking the values: “high”; “medium” and “low”. It also

contains continuous SurfaceWater, Rain and JunctionInterest

nodes. A sample conditional probability from Fig. 4 reads

P (SurfaceWater|Rain) = N(1.2 × Rain, 0.25), i.e., the

continuous variable SurfaceWater has a mean value that is

20% higher than the values reported by the Rain sensor and

a constant variance of 0.25. Such a specification might reflect

the belief of the domain expert that the rain sensors in general
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<s y s t e m S t a t e>

<i d>001</ i d>

<name>J u n c t i o n I n t e r e s t</ name>

<d e s c r i p t i o n>Th i s s t a t e measu res t h e d e g r e e o f i n t e r e s t

o f a s i n g l e J u n c t i o n</ d e s c r i p t i o n>

<p r o p e r t i e s>

<c o m p l e x i t y>f a l s e</ c o m p l e x i t y>

<dynamism>t r u e</ dynamism>

<o b s e r v a b i l i t y>p a r t i a l</ o b s e r v a b i l i t y>

</ p r o p e r t i e s>

<scope>

<t y p e>e l e m e n t</ t y p e>

<v a l u e>j u n c t i o n</ v a l u e>

</ s cope>

<i n p u t s>

<l a y e r 1>

<name>i d</ name>

<name>geomet ry</ name>

</ l a y e r 1>

<l a y e r 2>

<name>r a i n</ name>

<name>p e d e s t r i a n s</ name>

<name>t r a f f i c v o l u m e</ name>

</ l a y e r 2>

</ i n p u t s>

<!−− I m p l e m e n t a t i o n s −−>

<i m p l e m e n t a t i o n>

<code>py thon</ code>

<s o u r c e R e f>J u n c t i o n I n t e r e s t</ s o u r c e R e f>

</ i m p l e m e n t a t i o n>

</ s y s t e m S t a t e>

Listing 1. JunctionInterest system-state definition.

Rain

Mean 0.0

Variance 0.25

Traffic Volume

Low 0.2

Medium 0.4

High 0.4

Junction Interest

Pedestrians False True

Traffic Volume Low Medium High Low Medium High

Mean 1 3 5 3 5 7

Surface Water 5 5 5 5 5 5

Variance 2 2 2 2 2 2

Surface Water

Mean 0.0

Rain 1.2

Variance 0.25

Fig. 4. Bayesian network conditional probabilities from JunctionInterest
inference function.

underestimate the amount of surface water by 20%.

The MaximalDistance system-state is defined to measure the

geographic spread of the candidate set of CCTV cameras. To

measure the geographic spread, sets of 30 selected cameras are

modelled as nodes in a fully connected network. The length

of all network edges (distance between junctions) is measured

in metres to obtain the total length of the network and used as

a measure of coverage. This state is specified to be complex,

static and fully observable as the complexity of an exhaustive

search of this space is O(cn) where n is the number of nodes

and c > 1.

The DegreeofInterest system-state is defined to sum the

JunctionInterest value for each junction in the candidate set

of CCTV cameras associated with the junctions. This system-

state is included so that the scenario policy can be easily

specified as a function of candidate sets of CCTV cameras.

Layer 4 holds domain-specific knowledge such as the algo-

rithm type to be used and values for free parameters of the

algorithm. Layer 4 is provided to allow the domain or planning

<p o l i c y>

<scope>g l o b a l</ s cope>

<problem>o p t i m i s a t i o n</ p roblem>

<s t a t e>

<name>MaximalDis t ance</ name>

<r eward>

<t y p e>c o n t i n u o u s</ t y p e>

<v a l u e>maximise</ v a l u e>

<w e i g h t>1</ w e i g h t>

</ r eward>

</ s t a t e>

. . . . . . . .

Listing 2. Case study policy excerpt.

expert to customise the performance of the planning and

optimisation algorithms that will be embedded in the generated

control units. Information specified at this layer is algorithm

specific and can include data such as prior probabilities on

the values of system-states and energy levels and cooling

schedules for stochastic search algorithms. In the absence of

layer 4 data the transformations will select an algorithm from

the library and use default values for its free parameters.

C. Policy Specification

Policy specification provides a high-level method for the

domain expert to control application behaviour. Application

policy is specified by associating rewards with the range of

possible system-state values and/or state-action combinations.

The transformation algorithms use the policy specification

to create a reward model attached to states and/or actions.

An XML schema is provided to allow validation of the

policy specification and contains information on the problem

type (planning or optimisation), the deployment region of the

application, and the reward model.

Reward elements contain a number of attributes: a type

attribute identifying whether the system-state produces data

values that are discrete or continuous; a range attribute spec-

ifies a hyphenated list of values that discrete state values can

take, e.g., “high”, “medium” or “low” and their corresponding

reward values. For continuous data the value can be specified

as “maximise” or “minimise”. A weight attribute can be used

to prioritise competing system-states. An excerpt of the policy

specification for the scenario is shown in Listing 2.

The scenario policy specifies the application scope to be

of value “global” indicating that planning model components

will be generated by matching all system-state scopes against

elements throughout the geographic region covered by the do-

main model. A reward attribute for each system-state specifies

that the system-states referenced in the policy are continuous

valued, of equal weight and that the optimisation algorithm

should attempt to maximise the value of each system-state.

As an indication of the domain modelling effort required for

this scenario, the combined layer 3 domain model elements

and policy listings are 284 lines of code (LOC).

IV. MODEL TRANSFORMATIONS

The model transformations produce application code that

executes over an assumed middleware to provide the desired
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planning and optimisation behaviour as expressed in the

domain model and policy. The first transformation extracts

information from the domain model to populate planning

model components that provide a programming interface to

pervasive computing environments modelled on a five-tuple∑
= (S, A, T,O, R) where:

• S = {s1, s2, ..} is the set of system states;

• A = {a1, a2, ..} is the set of actions provided by actuator

functionality;

• T (s, a, s
′

) represents a stochastic state-transition function

that gives the probability P (s
′

|s, a) of moving to state s
′

if the action a is performed in state s.

• O = {o1, o2, ..} is the set of observations that are

produced by the sensor infrastructure in the region. An

observation or sensor model function O(s
′

, a, o) gives

the probability P (o|a, s
′

) of observing o if action a is

performed and the resulting state is s
′

.

• R(s, a, s
′

) represents the immediate reward for perform-

ing action a while in state s and moving to state s
′

.

Application state is represented as variables that provide

estimates of changing value and certainty at runtime. From∑
, each si ∈ S represents a system-state element that is

implemented by a set of state-variable objects. State-variable

objects are planning model components, generated by the

transformations using domain model system-state specifica-

tions, to perform sensor fusion and state inference services.

They perform the sensor model function O(s
′

, a, o), by com-

bining spatial attributes with named layer 2 sensor data and

actuator action inputs, to invoke middleware services and

return the run-time values of system-states in the deployment

environment. The number of state-variable objects required

for each system-state is calculated using the system-state and

policy scope information. For example, if a system-state has a

scope of type “element”, a state-variable object is created for

each matching element within the policy scope.

Actuator objects are generated from layer 2 elements to

provide an interface to actions and associated state-transitions

specified in SCXML. Reward model entries R(s, a, s
′

) are

implemented as a multi-dimensional hash-table containing

tables indexed by each system-state name in the domain

model. For discrete states, numeric rewards are stored for

state/action combinations extracted from the policy specified

by the domain expert. Continuous states are indexed with

maximisation or minimisation tag values.

A. Domain Model To Planning Model Transformation

The logic of this first transformation is summarised under

the following three headings:

1. Parse the policy and system-state specifications

The policy file and system-state specifications are validated

using their respective schemas. The policy scope indicates

the extent of the region over which the application is to

be deployed. The problem type will be either planning or

optimisation and determines the required planning model com-

ponents. The scope, complexity, dynamism and observability

properties are recorded for each system-state. The set of layer

1, 2 and 3 inputs are read for each system-state and a reference

to the state inference function is recorded.

2. Planning problems

The set of state-variable objects for each system-state are

enumerated and instantiated. Layer 2 meta-data is read and

used to create spatial queries that are written into the sets of

state-variable objects. Actuator elements specified in layer 2

of the domain model are validated and a set of actuator objects

created, containing specified transition system information and

action confidence values. A reward model is built using the

reward elements contained in the policy.

3. Optimisation problems

For complex optimisation problems the state space will often

be too large to evaluate fully and the overhead of creating a

full set of state-variable objects is impractical. For example,

in our scenario, there are 247!
(247−30)! permutations of 30 CCTV

installations that can be chosen from the 247 available. Heuris-

tic optimisation algorithms manage complexity by exploring

random subsets of an application state space. To accom-

modate random exploration of complex pervasive computing

state-spaces, the domain-model transformation creates state-

generator factories used by optimisation algorithms to produce

state-variable objects with randomly chosen spatial attributes

on demand at runtime. State-variable objects generated for

optimisation problems are functionally identical to those used

in planning problems.

B. Planning Model To Control Unit Transformation

This transformation validates the algorithm taxonomy and

uses a specified or automatically selected algorithm to seed a

planning or optimisation control unit according to the problem

type.

Input:
∑

: a planning model; Alg: an instance of a

planning algorithm.

foreach si ∈ S do1

integrate sensor evidence into si;2

calculate P
′

(si);3

end4

foreach action ai ∈ A do5

calculate Alg(ai, s
′

i
), the reward for taking action A;6

end7

return the best action from A;8

Algorithm 1: Planning problem control unit template.

Alg. 1 shows the execution cycle of a control unit for a

planning problem. In lines 1-3, the state inference function

defined by the domain expert in layer 3 system-state elements

is used by each state-variable object in the planning model to

update the application state values. If multiple sensor readings

are returned by middleware lookup operations for a single

layer 2 datum, they are automatically combined using a fused

likelihood function calculated as the product of individual sen-

sor confidence values. Fused likelihood values are then passed

into the inference functions executed at runtime. In lines 5-

6, the control unit uses the policy specified by the domain

expert, and transformed into a reward model, to calculate the
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utility of invoking each available action given the updated

state information. The action selection logic is implemented

by the planning algorithm embedded within the control unit.

For single-decision planning problems, the control unit returns

the action that maximises the reward at each time step. For

sequential planning problems the control unit selects an action

that maximises the reward over a search horizon.
Input:

∑
: a planning model; Alg: an instance of an

optimisation algorithm.

generate candidate set(s) {S(θ) ∈ Θ};1

while not finished do2

foreach θ ∈ S(θ) do3

integrate sensor evidence into θ ;4

calculate P
′

(θ);5

end6

foreach θ ∈ S(θ) do7

evaluate the loss function L(θ) ;8

end9

generate new candidate set(s) {S(θ) ∈ Θ};10

end11

return the best solution from S(θ);12

Algorithm 2: Optimisation problem control unit template.

Alg. 2 shows the execution cycle of a control unit for an

optimisation problem. A collection of state-variable objects

evaluated by an optimisation algorithm is referred to as a

candidate solution. In line 1, a candidate solution θ, from the

domain of possible solutions Θ, is initially generated subject

to the system-state specifications. Heuristic optimisation algo-

rithms generate initial candidate solutions stochastically. Lines

3-5, invoke the state inference function provided by state-

variable objects to obtain values for candidate solutions. In

line 8, the control units use L(θ), a loss function generated

from the policy specified by the domain modeller to evaluate

the candidate. The logic governing candidate generation and

evaluation is specific to the optimisation algorithm contained

within the control unit. The stopping criterion tested in line 2

and the generation of new candidate solutions in line 10 are

also specific to the optimisation algorithm contained within

the control unit.

C. Scenario Transformations

The scenario involves an optimisation problem. The

domain-model transformation populates the planning model

components to provide a state-generator factory and a reward

model from the policy and system-state specifications At run-

time, state-variable objects associated with the JunctionInterest

system-state query for sensor data, compute a fused likelihood

function for each input and then enter the likelihood data into

the Bayesian network specified by the domain modeller. The

mean value returned by 30 Bayesian networks representing

candidate sets of 30 junctions are summed by DegreeofInter-

est state-variable objects. The MaximalDistance state-variable

objects calculate the geographic spread of the candidate set of

30 junctions.

The algorithm taxonomy currently specifies that a simulated

annealing algorithm based on the SMOSA algorithm [9] is

preferred for optimisation problems with complex, partially-

observable and dynamic state spaces. The SMOSA algorithm

supports multi-objective problems and generates solutions that

are optimal in the sense that no other solutions in the search

space are superior to each other when the two objectives are

considered. Such solutions are known as Pareto-optimal [9].

In line 1 of Alg 2, a candidate solution set θ of 30 CCTV

cameras, from the 247!
(247−30)! possible solutions is generated.

In lines 2-5, sensor data and inference functions are used to

calculate DegreeofInterest and MaximalDistance values for θ.

The SMOSA algorithm works by randomly selecting and

evaluating a neighbour s
′

of the current state s, and probabilis-

tically accepting or rejecting s
′

as the new state. The transition

or acceptance probabilities are controlled by a temperature

parameter T and adapted throughout the process so that the

system can avoid local minima and tends to move to states

of lower energy [9]. The number of evaluation iterations

performed by the SMOSA algorithm is controlled through a

run-count parameter.

The utility of solutions found by the SMOSA algorithm are

dynamic due to fluctuating traffic volumes, weather changes

and pedestrian presence. The control unit should be re-run

periodically to generate solutions in a dynamic environment.

The planning expert can use layer 4 of the domain model

to specify a range of possible values for the temperature

and run-count parameters. Our tool-chain can be used by

planning experts to empirically assess appropriate algorithms

and parameters for applications.

V. EVALUATION

An evaluation platform has been built to test the perfor-

mance of the generated control units. The evaluation platform

incorporates a sensor data simulator and a lightweight mid-

dleware supporting the registration and deployment of state-

variable objects and control units generated by the transfor-

mation engine. The middleware provides sensor and actuator

discovery and access, and is based on the Pyro Distributed

Object system2. All evaluation platform components, the trans-

formation engine, and planning and optimisation algorithms

are written in Python. The Hugin library has been used to

provide Bayesian network support3.

A. Control Unit Performance

Fig. 5 shows the Pareto front mapped by the SMOSA algo-

rithm over 500 evaluation cycles and using a range of starting

temperatures: 100, 500, 1000 and 5000. Each point on the

graphs indicates the DegreeofInterest and MaximalDistance

values of a set of 30 CCTV cameras. The best value was ob-

tained using a temperature of 5000, while a starting tempera-

ture of 100 explored more of the landscape. Fig. 5 also shows a

normalised maximum calculated by weighting equally the sets

of DegreeofInterest (DI) and MaximalDistance (MD) pareto-

optimal values as: max{DIi/
∑n

i
DI + MDi/

∑n

i
MD}.

The normalised maximum calculation prevents one criterion

2http://pyro.sourceforge.net
3http://www.hugin.com
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Fig. 5. SMOSA performance for 500 runs.

with large absolute values outweighing another criterion with

smaller absolute values. Rows 2-4 of Table I show the best

results obtained for this scenario using the SMOSA algorithm.

Column 3 shows the normalised maximum values obtained for

the optimisation criteria. Column 4 shows a scalar normalised

value calculated to enable a direct comparison between the

results.

The number of sensor invocations required to produce these

results was recorded. The best result was obtained at a mean

cost of 71,712 sensor invocations. However a very close

value was obtained over 50 runs at a temperature of 500

using only 7118 sensor invocations. For this scenario, careful

tuning can result in a 90% reduction in cost, as measured in

sensor invocations, with only a slight degradation in algorithm

performance.

Run Count Temperature 2D Maximum Ranking

50 500 223.59, 398.34 0.3462

100 500 223.59, 398.34 0.3462

500 5000 221.04, 416.91 0.3522

Run Count Temperature 3D Maximum Ranking

50 500 197.10, 266.28, 22 0.5206

100 500 202.88, 320.39, 19 0.5216

500 500 219.55, 296.41, 22 0.5539

TABLE I
SCENARIO CONTROL UNIT PERFORMANCE.

B. Development Effort

The following approach was used to measure the impact of

the programming model on the development effort associated

with the scenario. The lines of code (LOC) provided by the

domain and planning expert were recorded. The size of the

spatial query set produced by the automated transformations

was recorded and used as a proxy measure for the development

effort provided by the transformation engine. The scenario

requirements were then extended to include a requirement

to also display CCTV camera streams at junctions where
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Fig. 6. Extended scenario SMOSA performance for 500 runs.

emergency service vehicles are present, resulting in a three-

dimensional optimisation problem. Additional layer 3 system-

states were defined to detect and count the number of emer-

gency service vehicles at junctions associated with selected

sets of CCTV cameras and the LOC metric was measured

for the extended domain and planning expert development

(DM and PL respectively). The transformations were re-run

and the increase in size of the spatial query data produced

recorded. The ratio of increased domain and planning devel-

opment effort in LOC was then compared to the ratio of

the increase of spatial query data generated. This value is

referred to as the “degree of automation” and calculated as:

δ(DM + PL) / δ(Planning Model Size).

Specifying the additional functionality increased the size

of the domain modelling effort by c. 40% from 284 to 390

LOC. The SMOSA implementation and mapping was 400

LOC. However there was no additional planning development

effort required as the SMOSA algorithm mapping logic is

unchanged. The increase in development effort δ(DM +PL)
was 684/790 LOC = 15%. The spatial query set generated

by the transformation engine from the original domain model

was 69 KB in size. This increased to 118KB in size for the

extended domain model. The degree of automation measure

for the extended scenario was: 684/790 : 69/118, i.e., a

15% increase in development effort was translated by the

tool-chain into a 71% increase in application functionality

as measured by the size of generated spatial query data.

The increased functionality was mirrored in evaluation logs

that show the original SMOSA control units performed 7118

sensor invocations over 50 runs while the extended SMOSA

control units performed 8823 sensor invocations over 50 runs,

an increase of c. 24%.

Rows 6-8 of Table I show the optimal results obtained

for the extended scenario. The best result obtained using

the extended domain model obtained was (219.55, 296.41,

22). This result was obtained over 500 runs using a starting

temperature of 500. Fig. 6 shows the behaviour of the SMOSA
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algorithm using a temperature of 500 over 500 runs using

the extended scenario domain model. However, the best result

normalised at 0.5539 is only 6% fitter than the 0.5206 result

achieved after 50 runs. The optimal result is obtained at a mean

cost of 89,276 sensor invocations whereas 50 runs produced

useful values after only 8823 sensor invocations, illustrating

again the sensitivity of algorithm performance to parameter

tuning.

The evaluation provides an indication that our approach can

reduce development effort through the provision of high-level

abstractions and automated code generation. This result, while

pertinent primarily to the scenario, provides encouragement

and motivates further testing of the programming model.

VI. RELATED WORK

As evidenced in [10] and [11], there is a growing interest

in applying model-driven techniques in pervasive computing

environments for purposes such as managing heterogeneity of

devices, masking the complexity of dynamic environments,

and promoting code reuse. [12] proposes a planning-based

approach to supporting autonomic computing in pervasive

computing environments that allows users to specify their

goals in a high-level manner and allow the planning framework

to generate a plan. However the support provided in the form

of automated transformations and code generation is generally

immature, while the modelling languages used by these ap-

proaches are often predicate based and non-intuitive to use. We

identified no work relating to facilitating the development of

planning and optimisation algorithms for pervasive computing

environments.

Planning techniques have also been applied in complex

service oriented computing domains. [13] presents an approach

using planning techniques to address automatic web service

composition, while [14] presents a web-service request lan-

guage and a planning architecture that interleaves planning

and execution to allow users to express their goals in complex

business domains.

Systems such as GPT and mGPT [15] from the automated

planning community address real-world planning problems

and allow partially observable and dynamic planning problems

to be modelled and solved theoretically using the PDDL

predicate-based language. Our approach is intended to com-

plement the work of the automated planning community, but

our focus is on generating application code instead of plans.

When executed, the code is expected to provide application

functionality as specified using the domain model and policy.

VII. CONCLUSIONS

This paper has presented a model-driven approach to apply-

ing planning and optimisation algorithms in pervasive com-

puting applications. The design of the programming model

combines techniques from the disciplines of software engi-

neering and automated planning. The evaluation demonstrates

evidence of reduced development effort in a case study repre-

sentative of the target class of applications. However the sen-

sitivity of algorithm performance to parameter customisation,

highlights the importance of control tuning to ensure useful yet

cost effective algorithm performance and presents an obstacle

to completely automating the application of planning and

optimisation algorithms. Layer 4 of the domain model can be

used to tune parameters, while the automated transformations

facilitate the rapid testing of a range of algorithms.

The planning and optimisation functionality provided by

our approach can be extended by defining mappings from

the planning model components to new algorithm implementa-

tions. The current domain model design contains a number of

assumptions that limit the scope of our approach. The design

assumes that actions and transitions occur in implicit time

and does not provide a way to represent events not associated

with sensor readings or actuator actions and so cannot be used

to model the internal dynamics of an environment. However,

the domain model can be used to model partially observable

environments and online algorithms can be used to react to

dynamism in the environment. Current work is focused on

testing the programming model on a range of optimisation

and planning problems and on investigating additional domain

model abstractions to allow more complex application state-

space models and policies to be represented.
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