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Abstract—Model-driven data acquisition techniques aim at
reducing the amount of data reported, and therefore the energy
consumed, in wireless sensor networks (WSNs). At each node,
a model predicts the sampled data; when the latter deviate
from the current model, a new model is generated and sent to
the data sink. However, experiences in real-world deployments
have not been reported in the literature. Evaluation typically
focuses solely on the quantity of data reports suppressed at
source nodes: the interplay between data modeling and the
underlying network protocols is not analyzed.

In contrast, this paper investigates in practice whether
i) model-driven data acquisition works in a real application;
ii) the energy savings it enables in theory are still worthwhile
once the network stack is taken into account. We do so in the
concrete setting of a WSN-based system for adaptive lighting in
road tunnels. Our novel modeling technique, Derivative-Based
Prediction (DBP), suppresses up to 99% of the data reports,
while meeting the error tolerance of our application. DBP is
considerably simpler than competing techniques, yet performs
better in our real setting. Experiments in both an indoor
testbed and an operational road tunnel show also that, once
the network stack is taken into consideration, DBP triples the
WSN lifetime—a remarkable result per se, but a far cry from
the aforementioned 99% data suppression. This suggests that,
to fully exploit the energy savings enabled by data modeling
techniques, a coordinated operation of the data and network
layers is necessary.

I. INTRODUCTION

Wireless sensor networks (WSNs) provide the flexibility
of untethered sensing, but pose the challenge of achieving
extended lifetime with a limited energy budget, often pro-
vided by batteries. In this respect, it is well-known that
communication causes the biggest energy drain. This is
unfortunate, given that the ability to report sensed data is
the one motivating the use of WSNs in several pervasive
computing applications.

An approach to reduce communication without compro-
mising data quality is to predict the trend followed by
the data being sensed. This technique is referred to as
model-driven data acquisition and is applicable when data is
reported periodically—the common case in many pervasive
computing applications. In these cases, a model of the data
trend can be computed locally to a node, and constitutes
the information being reported to the data collection sink,

in place of several raw samples. As long as the locally-
sensed data are compatible with the model prediction, no
further communication is needed: only when the sensed data
deviates from the model, must the latter be updated and sent
to the sink.

The aforementioned approach is well-known, and adopted
by several works we concisely survey in Section V. Never-
theless, to the best of our knowledge none of these works has
been applied in a real-world pervasive application. There-
fore, their practical applicability remains unascertained.
Moreover, these works typically evaluate the gains only in
terms of messages suppressed w.r.t. a standard approach
sending all samples. This data-centric view, however, is
quite optimistic. WSN network protocols consume energy
not only when transmitting and receiving data, but also
in several continuous control operations, e.g., when main-
taining a routing tree for data collection, or probing for
ongoing communication at the MAC layer. Therefore, the
true question, currently unanswered by the literature, is to
what extent the theoretical savings enabled by model-driven
data acquisition are actually observable in practice when the
application and network stack are combined.

Hence, in contrast with the existing literature, our goal is:
• to investigate the benefits of model-driven data acqui-

sition in an existing deployment [1] providing closed-
loop adaptive lighting in an operational road tunnel.
As described in Section II, the WSN is used to pe-
riodically report light samples, and is therefore repre-
sentative of several pervasive computing applications,
e.g., smart environments, building management, home
automation [2];

• to assess the interplay of data modeling and the un-
derlying network protocols, by evaluating qualitatively
and quantitatively the relationship between the two.

We achieve these goals with the following contributions:
• we propose a novel method, called Derivative-Based

Prediction (DBP) for locally predicting the trend
of data sensed by a WSN node. DBP, described
in Section III, is considerably simpler than existing
methods—a plus on resource-scarce WSN platforms.
Nevertheless, our evaluation based on real-world data
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Figure 1. Physical placement of WSN nodes in the tunnel.

from the tunnel deployment shows that DBP performs
comparably to existing techniques. As shown in Sec-
tion IV, DBP suppresses up to 99% of the raw reports
in our application, while maintaining its data quality
within the required error tolerance.

• we analyze to what extent this staggering improvement
is affected by the interaction with network protocols,
by running our application on top of popular WSN
protocols (i.e., CTP [3] and Box-MAC [4]). Moreover,
we feed the application the same light data “replayed”
from the tunnel deployment, to directly compare the
theoretical gains against the practical ones. We do so
in two settings: an operational tunnel, representative of
our target application, and a 40-node indoor testbed,
representative of alternate application scenarios. Our
results in Section IV confirm the expectation that the
gains attained in practice when considering the network
stack are dramatically lower than those derived in
theory by taking into account only the application mes-
sages. However, the improvements are still remarkable
in absolute terms: DBP triples the WSN lifetime w.r.t.
a standard solution with periodic reporting.

Our results confirm that model-driven data acquisition can
yield substantial lifetime improvements in practical settings.
However, as we point out in the final remarks of Section VI,
the results also suggest that, to fully exploit the energy
savings made possible by model-driven data acquisition, co-
ordination between the data and network layers is necessary.

II. WSN-BASED ADAPTIVE LIGHTING IN ROAD
TUNNELS

Our application case study is a WSN deployed in a road
tunnel to acquire light readings [1]. These are relayed in
multi-hop to a gateway, and from there to a Programmable
Logic Controller (PLC) that closes the control loop by
setting the intensity of the lamps inside the tunnel. In
contrast with the state of the art in tunnels, where light
intensity is pre-set based on the current date and time, or
at best determined by the external conditions, this closed-
loop adaptive lighting system maintains optimal light levels
by considering the actual conditions inside the tunnel. This
increases safety, and enables considerable energy savings.

WSNs are an asset in this scenario, as the nodes can
be placed at arbitrary points along the tunnel, not only

where power and networking cables can reach. This drasti-
cally reduces installation and maintenance costs, and makes
WSNs particularly appealing for already existing tunnels,
where changes to the infrastructure should be minimized.
The downside to such flexibility is the reliance on an
autonomous energy source. Nevertheless, battery costs are
minimal and the replacement process can be easily combined
with regularly-planned tunnel maintenance.

Figure 1 shows the placement of WSN nodes inside our
260 m-long, two-way, two-lane tunnel. Overall, 40 nodes
are split evenly between the tunnel walls and placed at a
height of 1.70 m, compatible with legal regulations. Their
data reports are collected by a gateway, installed 2 m from
the entrance. Each node is functionally equivalent to a
TelosB mote [5], augmented with a sensor board equipped
with 4 ISL29004 digital light (illuminance) sensors. The
light readings, collected at a sampling rate of 5 s, are
locally aggregated and filtered. Every 30 s, the result of this
aggregation is reported to the sink. The WSN nodes are not
time synchronized: a node reports its light value whenever
its 30 s timer expires.

This setup is similar to the one reported in [1], where
we detail and evaluate the operational WSN-based, closed-
loop adaptive lighting system. In this paper we use a
different application and network stack, and compare our
model-driven data acquisition technique against the baseline
constituted by the aforementioned periodic reporting of all
raw light samples.

III. DATA MODELING OF TIME SERIES WITH DBP

We define the data modeling problem we address in this
paper, and illustrate our novel DBP technique.

A. Problem Formulation

The application we described in Section II is an instance
of a general class of WSN applications where nodes periodi-
cally take sensor measurements and report the corresponding
samples to a data sink. Moreover, we make the additional
assumption that the application running at the sink allows
for a small tolerance in the accuracy of the reported data. In
contrast with the ideal requirements of the sink obtaining
exact values in all data reports, the correctness of these
applications is unaffected as long as i) the reported values
match closely the exact ones; ii) inaccurate values occur
only occasionally. In other words, deviations from the exact



Figure 2. Value and time tolerance.

reports are acceptable, as long as their extent in terms
of difference in value and time interval during which the
deviation occurs are small enough.

We capture these assumptions, common to many applica-
tions, with the following definitions:

• Let Vi be an exact measurement taken at time ti. The
value tolerance is defined by the maximum relative
and absolute errors acceptable, εV = (εrel , εabs). From
the application perspective, reading a value Vi becomes
equivalent to reading any value V̂i in the range RV de-
fined by the maximum error, V̂i ∈ RV = [Vi−ε, Vi+ε],
where ε = max{ Vi

100ε
rel , εabs}. In other words, the

application considers a value V̂i ∈ RV as correct.
• Let T = |tj − tk| be a time interval, and V̂T =
{V̂j , . . . , V̂k} the set of values reported to the applica-
tion during T . The time tolerance εT is the maximum
acceptable value of T such that all the values reported
in this interval are incorrect, i.e., V̂i /∈ RV , ∀ V̂i ∈ V̂T .

The intuition behind these definitions is shown in Figure 2.
Similarly to other model-driven data acquisition tech-

niques, DBP aims at suppressing as many data reports from
the WSN nodes as possible, while ensuring that the data used
by the application at the sink is within the value and time
tolerances εV and εT specified as part of the requirements.

The combined use of absolute and relative errors in
the value tolerance is worth commenting further, in the
context of our application. When light levels are low, e.g.,
at night, even small absolute variations are large in terms of
percentage. With only an absolute error, these minimally-
perceivable changes would trigger model changes. Instead,
by considering the maximum between the relative and abso-
lute error, our control algorithm is able to both adjust to the
meaningful changes and avoid unnecessary communication.

B. Derivative-based Prediction

DBP is based on the observation that, in our application,
the trends of the sensed values in short and medium time
intervals can be accurately approximated using a linear
model. Even though this idea has appeared in previous
works, there is a key difference to our approach: while
previous studies compute models that aim to reduce the
approximation error to the data points in the recent past,

DBP aims at producing models that are consistent with the
trends in the recently-observed data.

Figure 3 provides an illustration of DBP. Initialization
consists of a learning phase, gathering enough data to
produce the first model. The learning phase involves m data
points; the first and the last l we call edge points. The model
is linear and is computed as the slope δ of the segment that
connects the average values over the l edge points at the
beginning and end of the learning phase. This computation
resembles the calculation of the derivative, hence the name
Derivative-Based Prediction. It is interesting to note that the
computation of this prediction is not only very simple, and
therefore appealing for implementation on resource-scarce
nodes, it also mitigates the problem of noise and outliers.

The first DBP model generated is then sent to the sink,
along with its last data point. From that point on, each node
buffers a sliding window of the last m data points sampled
from its sensor. Upon sampling a point, the “true” value
sensed is compared to the “predicted” one computed by
DBP according to the current model, i.e., following the slope
δ. If the sensor reading is within a value tolerance εV w.r.t.
the model, no action is required: the sink will automatically
generate a new value that is an acceptable approximation of
the real one. Otherwise, if the readings continuously deviate
from the model for more than εT time units, a new model
must be recomputed. This is accomplished by using the last
m data points in the buffer; the resulting model is transmitted
to the sink along with the last data point.

IV. EXPERIMENTAL EVALUATION

We focus on our tunnel lighting application, and therefore
use raw data from the 40-node deployment described in Sec-
tion II. Light readings were reported every 30 s from each
node for 47 days, for a total of 5, 414, 400 measurements.
This tunnel offers a challenging scenario as its entrance is
subject to direct sunlight, creating wide variations in the
sensor readings. We also applied DBP to data collected by
40 nodes over 90 days in a second tunnel subject to less
radical light variations, yielding similar results. Due to space
constraints we present only results from the first tunnel.

To establish the proper value and time tolerances, we
consulted the lighting engineers who designed the control
algorithm that establishes the lamp levels. Notably, lamp

Figure 3. Derivative-based Prediction.
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Figure 4. Absolute light values (top) and error (bottom), reported as raw sensor values.

levels are adjusted slowly to minimize the effects of changes
on drivers, therefore tight real-time deadlines are not neces-
sary. By taking into consideration also the inherent error
of illuminance sensors, we determine a value tolerance
εV = (5, 25), i.e., values generated by the model can differ
by at most 5% or 25 w.r.t. the raw sensor reading. Further, we
identified a time tolerance of one minute. For convenience,
we express εT in terms of the 30 s reporting intervals of
the application; a one-minute time tolerance corresponds to
εT = 2. We further fix the core parameters of DBP, namely
the number of values in the learning phase m = 20, and
the size of the edge point sets l = 3. We verified that these
values yield the best performance, and that their impact is
nonetheless rather limited.

We approach the experimental evaluation from two angles.
First, we evaluate DBP’s ability to reduce the amount of data
generated at the nodes, and compare it against other existing
methods. Then, we consider the combination of DBP and
a mainstream WSN network stack, evaluating the benefits
both in an indoor testbed and an operational tunnel.

A. Performance of Model-driven Data Acquisition

Our main performance metric is the transmission ratio,
TR = # messages generated with DBP

# messages generated without DBP . Although the suppression
ratio SR = 1 − TR directly measures the number of
messages whose reporting can be avoided thanks to DBP,
we show our results in terms of TR as it is easier to relate
the transmission of messages (instead of their absence) to
the light patterns.

Our evaluation is divided in three parts. First, we gain
a deeper understanding of DBP in the context of our
application by considering the operation of a single node
over a single day. Second, we report DBP performance
across our entire 47-day data set, and analyze the parameter
space, investigating the impact of various settings on the
suppression rate. Finally, we compare to the state of the art.

1) DBP in Action: Our first goal is to understand whether
DBP satisfies the error tolerance requirements of our appli-

cation and, in this context, understand its operation. For this,
we set εV = (5, 25) and εT = 2, as discussed earlier.

We begin by analyzing DBP in the small, dissecting the
operation of a single node over a single day of operation. We
choose node 1 because, as shown in Figure 1, it is placed
at the tunnel entrance, and subject to radical changes in its
light readings. The top of Figure 4 shows the light values
for this node both in the original case where data is reported
every 30 s and when DBP is applied. In the latter case, the
cross points indicate the generation of a new model, while
the lines between the points show the light values calculated
from those models. The two curves are very similar, and
yet a significant reduction in messages is achieved. Notably,
without DBP, 2, 880 messages are sent, instead, with DBP,
only 25 messages are sent: a suppression ratio of 99.1%.

As expected, the majority of the DBP models are gener-
ated in the time intervals where light trends change, namely
sunrise and sunset. The rest of the time, DBP generates very
few models. Interestingly, even though the light at night is
quite constant, a few models are generated in order to correct
for models that have a non-zero derivative.

Node 1 is placed at the tunnel entrance, where the
widest excursion in light values are expected. Nevertheless,
improvements are achieved throughout the tunnel. To mea-
sure this, we divide our 24-hour experiment into 5-minute
intervals and count the number of models generated by all
nodes in each interval. We report the totals in Figure 5. As
one expects, the majority of changes are concentrated during
daylight hours, in particular around sunrise and sunset.
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Nevertheless the total number of models in any 5-minute
interval was below 10 and usually below 4. At night, there
are even fewer updates, with many intervals in which no
models are generated.

Finally, in the bottom of Figure 4 we focus again on
the entrance node 1 as a representative example, to analyze
the error in the values provided by DBP to the application
during each 30 s reporting interval. The solid line indicates
the value tolerance εV = (5, 25) set by our application
requirements, while the lighter line shows the error of DBP
as the difference between the predicted value and the sensed
raw value. In most cases, the error falls below the value
tolerance. Excursions above the value tolerance are caused
by data predicted at the sink that, albeit incorrect, are within
the time tolerance. In each of these cases, either subsequent
values fell back below value tolerance or a new model was
generated after the maximum number of incorrect reports
(εT = 2 in our case) was exceeded. Interestingly, at night,
one can see the absolute error growing for a while, then
dropping and growing again. The drop in error corresponds
to the generation of a new model, visible also in the top of
Figure 4. The growing error is because the DBP model is
linear with a small, but non-zero slope, which is slightly off
the measured light values that remain mostly constant.

2) Impact of Error Tolerance: The previous evaluation
shows that DBP performs well for the requirements of
the tunnel application. However, we want to explore the
parameter space for DBP, to understand the effect of
changes in the value and time tolerances on the transmission
ratio. Figures 6(a)–6(c) show how TR changes at individual
nodes for various combinations of parameters. Recall from
Figure 1 that nodes 1–20 are placed on the same North wall,
while nodes 21–40 belong to the South wall. We plot a line
connecting the TR at each node, because this best highlights
the trends as one proceeds from the entrance to the interior
of the tunnel (e.g., from node 1 to 20 on the North wall).

In Figure 6(a) we vary the relative error εrel from 1%
to 25%, keeping the absolute error constant εabs = 25. By
setting the time tolerance to εT = 0, we force all deviations
from the value tolerances to be reported. To put these values
in context, recall that the value tolerance εV is defined as
the maximum between the relative and absolute errors, εrel

and εabs . In Figure 6(b) we fix εrel = 5% and vary εabs

between 0 and 50, keeping εT = 0. In Figure 6(c), we use
the value tolerance εV = (5, 25) of our target application
and vary εT between 0 and 4, i.e., from 0 to 2 minutes.

In all cases it is worth noting that, as expected, the biggest
savings are harvested from the nodes inside the tunnel, where
light variations are rarer, and absolute values of illuminance
are smaller. Under these conditions, the linear nature of DBP
accurately models the linear nature of the data.

Interestingly, the trends seen for nodes 21-24 in Fig-
ure 6(a) are due to the flickering of a light that introduced
noise to the sensor readings. Nevertheless, even in this

case DBP achieved suppression ratios greater than 95%
for these nodes. Further, in Figure 6(b), we clearly see the
need for both the absolute and relative value tolerances,
as when the error tolerances are very low, e.g., εabs = 0
or εabs = 10, TR is off the charts. This is because the
light sensors themselves have an error that often takes them
outside the small, fixed relative error εrel = 5%, triggering
unpredictable model changes. Further, the flickering light
introduces additional noise that DBP cannot compensate for
with low error thresholds.

For each of these parameter combinations we also show,
in Figure 6(d), the average TR over all nodes. An increase
in the value of εrel brings a near linear reduction of TR.
Instead, εabs and εT both achieve the greatest benefit at small
values, with diminishing returns as the value increases. In
the former case, the reduction in TR progresses rapidly as
εabs varies from 0 to 10, going from a suppression ratio of
88% to 98%; a further (and larger) εabs increase from 10 to
25 yields only an additional 2% reduction of TR. Similarly,
time tolerance reflects the fact that changes in light values
are gradual, and thus introducing even a small delay εT = 1
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Figure 6. Impact of error tolerance parameters on transmission ratio.



achieves most of the possible gain.
In addition to the combinations in Figure 6, we also

computed the TR achieved with the strictest combination of
the three parameters: εrel = 1%, εabs = 0, and εT = 0. Even
with these worst-case requirements DBP still suppresses, on
average, 63% of the reports. More interesting is the real
combination of parameters (εrel = 5%, εabs = 25, and
εT = 2) suggested by the tunnel engineers, and used in the
rest of our experiments. In this case, the average suppression
rate is a staggering 99.7%—TR is reduced by almost two
orders of magnitude w.r.t. reporting all raw values. The
individual TR achieved at each node is shown in Figure 7,
where we compare DBP against state-of-the-art techniques,
as discussed next.

3) Comparison to Other Approaches: We compared DBP
against the following techniques, which in Section V are also
put in the wider context of related work:

• Piecewise Linear Approximation (PLA) is a popular
technique that uses least square error linear segments
to approximate a set of values [6]. In our case, each
node uses a single segment to model for sensed values.

• Similarity-based Adaptable Framework (SAF) [7] relies
on an autoregressive moving-average model of order 3
with moving-average parameter of order 0. In SAF a
value Vi is predicted by a linear combination of the
last three: Vi = li + α1(Vi−1 − li−1) + α2(Vi−2 − li−2) +

α3(Vi−3 − li−3), where α1, α2, α3 are constants the
model must estimate, and li models the linear trend of
data over time.

• As an additional point of comparison, we implemented
a Polynomial Regression (POR) method. In contrast to
DBP, POR allows the use of non-linear models for pre-
diction. Intuitively, this may yield better performance
through a better fit to the data. Like PLA, POR uses
the least squares measure for selecting the most ap-
propriate coefficients for the polynomials, which have
the form y =

∑p
k=0 αix

i. In this study, we evaluated
polynomials of order p = 2, 3, 4. We used p = 2 as it
provides the best results for POR.

We used εV = (5, 25) and εT = 2, the requirements of
our target tunnel application. Table 7(a) shows the results
w.r.t. the error in predicting the actual sensor readings.
The values shown are the average error per point, over the
entire 47-day dataset and over all nodes, computed as the
Euclidean distance between the real sensed value and the
value predicted by the corresponding model. We note that
PLA achieves a lower error than DBP. This is because DBP
inherently permits some amount of error in the model, while
PLA employs an objective function that explicitly chooses
the model that minimizes the error. However, as we present
next, DBP achieves a higher reduction in TR, because it
better models the data trends.

In terms of communication performance, all approaches
perform quite well, however, DBP achieves the best results,

as shown in Table 7(b) and Figure 7(c). As already men-
tioned, DBP suppresses 99.7% of the message reports with
our tunnel application requirements.

Because all approaches achieve very good results, it is
worth noting that finding the derivative of the sensed data,
at the core of DBP, is significantly less complex than solving
linear equations with 2 or 3 unknowns, as required by
PLA, POR and SAF. Notably, in our DBP implementation,
used in the in-network evaluation explained in the following
section, the core module to calculate the derivative contains
only 25 lines of TinyOS code, notably with no floating
point arithmetic. As node memory is limited, eliminating
the floating point arithmetic module is greatly desirable.

Finally, in the course of our investigation, we stressed
DBP by artificially modifying the data set, specifically
introducing a significant amount of noise while maintaining
the trends. Notably, DBP was still able to achieve the best
suppression ratios, even though the error of DBP was the
largest among the alternate approaches. This is due to the
fact that the other approaches are designed to operate on
relatively smooth data, while DBP focuses on accurately
predicting trends. The ability of DBP to achieve significant
gains in the presence of noisy data can lead to a significant
advantage with other data sets. For example in the same
tunnel project, we collected carbon monoxide (CO) data, and
although the sampling period was lower (5 minutes instead
of 30 seconds), the noise in this data is significantly greater.
Nevertheless, linear trends are present, as CO increases
during the day when traffic is higher and decreases at
night. Therefore we expect DBP to perform quite well,
significantly reducing the generated data.

B. Impact of the Network Stack

We study the performance of DBP in conjunction with the
commonly-used network stack composed of CTP [3], BoX-
MAC [4], and TinyOS v2.1.1. We experiment in two set-
tings: an operational road tunnel to evaluate DBP in the real
conditions of our target application, and an indoor testbed,
representative of scenarios with different connectivity.

DBP 0.00830
PLA 0.00817
SAF 0.00907
POR 0.01900

(a) Average error.

DBP 0.00259
PLA 0.00328
SAF 0.00312
POR 0.00712
(b) Average TR.
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Figure 7. Comparing DBP to alternative approaches.



Tunnels are complex environments where factors such
as road traffic affect network behavior. For example, we
previously observed [8] that in the presence of high traffic,
nodes consistently select parents on their same side of the
tunnel, while at low traffic nodes across the tunnel are
often selected. This is due to the interference caused by
vehicles, nevertheless, it profoundly affects the shape and
maintenance cost of the routing tree. For these experiments,
we relied on the 40-node WSN in Figure 1. The testbed is
composed of 40 TelosB nodes in a 60x40 m2 office area
shown in Figure IV-B. The node placement, along with the
power setting of −1 dBm, creates a network topology that
approximately forms three segments, loosely reminiscent of
the linear tunnel topology, but with larger diameter.

To assess directly the impact of the network stack on
the improvements theoretically attainable by DBP, we “re-
played” the same data we used in Section IV-A both in the
tunnel and testbed. As we could not re-execute the entire
47-day dataset with multiple combinations of parameters,
for the tunnel we selected a single 23-hour period, ensuring
variability in the vehicular traffic. Moreover, restrictions
on the usage of the testbed forced us to run only 2-hour
experiments. Therefore, in this latter case we chose to focus
on the sunrise period, the most challenging because values
change dramatically and, unlike sunset, are not followed by
the night constant light levels. Figure 9 shows the number
of models generated by each node in both cases. We begin
the evaluation after DBP has been initialized, specifically
after generation and transmission of the first model.

We now study how data delivery to the application,
network lifetime, and routing costs are affected by DBP.
All of these aspects, and particularly the first two, are deeply
affected by the operation of the MAC layer, specifically the
rate at which the radio duty cycles, which therefore becomes
a key parameter in our experiments. At low sleep intervals,
nodes frequently check the channel but find no activity,
increasing idle listening costs. At large sleep intervals, the
cost to transmit a packet increases. In BoX-MAC, trans-
mission to a non-sink node takes on average half the sleep
interval, due to the fact that the sender must transmit until the

Figure 8. Testbed map and connectivity.
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(b) Tunnel: TR = 0.0014, 23 hours.

Figure 9. Number of model update messages.

receiver wakes up, receives the packet, then acknowledges its
reception [4]. This long transmission interval also increases
the probability of packet collisions among hidden terminals,
further decreasing the delivery ratio and increasing energy
consumption. The ideal sleep interval balances idle listening
and active transmission costs. To identify the best interval for
our application, we ran experiments with a range of values
from 500 to 3000 ms.

1) Data Delivery: DBP greatly reduces the amount of
data in the network w.r.t. the baseline where all nodes send
data every 30 s. The reduction in data transmitted reduces
the probability of collisions, therefore increasing the delivery
ratio. This is evident in Figure 10, where the system with
DBP loses fewer messages than without DBP. In all cases
the delivery is very good, above 97%, but DBP actually
achieves 100% in all cases and in both scenarios, except for
the case with the maximum sleep interval of 3000 ms in
the testbed. In this case, a single model message was lost;
however, as the absolute number of model changes is small,
the total delivery ratio drops by almost 3%. Although this
loss rate may be acceptable without DBP, losing a single
DBP model has the potential to introduce large errors at the
sink, as the latter will continue to predict sensor values with
an out-of-date model until the next one is received. This
suggests that, based on the target environment or parameter
settings, dedicated mechanisms may be required to ensure
reliability of model transmissions.

2) Lifetime: To study the impact on lifetime, we measure
the duty cycle of the radio. Indeed, as this is the most
power-hungry component, the time spent in communication
activities is the most significant factor contributing to the
system lifetime. Figure 11 clearly shows that DBP enables
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Figure 10. Delivery ratio.
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Figure 11. Average duty cycle. The y-axis scale is different.

significant savings at any sleep interval. Indeed, the best
sleep interval, corresponding to the lowest duty cycle, is
1500 ms without DBP. Further increasing the sleep interval
decreases the idle listening cost, but it increases the trans-
mission cost as the average transmission duration is half the
sleep interval. This phenomenon instead bears a negligible
effect in DBP where transmissions are greatly reduced. In
this case, longer sleep intervals can be used to increase
lifetime without affecting data delivery.

Figure 11(a) shows that in the testbed, with a sleep interval
of 1500 ms (i.e., the best without DBP), DBP yields more
than twice the lifetime of the no-DBP baseline—i.e., the
WSN running DBP lasts twice as long, with the same
MAC settings. Using the best sleep interval in both cases
(i.e., 1500 and 3000 ms, respectively) yields a three-fold
lifetime improvement. The energy savings in the tunnel, in
Figure 11(b), are less remarkable although still significant.
The network diameter in the tunnel is much smaller w.r.t.
the testbed, due to the waveguide effect described in [8];
many direct, 1-hop links to the sink exist, leaving less room
for improvement.
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Figure 12. Tunnel: duty cycle by distance
to the gateway, no DBP.

The impact of
1-hop links to
the sink is worth
commenting further.
Indeed, because the
sink is always on,
it quickly receives
and acknowledges
a packet, making
transmissions from
its direct children very short and therefore low-energy. This
can be seen clearly in Figure 12 where, for the tunnel
experiments, we measure separately the duty cycle of the
nodes that spent their entire lifetime directly connected
to the sink and those that, at any time, were more than
one hop away. Directly-connected nodes enjoy much lower
energy costs. The plot considers only the case without
DBP. Interestingly, with DBP all the nodes reporting
model changes (Figure 9(b)) where in direct range of the
sink. Indeed, as shown in Figure 1, the latter is attached to
the gateway placed at the entrance, where light variations,
and hence model changes, occur. This placement was not
our deliberate choice, as it was originally determined by
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Figure 13. Tunnel: total link-level transmissions for a sleep interval of
1500 ms. The y-axis scale is different.

the available power panels in the tunnel. Nevertheless, it
hints at the fact that, if a priori application knowledge
is available about the sensors that are likely to generate
the most variations, this can be exploited by a consequent
placement of the gateway. A similar optimization is not
possible without DBP, as all nodes must send data.

3) Routing Costs: A natural question arises at this point:
if DBP suppresses over 99% of the messages, why does the
network lifetime increase “only” three-fold? This is due to
the costs of the network stack, in particular the idle listening
and average transmission times of the MAC protocol, and to
the overhead of the routing protocol to build and maintain
the data collection tree. As we already evaluated the impact
of the MAC layer, here we turn to the routing layer.

To isolate the inherent costs (e.g., tree maintenance)
of CTP, we ran experiments with no application traffic.
The corresponding duty cycle is shown as Only CTP in
Figure 11; interestingly, the DBP cost is very close to
the cost of CTP tree maintenance, regardless of the sleep
interval. A finer-grained view is provided by Figure 13,
where we analyze the different components of traffic in the
network. Without DBP, the dominate component is message
transmission and forwarding; significant retransmissions are
present for some nodes, while the component ascribed to
CTP (i.e., the beacons probing for link quality) is negli-
gible. When DBP is active, the number of CTP beacons
remains basically unchanged. However, because application-
level traffic is dramatically reduced, CTP beacons become
the dominant component of network traffic.

In conclusion, these last observations highlight that further
reductions in data traffic would have little practical impact
on the system lifetime, as routing costs are dominated by
topology maintenance rather than data forwarding. Further,
applying alternate data modeling techniques, e.g., PLA, SAF
and POR, will not have a significant effect on system
lifetime, as they cannot reduce these fixed, routing costs.
Therefore, improvements are more likely to come from
radical changes at the routing and MAC layers, taking into
account the traffic patterns of model-driven data acquisition.

V. RELATED WORK

The limited resources, variable connectivity, and spatio-
temporal correlation among sensed values make efficiently



collecting, processing and analyzing WSN data challenging.
Early approaches use in-network aggregation to reduce the
transmitted data, with later approaches addressing missing
values, outliers, and intermittent connections [9]–[11].

Model-driven data acquisition has also been extensively
studied. Probabilistic models [12], [13] approximate the data
with a user-specified confidence, but special characteristics
of the data, such as periodic drifts, must be explicitly en-
coded by domain experts. In a similar parametric approxima-
tion technique [14], nodes collaborate to fit a global function
to local measurements, but this requires an assumption about
the number of estimators required to fit the data. In contrast,
DBP requires neither expert domain knowledge nor lengthy
training, but provides hard accuracy guarantees on the col-
lected data. PAQ [15], SAF [7], and DKF [16], employ
linear regression, autoregressive models, and Kalman filters
respectively for modeling sensor measurements, with SAF
outperforming the others. All are applicable in our target
application but, as shown in Section IV-A3, SAF is more
sensitive than DBP to the noise in our dataset.

As an alternative to data modeling, some solutions seek
to suppress reporting at the source by using spatio-temporal
knowledge of data [17] or by identifying a set of represen-
tative nodes and restricting data collection to it [18]–[22].
Others take the remaining energy of individual nodes [23]
into account. These approaches further reduce communica-
tion costs and can be applied in combination with DBP.
Work on continuous queries for data streams studies the
tradeoff between precision and performance when querying
replicated, cached data [24]. Finally, several studies focus
on summarizing streaming time series, showing that the
choice of the summarization method does not greatly affect
the accuracy of the summary [6]. In our experiments, we
compared against PLA [6], as it can be efficiently computed.

The above data driven approaches have been evaluated
theoretically, but no prior work explores the real effect of
the network stack on the overall energy savings. Network-
level energy savings approaches can be classified into MAC
level, cross-layer, or traffic-aware.

At the MAC layer [25], low-power listening protocols
such as BoX-MAC [4] dominate real deployments due to
their availability, simplicity and effectiveness in reducing
duty cycle. Nevertheless, as our analysis shows, parameters
such as the listening interval must be carefully tuned.

Vertical solutions crossing network layers achieve ex-
tremely low duty cycles. Dozer [26] achieves permille
(0.1%) duty cycle by taking a TDMA-like approach in which
a tree parent autonomously schedules its transmissions to
and from its children. Unfortunately, Dozer does not scale
well and is prone to choose poor quality parents. Koala [27]
achieves similar low duty cycles, but by explicitly accept-
ing delays between data generation and delivery. Koala is
characterized by long periods of very low-power local data
sampling followed by brief, high-consumption data collec-

tion intervals. While the energy savings are significant, the
significant delays are not acceptable in our target application.

Other techniques [28], [29] adapt sleep schedules accord-
ing to traffic statistics. Unfortunately, the data modeling ap-
proaches outlined above, of which DBP is another example,
are difficult to predict due to the variability of the application
data itself and the interaction with the modeling technique.

VI. CONCLUSIONS

Model-driven data acquisition relies on the fact that many
applications can operate with approximated data, as long
as the difference w.r.t. the real one remains within certain
limits. In these cases, WSN nodes can avoid reporting all
sensed data, communicating only deviations from the trend.

In this paper, we proposed our technique, DBP, motivated
by a real-world WSN-based application deployment in an
operational road tunnel. Based on a 47-day, 40-node dataset
gathered in this deployment we showed that DBP suppresses
99% of the message reports. This is in line with other ap-
proaches, although the DBP implementation is significantly
less complex. Our results confirm that model-driven data
acquisition can have a significant practical impact. However,
we did not stop at counting the messages suppressed as
an indirect indication of lifetime improvement. Instead, we
took the whole network stack into account, discovering that
the improvements remain important—lifetime is tripled—
but significantly reduced w.r.t. the above.

Our results suggest a few conclusions. First, a large frac-
tion of energy costs arise from the continuous maintenance
of the data collection tree. These costs are negligible for
frequent reporting, but become dominant with model-driven
data acquisition as it greatly reduces data generation. To
improve lifetime further, we must revisit network design
choices and address the extremely low data rates resulting
from data modeling techniques. Second, although a certain
amount of loss is usually tolerable, the loss of a single
data model may significantly increase the error of data used
by the application. Therefore, reliable mechanisms, beyond
those of most routing protocols, should be considered.

Based on our experiments, new network solutions ex-
pressly targeting model-driven data acquisition are needed
to achieve significant lifetime improvements.
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