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ABSTRACT

WLAN Device-free passive (DfP) indoor localization is an
emerging technol ogy enabling thelocalization of entitiesthat
do not carry any devices nor participate actively in the local-
ization process using the already installed wireless infras-
tructure. This technology is useful for a variety of applica-
tions such as intrusion detection, smart homes and border
protection.

We present the design, implementation and evaluation of
RASID, a DfP system for human motion detection. RASID
combines different modulesfor statistical anomaly detection
while adapting to changes in the environment to provide ac-
curate, robust, and low-overhead detection of human activ-
ities using standard WiFi hardware. Evaluation of the sys-
tem in two different testbeds shows that it can achieve an
accurate detection capability in both environments with an
F-measure of at least 0.93. In addition, the high accuracy
and low overhead performance are robust to changesin the
environment as compared to the current state of the art DfP
detection systems. We also relay the lessons learned during
building our system and discuss future research directions.

Keywords

Anomaly detection, device-free passive localization, mo-
tion detection systems, robust device-free localization.

1. INTRODUCTION

The increasing need for context-aware information
and the rapid advancements in communication networks
have motivated significant research effort in the area
of location-based services. This effort resulted in the
development of many location determination systems,
including the GPS system [I], ultrasonic-based systems
[2], infrared-based (IR) systems [3], and radio frequency-
based (RF) systems [4]. Moreover, motion detection
systems, that aim at detecting the motion of an entity
carrying a device, were also developed [BHI3]. These
systems require the tracked entity to carry a device that
participates in the localization process. Thus, we refer
to them as device-based systems.

Motivated by the wide use of wireless LANs for indoor
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Figure 1: RASID system architecture.

communication, we recently introduced the concept of
device-free passive DfP localization [I4] which enables
the detection and tracking of entities that do not carry
any devices nor participate in the localization process.
This concept depends on the fact that the presence and
motion of entities in an RF environment affects the RF
signal strength, especially when dealing with the 2.4
GHz band which is used in different IEEE standards
such as 802.11b and 802.11g (WiFi). Different DfP al-
gorithms were proposed for detection [14l[I5] and track-
ing [T4,[I6HI]] of entities in indoor environments. Our
focus in this paper is on the detection problem.

In particular, we address the problem of designing
a low-overhead, accurate, and robust DfP motion de-
tection system. We introduce the RASID system that
provides a software only solution on top of the already
installed wireless networks enabling a wide set of appli-
cations including intrusion detection, border protection,
and smart homes. As a typical DfP system, RASID
consists of signal transmitters, such as access points
(APs), signal receivers or monitoring points (MPs), such
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as standard laptopsEL and an application server which
collects and processes information about the received
signals from each MP. The application server contains
the main system modules responsible for performing the
detection function (Figure [I).

Our research on RASID is motivated by several fac-
tors: First, the technologies that can be used to provide
the desired detection capability (e.g. cameras [19], IR
sensors, radio tomographic imaging [20], pressure sen-
sors [21], etc) share the requirement of installing special
hardware. In addition, cameras and IR sensors are lim-
ited to line-of-sight vision and thus the cost of covering
an area might be prohibitive. Moreover, regular cam-
eras fail to work in the dark or in the presence of smoke.
RASID avoids these drawbacks by using the already
installed wireless infrastructure without installing any
special hardware. It also makes use of the fact that RF
waves do not require LOS for propagation.

From another perspective, the previously proposed
WLAN DfP detection techniques [I4,[15] provide good
performance under strong assumptions, which limit their
application domain. For example, they are not robust
to changes in the environment. That is they do not
adapt to changes in the environment, e.g. humidity and
temperature changes. Moreover, their parameters need
to be changed as the deployment area changes. In ad-
dition, the technique proposed in [I5] requires the con-
struction of a human motion profile which leads to high
overhead inside large-scale environments. The cost of
this technique may be prohibitive, as it requires access
to all areas of a building which might include restricted
or private areas and requires several hours of calibra-
tion. Finally, all techniques were either evaluated in
controlled environments, e.g. [14], or in small-scale real
environments, e.g. [15].

In order to achieve its objectives, RASID uses a sta-
tistical anomaly detection technique to detect motion
inside indoor environments.RASID only constructs a
non-parametric profile for the signal strength readings
received at the MPs when there is no human activity
during a short training phase of only two minutes, lead-
ing to minimal deployment overhead. RASID also em-
ploys techniques for continuously updating its silence
profile to adapt to the environment changes. The sys-
tem also applies a decision refinement procedure in or-
der to reduce the false alarms due to the signal noise.
Furthermore, RASID also provides an interface by which
the regions of activity can be identified. We evaluate
the system in two different large-scale environments rich
in multi-path and compare RASID to the state-of-the-
art DfP detection techniques [T4L[15]. Our results show
that RASID achieves its goals of high accuracy in both
environments with minimal deployment overhead. In

!Note that it is also possible to use the access points them-
selves as monitoring points.

addition, it is robust to changes in the environment.
In summary, the contributions of this paper are four-
fold:

e We present the architecture and implementation of
RASID: a system that provides robust device-free
motion detection along with techniques for adapt-
ing to environment changes and handling the wire-
less signal noise.

e We analyze different signal strength features that
can be used for detection and identify the most
promising one.

e We evaluate the system in two different large-scale
real testbeds and compare it to the state-of-the-art
DfP detection techniques.

e We present a comparison of parametric and non-
parametric approaches for system operation.

The rest of this paper is organized as follows: Section
reviews related work. Section Bl presents the RASID
system architecture and operation. Section Hl presents
the experimental evaluation of RASID and a compari-
son with other techniques. Section [Blcompares the non-
parametric approach used in the system to a parametric
analytical model for the system operation. In Section
[6l we discuss our experience with RASID and present
some open research issues for future work. Finally, Sec-
tion [7 concludes the paper and discusses future work.

2. RELATED WORK

Motion Detection in device-based systems has been
an active field of research. Several works have been pro-
posed to detect the motion of an entity carrying a device
either with the use of special hardware like accelerome-
ters or motion sensors [5HY], or by using the existing net-
work infrastructures like wireless networks [9HI1] and
GSM [12/[13].

From the device-free perspective, multiple technolo-
gies can be used to provide the desired capabilities in-
cluding: ultra-wide band radar [22], computer vision
[19], physical contact based systems [2I] and radio to-
mographic imaging [20]. Other technologies include the
usage of wireless sensors for tracking transceiver-free ob-
jects [23] as well as the usage of RFID tags [24]. Those
technologies share the requirement of installing special
hardware to handle the device-free different functional-
ities. In addition, cameras and IR sensors are limited
to line-of-sight vision and thus they require a high cost
deployment to cover all site regions. Moreover, regular
cameras can fail to work in the dark or in the presence
of smoke, and they can cause privacy concerns. Ultra-
wide band radar based techniques also suffer from high
complexity. Moreover, some techniques can require high
density to provide full coverage like radio tomographic



imaging and physical contact based systems using pres-
sure sensors.

WLAN device-free passive systems try to avoid the
above drawbacks by using the already available wire-
less infrastructure. The concept of device-free passive
detection and tracking using WLANS was first proposed
in [14] with a large number of applications including in-
trusion detection, border protection [25], smart homes,
and traffic estimation [26]. Techniques for DfP detec-
tion [I4L[15] and tracking [I4L[16,17 were introduced.
The proposed techniques for the detection capability
are either based on time-series analysis like the mov-
ing average and moving variance techniques proposed
in [T4] or based on classification using the maximum
likelihood estimation [15].

In comparison, RASID uses anomaly detection tech-
niques to identify the deviations from the normal (si-
lence) state. RASID system uses a semi-supervised
statistical technique that models the learned normal be-
havior using a kernel-function based non-parametric es-
timation. The kernel-function based anomaly detection
has been used in several applications where the distri-
bution of the normal behavior is not known. For exam-
ple, non-parametric estimation using Gaussian kernels
was used in network intrusion detection [27] and novelty
detection applied to oil flow data [28]. Also, density es-
timation using Epanechnikov kernels was used in online
outlier detection in sensor data [29] and to achieve con-
tinuous adaptive outlier detection on distributed data
streams [30].

Compared to the previously proposed WLAN DfP
detection techniques, the usage of the statistical anomaly
detection technique, along with the other techniques de-
vised for adapting to environment changes and refining
the decision, enable RASID to achieve low deployment
overhead, high accuracy and high robustness.

3. THE RASID SYSTEM

In this section, we give the details of the RASID sys-
tem. We start by an overview of the system architecture
followed by the details of the system modules.

3.1 System Overview

Figure [0 gives an overview of the system architec-
ture. The modules of the proposed system are imple-
mented in the application server that collects samples
from the monitoring points and processes them. The
system works in two phases: 1) A short offline phase,
during which the system studies the signal strength val-
ues when no human is present inside the area of interest
to construct what we call a “normal or silence profile”
for each stream. The profiles of all streams are con-
structed concurrently in that short phase. 2) A moni-
toring phase, in which the system collects readings from
the monitoring points and decides whether there is hu-

man activity (anomalous behavior) or not based on the
information gathered in the offline phase. It also up-
dates the stored normal profile so that it can adapt
to environment changes. Finally, a decision refinement
procedure is applied to further enhance the accuracy.

The Normal Profile Construction Module constructs
the initial silence profiles based on a short, typically two
minutes, training sample taken when there is no human
motion present in the area of interest. (Section B3]

The Basic Detection Module examines each stream
readings in the monitoring phase and decides whether
there is an anomalous behavior or not. This operation
is applied to each stream independently. It also assigns
an anomaly score to each stream to express the intensity
of the anomalous behavior. (Section B

The Normal Profile Update Module updates the nor-
mal profiles constructed in the offline phase in order to
adapt to changes in the environment. (Section [3.0])

The Decision Refinement Module applies heuristic
methods to refine the decision generated by the basic
detection module to reduce the false alarm rates. (Sec-
tion B.7)

The Region Tracking Interface provides an interface
that visualizes the output of the above modules. This
interface enables the user to identify the detected events
and provides the regions of the moving entities. (Sec-
tion B.8)

We start by giving the mathematical notations fol-
lowed by the details of the different modules.

3.2 Mathematical Notations

Let k& be the number of streams, which is equal to
the number of APs times the number of MPs. Let s, +
denote the received signal strength (RSS) reading for a
stream 7 that is received at a time instant t. The system
studies the behavior of a sliding window W;; of size [
that ends at time t, i.e. Wj,t = [Sj_’tflJrl, Sgt—1425+es Sj,t]-

In order to study the behavior of the sliding win-
dows, each sliding window W;; is mapped to a single
feature or value z;; through a function g. For exam-
ple, if the mean is the selected feature, then g(W; ;) =
%22:1 Sjt—1+i- T'wo types of features can be consid-
ered: measures of central tendency, such as the mean,
and measures of dispersion or variation, such as the
variance.

3.3 Normal Profile Construction

The purpose of the Normal Profile Construction Mod-
ule is to construct a normal profile, capturing the re-
ceived signal strength characteristics when there is no
human in the area of interest. This is used later by other
modules to detect anomalies. This module runs in the
offline phase. It extracts the feature values from the
sliding windows over the collected data and estimates
its distribution. The density function of the feature val-



ues observed is estimated using non-parametric kernel
density estimatior]. This is done for each stream inde-
pendently. Figure Bl illustrates the operation.

Formally, for a stream j, given a set of n sliding
windows, each of length [ samples, each window W ;
is mapped to a value x,;, where z,;; = g(W;;). As-
sume f; is the density function representing the distri-
bution of the observed z;;’s, then given a random sam-
ple ;1,7 2,...,2jn, the estimated density function fj
is given by [31]:

M=)

where h; is the bandwidth and V' is the kernel function.
The choice of the kernel function is not significant for
the results of the approximation [32]. Hence, we choose
the Epanechnikov kernel as it is bounded and efficient
to integrate:

11-¢%), if ¢ <1
Vig) = 1 ’ - 2
(@) {O, otherwise @

Also, we used Scott’s rule to estimate the optimal
bandwidth [32]:

W =2.3456;n" 2 (3)

where ¢; is an estimate for the standard deviation for
the z;;’s.
After estimating the density function for the feature

values extracted from the sliding windows, critical bounds

are selected so that if the feature values observed in
the monitoring state exceed those bounds, the observed
values are considered anomalous. Given a significance
parameter @ and assuming F'j is the CDF of distribu-
tion shown in Equation[I if the feature is a measure of
central tendency, which can deviate to the left or the
right, then lower and upper bounds will be calculated

such that the lower bound is Fj_l(a/2) and the up-

\ -1
per bound is F; (1 — «/2). However, if the feature
is a measure of dispersion, which can only deviate in
the positive (or right) direction, then an upper bound

A —1
is only needed and is equal to F; (1 — ). In the next
subsection, we study different features that can be se-
lected.

3.4 Feature Selection

As the system requires an offline phase before opera-
tion, to learn the behavior of the signal readings in the
normal state, the selected feature for system operation
should be resistant to possible environmental changes

2In Section Bl we present the motivation for using a non-
parametric approach by providing a performance compari-
son with a parametric modeling of the system operation.

that may affect the stored data, e.g. temporal varia-
tiondd. In addition, the selected feature should also be
sensitive to the human motion to enhance the detection
accuracy.

In this section, we compare two categories of fea-
tures: central tendency measures and dispersion mea-
sures. The goal of this study is to identify the category
that will be more promising for the system operation.
For this study, we consider the mean as a central ten-
dency measure, and the standard deviation as a measure
of dispersion. We use the standard deviation, rather
than the variance, as the variance is a squared measure,
while the mean is not.

3.4.1 Sensitivity to human activity

The selected feature should be sensitive to human
activity. To compare the two features, we use the Eu-
clidean distance between the normalized histograms rep-
resenting the silence and motion states. The Euclidean
distance is defined as the square root of the sum of the
squared distance between each corresponding histogram
bin. The histograms are constructed over a two-minute
period for each state using Testbed 1, which is discussed
later in Section [ Figure B shows the comparison ver-
sus different window sizes. The figure shows that the
distance between the histograms of the standard devia-
tion is larger than the distance between the histograms
of the mean. This indicates that the standard devia-
tion feature is more discriminant of the human motion
than the mean feature. This conclusion can be justi-
fied by observing the motion effect on typical wireless
signals. Figure [ provides a visualization of the raw
signal strength for two different streams during silence
and human motion periods. The figure shows that in
the case of human motion, the fluctuations can be up
or down around the normal/silence signal level, which
leads to a limited effect on the mean as compared to
the standard deviation.

3.4.2 Resistivity to temporal variations

As the proposed system requires a learning phase be-
fore operation, it is necessary to reduce the temporal
variation effect on the stored profiles. To compare the
two features, we use two different silence data sets col-
lected two weeks apart. FigureBlshows the results. The
more similar the histograms, the more resistive the fea-
ture is to the introduced variations. The figure shows
that the standard deviation feature is less affected by
temporal variations. This is due to the fact that the
standard deviation is a relative measure as it is calcu-
lated with respect to the mean, whereas the mean itself

30ur experiments show that the changes in the traffic load
on the network do not affect the signal strength. Therefore,
temporal variations here refer to changes in the physical
environment that affect the signal strength.
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dispersion, e.g. the standard deviation or variance, are
more suitable for our proposed system. For the rest of
the paper, we use the sample variance as the selected
feature.

3.5 Basic Detection Procedures

The Basic Detection Module runs during the moni-
toring phase. The purpose of this module is to detect
signal strength anomalies, i.e. human presence, based
on the normal profiles constructed during the offline
phase. In particular, for a window of samples W, for
stream j at a given time instant ¢, the module calcu-
lates the corresponding feature value x;,, i.e. the sam-
ple variance. A stream j is considered anomalous if x;
is above a critical bound u;. Given a significance pa-
rameter o and assuming Fj is the CDF of distribution
shown in Equation[I] the upper bound u; will be equal
to the 100(1 — )" percentile of the CDF function, such



that Uj = F’jil(l — a).

The Basic Detection Module declares a global alarm
when any stream is anomalous. This approach can lead
to many false positives due to signal strength outliers.
This is enhanced later by the Decision Refinement Mod-
ule. The Basic Detection Module also calculates an
anomaly score a;; for each stream j to keep track of
the significance of any anomalous activity. For a given
window, W ¢, the anomaly score, a; ¢, can be calculated
as: ajy = xdjt where x;; is the sample variance of the

window and w; is the critical value. This means that a
detected anomaly will have a score greater than one and
a silence window will have a score of less than one. The
anomaly score is used by the Normal Profile Update
and Decision Refinement modules to further enhance
the accuracy.

In summary, the basic detection procedure requires
two parameters: the window size [ and the significance
«. Analysis of both parameters is presented in Section
4.0

3.6 Capturing Changes in the Environment:

The Normal Profile Update Module

Due to the dynamic changes in the environment, the
stored profiles may not capture the real normal state.
Therefore, the systems needs to update the stored pro-
files during the online phase. The technique we employ
for handling the update process is based on continu-
ously updating the estimated density in Equation [I]
by adding x;,’s, that do not have high anomaly scores
in average to it. In particular, during the monitoring
phase, the system groups the consecutive x;;’s in dis-
joint groups of size lypdate- The group that has an av-
erage anomaly score of less than one is added to the
normal profile. The parameter [,pdate can be tuned to
provide the desired performance. We quantify the effect
of the lypdate parameter in detail in Section [4.3.2

Adding new data to the normal profiles implies the
need to give more weight to the recent data. Therefore,
Equation [ is modified to:

=g e (S52) W@

n
where > w; = 1. We choose linear weights such that
i=1
w; = W (n is constant). We found that exponen-
tial weights do not provide good performance due to
the high discrimination introduced between older and
newer data.

3.7 The Decision Refinement Module

Typical wireless environments are noisy. This fact
can cause many false alarms if the system generates
alarms just based on a single stream. The goal of the
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Figure 6: The behavior of the sum of anomaly
scores for Testbed 1.

Decision Refinement Module is to reduce the false alarm
rate by fusing different streams.

Since the Basic Detection Module assigns an anomaly
score to each detected event that expresses its signifi-
cance, this can be leveraged to enhance the detection
performance. The Decision Refinement Module studies
the behavior of a global anomaly score a; that is cal-
culated by summing the individual anomaly scores for
each stream. If a noticeable change in a; occurs, based
on a threshold, while at least one stream is anomalous,
this implies the start of an anomalous behavior. The
module makes use of the history of the activity state
inside the environment through the usage of exponen-
tial smoothing to monitor the a; in order to avoid the
noisy samples, hence reducing the false alarm rate. It
also implicitly makes use of the locality of human mo-
tion, meaning that the human will continue to affect the
same stream and/or other streams near it, causing the
sum of anomaly scores smoothed curve to have higher
values during the motion period (Figure [l).

3.8 Region Tracking User Interface Module

The system provides an interface that provides in-
formation about the probable regions of the detected
event. This is based on visualizing the anomaly degree
of each stream enabling the user to identify the regions
that probably have moving entities inside. This is done
by coloring each pixel on the map according to its dis-
tance from each stream endpoints and according to the
anomaly score of each stream. Figure [1 displays the
output of this interface when two persons are moving
inside a typical site, showing the true locations of the
two persons.

4. EXPERIMENTAL EVALUATION

In this section, we study the effect of the different
parameters on the performance of the RASID system
and compare it to the previous WLAN DfP detection



(b) Two Persons Moving

Figure 7: The output of the Region Tracking
Interface.

techniques [14}15].

4.1 Experimental Testbeds and Data Collec-

tion

We collected two sets of data to evaluate the sys-
tem performance, each in a different testbed. The first
testbed is an office of approximately 2000 ft?. The
second experiment was conducted in a two-floor home
building where each floor was approximately 1500 ft2.
Both tesbeds were covered with typical furniture. For
both testbeds, we used four Cisco Aironet 1130AG se-
ries access points and used three DELL laptops equipped
with D-Link AirPlus G+ DWL-650+ Wireless NICs as
MPs. The access points were operating on different
channels. The experiments were conducted in typical
IEEE 802.11b environments. Figures [§ and [ show the
layouts of both experiments.

For the data collection, sets of normal (silence) state
readings and continuous motion readings were collected
for each testbed. A total of about one hour and 15
minutes of data was collected for each testbed with a

12.3m
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!

Figure 8: Testbed 1 layout and motion pattern.

sampling rate of one sample per second using the active
scanning technique []. For Testbed 1, this includes
three motion sets, while for Testbed 2, this includes
two motion sets. A motion set covers the entire area of
the testbed, as shown in figures[8 and @ and represents
the motion of a single person walking normally around
the site without any stops.

For system evaluation, extreme conditions were em-
ployed: The training period is chosen to be only the
first two minutes of the entire data collected with the
absence of human motion. In addition, only one person
moved in the area of interest. More people in the area of
interest will lead to higher variance [33] and hence bet-
ter detection. Therefore, the reported results present a
lower bound on the performance of the RASID system.

4.2 Evaluation Metrics

We used three metrics to analyze the detection per-
formance: the false positive (FP) rate, the false negative
(FN) rate and the F-measure. The false positive rate
refers to the probability that the system generates an
alarm while there is no human motion in the area of
interest. The false negative rate refers to the probabil-
ity that the system fails to detect the human motion in
any place in the area. We also use the F-measure, which
provides a single value to measure the effectiveness of
the detection system [34].

Since each anomalous sample may not be detected
simultaneously, we also studied the detection latency,
i.e. how much time the system needs to associate an
anomalous sample with a detected event. The overall
90" detection latency percentile in both testbeds was
found to be less than one second.

4.3 System Performance



Basic Detection | Normal Profile Decision Refinement
Module Update Module | Module (RASID Perf.)
FN Rate 0.0672 0.0876 0.0468
Testbed 1 FP Rate 0.2158 0.1176 0.0378
F-measure 0.8683 0.8989 0.9574
Enhancement - 3.52% 10.26%
FN Rate 0.2368 0.2069 0.0966
Testbed 2 FP Rate 0.1059 0.0903 0.0372
F-measure 0.8167 0.8422 0.9311
Enhancement - 3.1% 14%

Table 1: System performance under the same parameters (I = 5,a = 0.01,lypdate = 15) for the two
testbeds. Enhancement is with respect to the F-measure of the Basic Detection Module.
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Figure 9: Testbed 2 layout and motion patterns.

Table [Mlsummarizes the system performance for both
testbeds using the same parameters for all modules.
The table also shows the enhancement introduced by
each module to show the robustness of the techniques.

4.3.1 Basic Detection Module

As mentioned earlier, this module requires the selec-
tion of the sliding window size | and the significance
a. Figure illustrates the effect of these parameters
applied to Testbed 1. Similar performance has been ob-
served for Testbed 2. The figure shows that choosing a
too short window size will make the system less sensitive
to human motion. On the other hand, choosing a very
large window size will introduce a very high FP rate.
For the significance parameter, as « decreases, the FP
rate decreases and the FN rate slightly increases. This
means that increasing the significance will result in less
system sensitivity. Therefore, to balance the different
performance metrics, we choose [ =5 and o = 0.01.

Table [l shows that Testbed 2 has a higher FN rate
than Testbed 1 in the Basic Detection Module. This is
due to the larger testbed area (i.e. less coverage) and
the time needed to move between the floors in Testbed
2. This is significantly enhanced by the processing per-
formed by the Normal Profile Update and Decision Re-
finement modules. It can be noted also that the FP
rate in Testbed 1 is relatively high. This is because
the two-minute training period is not enough to sustain
accurate detection for one hour of accurate operation
inside the office environment. This highlights the need
for the Normal Profile Update Module.

4.3.2 Normal Profile Update Module

The Normal Profile Update Module requires the se-
lection of the update window size lypdate- Choosing a
too small lypdate Will make the system very sensitive to
noisy readings causing a high FP rate. On the other
hand, a very large lupdate Will make the system less sen-
sitive to human motion causing a higher FN rate. Fig-
ure[[Tlillustrates these effects of the update window size
on the system performance for Testbed 1 when [ = 5
and o = 0.01. The figure shows that an update window
size between 10 and 20 is sufficient to reduce the high
FP rate without causing much increase to the FN Rate.
Thus, we choose lypgate = 15. The results are shown
in Table [l The table shows that there is about 50%
reduction in the FP rate in the first testbed, but this
lead to a slight growth in the FN rate. For Testbed 2,
the results of both the FN and the FP rates were en-
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Figure 10: Analysis of the Basic Detection Mod-
ule parameters for Testbed 1.

hanced due to adapting to the environment. Overall,
the F-measure was enhanced by 3 to 4% with respect
to the Basic Detection Module performance.

This enhancement can be explained by the observa-
tion that the Normal Profile Update Module reduces
the effect of the temporal variations between the en-
vironment true normal profiles and the stored normal
profiles by updating them. We verified that by applying
the two-sample Kolmogorov-Smirnov test to the distri-
butions of the updated profiles and the distributions of
the true normal state. The test accepted the hypotheses
that those distributions came from the same underlying
distribution at a significance of 0.05. Figure[I2 provides
an example comparing the starting, updated and true
sample variance profiles at the end of Experiment 1.
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Figure 11: Effect of the update window size pa-
rameter (lypdate)-

True Normal Profile
----- Starting Profile
= = = Updated Profile

Probability Density
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Sample Variance (dBmZ)

Figure 12: Comparison between the starting
profile, updated profile and the true profile for
the sample variance of the AP4-MP3 stream at
the end of Experiment 1. As shown, the updated
and true profiles are almost congruent.

4.3.3 Decision Refinement Module

This module fuses the data from all streams. Fig-
ure [0] displays the sum of anomaly scores curve for the
data collected for Testbed 1. To reduce the FP rate,
the curve is exponentially smoothed with a smoothing
coefficient of 0.04. A large increment in the smoothed
curve, by more than 20% to 25% from the normal level,
implies a period of human motion. Our experiments
show that deviations from these parameters values will
not lead to significant degradation in the results. The
figure shows that the motion periods are clearly distin-
guishable from the silence state. Table [I shows that
this module can lead to up to 10 to 14% enhancement
in the F-measure for both testbeds with respect to the
Basic Detection Module. It is important to note that
this module also reduced the FN rate, as some of the
previously undetected events are now detected because
this technique makes use of the history of the state of
the activity as described earlier.

4.4 Comparison with Previous Techniques



In this section, we compare the performance of RASID
to the previous techniques devised for WLAN DfP de-
tection. We start by a brief description of the tech-
niques, followed by the different aspects we evaluate
the techniques on. Finally, we present the results of the
comparison.

4.4.1 Comparison Techniques

Three techniques are considered for the comparison:

1. The moving average technique [14]: The moving
average technique uses a central tendency feature,
i.e. the average. It uses two sliding window av-
erages: a short window average representing the
current system condition and a long window aver-
age representing history. The idea is to compare
the two averages and if the difference is above a
threshold, a detection is announced. It is impor-
tant to note that the moving average technique
does not require a training phase.

2. The moving variance technique [14]: The mov-
ing variance technique uses a dispersion feature,
i.e. the variance. Similar to the moving average
technique, it compares the variance of the current
system state, based on a sliding window, to the
variance of the silence period, obtained through a
training phase. If the difference is above a thresh-
old, a detection is announced.

3. The maximum likelihood classification (MLE) tech-
nique [I5]: This technique constructs profiles for
the silence period as well as for the motions period
for different locations in the area of interest. The
profiles represent the signal strength distribution
for each stream at each location. Therefore, it in-
volves significant training data. During the detec-
tion phase, the system finds the profile that has
the maximum likelihood given a signal strength
vector, one entry for each stream. If the estimated
profile corresponds to a motion profile, an alarm
is generated.

4.4.2 Comparison Aspects

e Static accuracy: accuracy when the system is eval-
uated with the same profiles it was trained on (if
any). This is to test the best attainable accuracy.

e Profiles’ robustness: that is how consistent the
performance of the system is when the tested pro-
files are different from the trained ones, for exam-
ple due to temporal changes in the environment.
For this case, the testing data set is collected two
weeks after the data sets used for training.

e Overhead: the effort needed to deploy the system.
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4.4.3 Comparison Results

Table [2] shows the comparison results in two cases.

In terms of the static accuracy, the results show that
the F-measure of the RASID system is better than other
systems in Testbed 1 and is slightly lower than the MLE
technique in Testbed 2. Compared to the Moving Aver-
age and Moving Variance techniques, the RASID sys-
tem provides high accuracy due to the techniques it
uses to enhance the performance. On the other hand,
the MLE technique achieves slightly higher accuracy in
Testbed 2 as it stores a motion profile, which requires
much higher overhead than the RASID system.

In terms of profiles’ robustness, the Moving Aver-
age technique does not store any profiles. Therefore,
its overall performance is low but almost the same as
the profiles change. On the other hand, the robustness
of the MLE technique is the least as it uses the mean
signal strength values as the features used for classi-
fication. Therefore, after two weeks, the distribution
of the signal strength does not follow the learned one.
This is why the FP rate for the MLE technique is too
high due to the shift that occurred in the signal dis-
tributions. It can also be noted that RASID perfor-
mance in the two cases was the best because RASID
uses the variance for its operation (dispersion feature)
and employs techniques for adapting to changes in the
environment and for enhancing the performance. This
is why RASID performance is better than the Moving
Variance in general, although the Moving Variance uses
the same feature as RASID.

In terms of overhead, the Moving Average technique
has the minimum overhead as it does not need any
learning phase. The Moving Variance and RASID de-
ployment need to construct normal profiles by collecting
samples for two minutes when the human is not present.
On the other hand, the MLE technique has the worst
overhead as it constructs motion profile at each location
in the area of interest in addition to the normal profile.

In summary, although the static detection accuracy
of RASID is as accurate as the MLE technique, the
MLE technique has significantly higher overhead than
RASID because of its motion profile requirements. In
addition, RASID is the most robust technique to tem-
poral changes in the training profiles and significantly
outperforms the remaining techniques.

5. COMPARISON WITH A PARAMETRIC
APPROACH

In this section, we compare the performance of the
system’s non-parametric approach to an analytical model
that models the sample variance parametrically. The
results of this model can help validate the results of our
parameter analysis in the previous section and can also
motivate the usage of the non-parametric density esti-
mation. The next evaluation will be based on the results



Results with static profiles
Moving Average | Moving Variance | MLE RASID
FN Rate 0.1446 0.1426 0.0363 0.0468
Testbed 1 | FP Rate 0.1385 0.104 0.1547 0.0378
F-measure | 0.858 0.8743 0.9099 0.9574
FN Rate 0.0759 0.308 0.0372 0.0966
Testbed 2 | FP Rate 0.7412 0.1478 0.0774 0.0372
F-measure | 0.6935 0.7522 0.9438 | 0.9311
Overhead No overhead Minimal Worst Minimal
Results with testing profiles separated two weeks
from the training profiles.
Moving Average | Moving Variance | MLE RASID
FN Rate 0.2165 0.319 0.1653 0.0472
Testbed 1 | FP Rate 0.0711 0.1561 0.952 0.0782
F-measure | 0.8449 0.7414 0.5991 0.9383
FN Rate 0.2641 0.4152 0.1203 0.0931
Testbed 2 | FP Rate 0.3602 0.0513 0.831 0.0722
F-measure | 0.7022 0.7149 0.6491 0.9165
Overhead No overhead Minimal Worst Minimal

Table 2: Performance comparison with previous DfP detection techniques.

of the Basic Detection Module only, so as to evaluate
the two approaches without the enhancements. First,
we describe the analytical model, then we present the
results of the comparison.

5.1 The parametric model

The sample variance can be modeled parametrically
given some conditions. According to Cochran’s The-
orem [35], the sample variance of [ independent nor-
mally distributed random samples follows a chi-square
distribution with [ — 1 degrees of freedom such that
%;2)52 ~ x?_,, where o2 is the population variance.
According to [36], the signal strength readings (in dBm)
distributions for a stream j can be assumed to follow
a normal distribution. Given that assumption, a para-
metric model can be devised for the system when the
sample variance is used. Given a significance o and a
window size [, the upper bound for the sample vari-
ance observed during the monitoring phase is x7 |, -
However, [36] also stated that the normality assﬁmp—
tion may not hold in some cases. In addition, the signal
strength readings may not be independent [37]. Thus,
we believe that the non-parametric model described be-
fore will provide better performance than the paramet-
ric model. This will be verified in the following subsec-
tion.

5.2 Analysis Results

First, to check how close the parametric model is
to the actual system, we compare the critical upper
bounds obtained by both methods. For example, in
Figure [[3] we compare the critical sample variance val-
ues in both cases for the stream AP4-MP3 from Exper-
iment 1, when the population variance is assumed to be
2.02 dBm? which is an experimental estimate for the
population variance of that stream. The figure shows
that the parametric model and the actual system crit-
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Figure 13: Comparison of the critical variance
values of the parametric model and the RASID
system model (non-parametric approach).

ical values follow the same trends. However the differ-
ence between the curves suggests that the real case does
not exactly follow the assumed parametric model. In
addition, the effects of Basic Detection Module param-
eters can be inferred from the parametric model curves.
As the window size parameter [ increases, the critical
variance value decreases which results in increased sys-
tem sensitivity (i.e. higher FP rate and lower FN rate).
Also, as the significance parameter « increases, the crit-
ical variance value decreases which also results in in-
creased sensitivity. This is consistent with the analysis
presented in Figure

The next point is to study how the usage of the para-
metric model instead of non-parametric estimation can
affect the system performance. As the distribution of
the sample variance depends on the population vari-
ance, we analyze its effect. Figure [I4] shows the effect
of the population variance on the performance of the
Basic Detection Module when the parametric model is
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Figure 14: The performance of the Basic De-
tection Module when the parametric model is
used versus the population variance, given [ =5
and a = 0.01. The best population variance con-
figuration provides an F-measure of 0.843 com-
pared to 0.8683 that was obtained using the non-
parametric estimation.

used for Experiment 1. From the figure, we can con-
clude that the best performance achieved in terms of
the F-measure (0.843) is less than the F-measure ob-
tained using non-parametric estimation (0.8683).

To conclude, the parametric model leads to lower per-
formance compared to the non-parametric estimation
because the assumptions that the signal strength val-
ues are independent and follow a normal distribution
may not hold. Also, the parametric model requires the
selection of an accurate population variance. This can-
not be done accurately without training for long time
periods. Therefore, we conclude that RASID approach
of constructing non-parametric profiles in a short of-
fline phase and updating them in the online phase does
provide a better option.

6. DISCUSSION

In this section, we discuss some points related to the
configuration and the performance of the RASID sys-
tem. We also highlight some research issues and some
challenges that can be addressed in future work.

6.1 Univariate VS Multivariate Density Esti-
mation

As mentioned before, the basic detection module stud-
ies each stream independently by estimating the uni-
variate density for the selected feature of the sliding
windows extracted from the training data. Another
possibility was to construct a multivariate density es-
timate for the data of all streams. This implies a mod-
ification to the anomaly detection criteria. Different
algorithms can be applied in this case, e.g. [27]. Our
experience with this algorithm shows that this leads to
a degradation of the system accuracy. The main rea-
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son for this degradation is that the system sensitivity
is significantly reduced, especially when the number of
streams is large. In that case, the system may not be
able to detect an anomaly in one stream only, as its
effect may not be much sensed.

6.2 Effect of Network Activity on System Pro-
files

Typically in real wireless environments, it is expected
that many monitoring points may be using the wireless
network for handling typical tasks (e.g. downloading
updates or patches). The question is whether such net-
work activities will require any change in the system
normal profiles if they were originally collected while
there is no network activity. In this subsection, we
present an experimental study to investigate that ef-
fect.

In order to examine that effect, a simple experiment
was conducted on a single stream between an access
point and a laptop acting as a monitoring point in si-
lence state. T'wo signal strength data sets were collected
while there was no network activity at the monitoring
point, while another two sets were collected while the
monitoring point were downloading data through the
wireless stream with the maximum download speed al-
lowed (50 KBytes per second). The collected data are
used to construct normal profiles in the same way pre-
sented earlier in Section Figure I8 compares the
constructed profiles for the four sets. From the figure, it
is clear that the difference between the distributions in
both cases is negligible. Furthermore, we apply the two-
sample Kolmogorov-Smirnov test to each of the four
different pairs of those constructed profiles. The test
accepted the hypotheses that those estimated distribu-
tions came from the same underlying distribution with
a significance of 0.05. Therefore, we can conclude that
the constructed sample variance profiles are invariant
with respect to the state of network activity.

6.3 Detection and Identification of Indepen-
dent Events

The above experiments showed that the system is ca-
pable of detecting a single person moving inside the area
of interest. Obviously, the detection performance will
be enhanced if there were more than one entity in the
area of interest. We verified that the system will be able
to declare that there is anomalous behavior inside the
area more clearly in this case.

It would be useful to identify the number of moving
entities in some applications. Figure [ shows that we
can detect that there are multiple entities in the area of
interest. However, as our system uses limited data to
satisfy the feasibility design goal (normal profiles only),
the system cannot provide full information about the
number of entities in all cases. For example, if two
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Figure 15: The effect of network activity on the
constructed sample variance normal profiles. As
shown, the difference between the profiles is not
significant.

entities are affecting a single stream only, the system
will detect them as one entity. This is because there
is no enough information that enables the system to
differentiate between the two cases. On the other hand,
in some cases, the system can tell with high probability
that some events are due to independent entities. Here,
we briefly describe the constraints through which the
system can provide information about the number of
independent entities.

First, let Thnin, a k X k square matrix denote what we
call a minimum time reachability matrix. Each entry
in this matrix stores the minimum time needed for an
entity to affect two streams ¢ and j, such that

Dminij

(5)

, where Diyip,; represents the minimum distance be-
tween the nearest two points on the ¢ and j streams
lines of sight and v, represents the maximum move-
ment velocity inside the area. The distance D,,in,; can
be calculated from the site map, and v,,4, can be esti-
mated based on empirical observations.

Two events F1 and FEs are considered independent
(i.e. not generated by the same entity), if they satisfy
the following conditions. First, they should be affecting
two different streams 7 and j and second, the time dif-
ference between E; and Ej is less than the value Thin, e
The time difference between the two events are calcu-
lated based on the time difference between the times
when the anomaly scores for the two events reach the
peaks as they express the moments when the entities
are affecting the streams the most. To tell that n events
are independent, each pair of those events should satisfy
the conditions described above. The above conditions
imply that the system cannot detect more than k& mov-
ing entities, where k is the number of streams as stated

ming; T )
max
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earlier.

To conclude, despite the limited information the sys-
tem uses, the system can provide information about the
number of independent events inside the monitored area
given some conditions. The significance of this point
can be clear when applied inside large scale environ-
ments.

Another possibility is to use the level of the change
in variance as an indication of the number of entities.
The hypothesis is that the more human affecting a sin-
gle stream, the higher the variance should be. This
hypothesis still needs to be verified though.

6.4 Integration with DfP Tracking Systems

Our system can provide useful information to DfP
tracking systems like the ones proposed in [T6/17]. First,
a DfP tracking system can use our system to decide
whether to start the tracking process or not. Also, the
system can enhance the tracking accuracy by limiting
the probable locations to a certain area (e.g. as in Fig-
ure[7)). In addition, given the conditions described ear-
lier, our system can help the tracking system identify
the number of intruders and the area of each one, so
that it can apply the tracking algorithms to each area
independently. This will need further investigation and
experimentation.

6.5 Combining Features

Although we showed in this paper that using the vari-
ance as a feature is better than using the mean, both
features can be used concurrently to achieve better per-
formance. Our initial results show that combining both
features and using a simple voting scheme can enhance
the results in some cases. This is a subject for future
investigations.

6.6 Signal Strength Readings Synchronization

The synchronization of the signal strength readings
received at the monitoring point can be necessary in
some cases. For example, the technique described be-
fore for checking the independence of the detected events

requires synchronization of the readings across the streams.

In addition, the decision refinement module requires the
different streams to be synchronized. In this paper, we
took a centralized approach for synchronization, where
the application server requests the MPs to initiate a
reading. Other approaches, such as time synchroniza-
tion of the MPs can be employed. The advantages and
disadvantages of each technique in terms of accuracy
and overhead can also be investigated.

6.7 Effect of Different Hardware

The hardware used to capture the signal strength val-
ues can affect system performance. Through our exper-
iments, we studied how the WLAN NIC type affects the
quality of the collected readings. We found that NICs



differ in two main aspects: sensitivity to human activ-
ity and noise readings. For example, some cards cannot
sense the human shadowing effect unless it is sustained
for a sufficient period of time. The readings of some
other cards are noisy and requires extensive filtering.
These experiments considered the NICs only. However
this can hold from the APs perspective too. Therefore,
we believe a study is needed to identify which hardware
will be more suitable for the system operation and how
to account for these variation between cards and allow
the system to operate with different cards.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the RASID system, a sys-
tem that enables device-free passive motion detection
using the already installed wireless networks. RASID
uses non-parametric statistical anomaly detection tech-
niques to provide the detection capability. The RASID
system also employs profile update techniques to cap-
ture changes in the environment and to enhance the
detection accuracy. The system was evaluated in two
different real environments. Using the same parameters
for the two testbeds, the system provided an accurate
detection capability reaching an F-measure of at least
0.93 in both testbeds. The performance of the RASID
system was compared to the previously introduced tech-
niques for WLAN DfP detection. The results showed
that the RASID system outperformed the state-of-the-
art techniques in terms of robustness and accuracy. In
addition, we showed that the non-parametric approach
employed by RASID has significant advantages over a
parametric approach for the system operation.

Currently, we are expanding RASID in several direc-
tions: One direction is to integrate RASID’s detection
capability with DfP tracking systems while considering
larger testbeds. Another direction is to study possible
sources of noise in typical wireless environments, e.g.
other devices inside or outside the area of interest, and
how to reduce their effect. We are also studying how
the detected entity’s characteristics, e.g. size, shape
and motion pattern, can affect the system performance.
Moreover, the site configuration, i.e. the positions of the
APs and MPs, can also be studied in order to optimize
the system performance.
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