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Abstract—Cameras are ubiquitous and increasingly being used
not just for capturing images but also for communicating
information. For example, the pervasive QR codes can be
viewed as communicating a short code to camera-equipped
sensors and recent research has explored using screen-to-camera
communications for larger data transfers. Such communications
could be particularly attractive in pervasive camera based ap-
plications, where such camera communications can reuse the
existing camera hardware and also leverage from the large
pixel array structure for high data-rate communication. While
several prototypes have been constructed, the fundamental ca-
pacity limits of this novel communication channel in all but
the simplest scenarios remains unknown. The visual medium
differs from RF in that the information capacity of this channel
largely depends on the perspective distortions while multipath
becomes negligible. In this paper, we create a model of this
communication system to allow predicting the capacity based
on receiver perspective (distance and angle to the transmitter).
We calibrate and validate this model through lab experiments
wherein information is transmitted from a screen and received
with a tablet camera. Our capacity estimates indicate that tens
of Mbps is possible using a smartphone camera even when the
short code on the screen images onto only 15% of the camera
frame. Our estimates also indicate that there is room for at
least 2.5x improvement in throughput of existing screen - camera
communication prototypes.

I. INTRODUCTION

The pervasive use of cameras has led to not only a diverse

set of camera-based sensing applications but also to novel

opportunities to use cameras to communicate information [10].

Recent efforts to standardize camera communications [3]

attests to the importance of using camera for communications.

Camera based communication is characterized by highly di-

rectional transmission and reception along with low-multipath

interference rendering it virtually interference-free. Thus, it

is particularly attractive for dense congested environments

where RF communication data rates are largely limited due

to interference, for security applications where the directional

transmissions lead to lower probability of interception or

observability of signals, or for situations where the high di-

rectionality leads to improved localization of the transmitters.

Camera based communication can leverage existing cameras

for communicating with the ubiquitous light emitting devices.

Information could be transmitted from TVs, monitors, bill-

boards, and even projector screens. We believe, therefore, that

camera-based communications can be an attractive alternative

or supplement to RF wireless based communication.

Today, cameras are frequently used to read QR-codes, which

can be considered as a form of visual communication wherein

the camera acts as a receiver. The ubiquitous use of QR codes

motivates building novel camera communication applications,

where pervasive display screens could be modulated to send

time-varying QR codes to be decoded by video cameras.

The large pixel array elements of the screen and camera

can be leveraged to send high volume of data through short

time-varying 2D barcodes. For example, a user could point

a camera to a desktop PC or even a smartphone screen

displaying the time-varying code to download a file or perhaps

a video. Recent research has further explored this direction by

designing prototypes wherein time-varying 2D barcodes can be

transmitted from desktop monitors [17], [20] and smartphone

screens [14] to a camera receiver. While these works have

designed and measured the performance of specific point

solution in this space, how much room for improvement exists

in these solutions or if there is any bound on performance still

remains unclear.

QR-code recognition is typically limited to short distances

of cm and the camera usually has to be well-aligned so that

the code covers most of the camera image. The throughput

is largely affected by any change in perspective (position

or orientation) of the camera with the transmitter. When the

camera is far from the screen (or at a highly oblique angle)

light rays from multiple transmitter elements (pixels of the

screen) interfere on one or more camera pixels, causing inter-

pixel interference (IPI), reducing received signal quality and

throughput.

To our knowledge, only few projects have begun to inves-

tigate information capacity limits of camera communication

using time-varying 2D barcodes. Hranilovic et.al. [17] an-

alyzed the capacity and prototyped a screen-camera system

where a CCD camera was placed at a fixed distance from a

laptop screen. The model does not account for the interference

between pixels and the dependence on perspective. The model

in [10] can be considered as a simplified case of screen-camera

channel where the transmitter and receiver always remain

aligned, while ignoring the quantization effects of real camera

receivers.

In this paper, we develop a model for the information

capacity of screen-camera communication that accounts for

perspective dependent (position and orientation) distortions

that dominate this channel. The model incorporates projection

theory from the computer vision domain into a Shannon

capacity formulation. Specifically, our contributions in this



paper are:

• A screen-camera channel model that accounts for per-

spective distortions and realities of camera receivers such

as quantization limitations.

• Experimental calibration and validation of the model

through extensive lab measurements using a screen trans-

mitter and a tablet camera receiver. The studied parame-

ters include distance, angle, and granularity or block-size

of the code (number of pixels per transmit bit).

• Estimation and validation of capacity for screen-camera

communication by measuring channel and signal quality

metrics, such as bandwidth and signal-to-interference-

noise ratio, and substituting into the derived analytical

capacity expression.

• A comparison of capacity estimate with throughput of

existing screen-camera communication prototypes.

II. BACKGROUND ON CAMERA COMMUNICATION

Camera based communication is a class of visible light

communications (VLC) [8], where information is modulated

through light transmitted from optical emitters such as LEDs

and LCDs, and received by photo-receptor elements at the

receiver (in a camera, the image sensor pixels are the photo-

receptors). The inherent 2D spatial array structure of the image

sensor pixels can be leveraged to create a multi-input-multi-

output (MIMO) channel by using arrays of optical emitter

elements to transmit information through a concept called

visual MIMO [10]. In this regard, the array of LEDs in

lighting arrays and commercial display devices, LCD pixels in

display screen, projector screens, or printed material1 qualify

as potential transmitters in camera based communications.

A camera channel is analogous to a RF MIMO channel

where each pixel element of the camera acts as a receiving

antenna and the light emitting elements as the transmit anten-

nas. In RF MIMO, the signal quality at each receive antenna

element is a function of the path-loss in the channel, multipath

fading, and the interference from other transmit antennas —

also called co-channel interference [7]. A camera channel has

negligible multipath fading but experiences path-loss in light

energy, and interference (of light energy) from other light

emitting elements, which manifest as visual distortions on the

output of a camera, that is, the image. These distortions can

be modeled (deterministically) using classical camera imaging

theory.

The signal quality at the camera receiver is also influenced

by noise in the channel. Noise in camera systems manifests

as noise current on each camera pixel, and is generated due

to the photons from, environment lighting (includes ambient

lighting) and from the transmitter and receiver imaging cir-

cuitry [19]. Noise current in a pixel is usually considered signal

independent when the ambient lighting is sufficiently high

compared to the transmit signal; for example, in office rooms

or outdoors [21]. At the output of a camera, the noise current

1Barcodes such as QR codes printed on papers qualify as time-invarying
messages

in each camera pixel is a quantized quantity and manifests

as fluctuations in the intensity (digital value of the sensor

output) of that pixel; the noise energy accumulated in each

pixel can be quantified using the mean value of variance in

the pixel intensity. As in prior works on modeling optical

channels [21], [23], in this paper, we will consider that the

noise in a camera pixel is primarily from background, and

follows a AWGN characteristic, and is uniform over the image

sensor (photoreceptor); quantified through the AWGN noise-

variance σ2
n.

Considering the deterministic nature of perspective distor-

tions and the AWGN channel, capacity (measured in bits/sec)

of camera based communication can be expressed using Shan-

non Capacity formula as,

C = Wfps(Wslog2(1 + SINR)) (1)

where SINR represents the signal-to-interference-noise

ratio per pixel, Wfps is the camera-frame rate or the re-

ceiver sampling rate in frames-per-second. Ws is the spatial-

bandwidth, which denotes the number of information carrying

pixels per camera image frame. The spatial bandwidth is

equivalent to the number of orthogonal or parallel channels

in a MIMO system. In the rest of the paper, we will use the

terms screen transmitter and screen interchangeably, and the

term image to refer to the camera sampled image.

III. SCREEN - CAMERA CHANNEL

In screen-camera communication, information is modulated

in the light intensity of the pixel elements of a screen trans-

mitter that are received and decoded from the camera image

pixel intensity at the receiver. The pixel intensity in a camera

image is a digital quantity2 that is proportional to the amount

of photon current generated on the pixel from the light energy

accumulated over its area (the smaller the pixel area the lesser

light intensity it accumulates). When the light emitting screen

pixel is at the focus of the camera lens (and hence the camera

pixel) all the light rays from the screen pixel are focused onto

the camera pixel and thus incurring no loss of energy on the

pixel. When the screen pixel is perturbed (in position and/or

orientation) from the focus of the camera or incurs path-loss

in energy, due to the finite aperture size of the camera lens, not

all light rays converge on the camera pixel resulting in reduced

accumulated energy and hence a smaller pixel intensity value.

The loss in the received light intensity on a camera pixel results

in the visual deformation in size or shape of the imaged screen

pixel; an effect that is termed as perspective distortion.

Loss in signal energy on a pixel is also attributed to the noise

in that pixel. As discussed earlier, noise in a camera pixel is

primarily due to photons from the environment, which can be

modeled as signal independent and AWGN. Noise from the

transmitter and the camera imaging circuit are dependent on

the generated signal (and that is transmitted), and thus depend

on the transmitter and receiver specifications. However, unlike

2most cameras have 8 bit monochromatic depth (on each colour channel)
where the values span 0 (dark)-to-255 (bright)



Fig. 1. Illustration of perspective distortion in screen-camera channel. Imaged
screen pixels are blurry, and reduced in size in full-frontal view and also in
shape in angular view.

environment noise, this signal dependent noise can be esti-

mated using one-time calibration mechanisms; camera noise

modeling has been well studied in computer vision and solid-

state electronics (CMOS) design literature. We reserve the

discussions on effect of signal dependent noise on throughput

of camera communications for future work.

Perspective Distortions. Distortions that depend on the per-

spective of the camera are caused due to the nature of the

camera imaging mechanism and manifest as deformation in

size and shape of the captured object (the light emitting

screen pixel) on the image, resulting in visual compression or

magnification of the object’s projection on the image. When

the screen is at an out-of-focus distance from the camera lens

(or at an oblique angle), these distortions become prominent

and lead to interference between adjacent screen pixels on the

camera image, what we term as inter-pixel interference or IPI.

The combined effect of background noise and IPI degrades the

received signal quality and hence reduces information capacity

in camera channels. For example, let us consider that blocks

of screen pixels are illuminated by a chessboard pattern and

imaged by a camera as shown in Fig. 1. We can observe that

perspective distortions cause the screen pixels to deform in

size when the screen is not at the focus of the camera, and

in shape when it is not frontally aligned (viewed at an angle)

with the camera. If the screen pixel was at the focus, and

assuming the screen and camera have the same resolution, it’s

image on the camera should occupy the same area as one

pixel. But in reality, the light rays from the screen pixel may

not end exactly on camera pixel boundaries and there is some

area surrounding it that accumulates interference. This area

of misalignment and the geometry of the imaged screen pixel

will be perspective dependent and accounts for distortion due

to perspective scaling of the pixel area.

We can also observe from Fig. 1 that the imaged screen

pixels are blurry, especially at the transition regions between

white and black blocks. This blur effect is attributed to the

camera lens and more formally termed as lens-blur. It is

modeled by the point-spread function (PSF) in computer vision

theory [16], which represents the response of an imaging

system to a point source. Lens-blur causes the received light

energy to spread to areas outside the pixel, where the amount

of spread depends on the type of lens being used. Lens-

blur can be understood as a low-pass filtering phenomenon

that distorts the high-frequency components in the image,

such as edges and high contrast regions [13]. In the screen-

Fig. 2. Screen - Camera Channel Model

camera channel this translates to distorting the pixels at the

transition regions between brighter (high intensity) and darker

(low intensity) pixels, and leads to interference (IPI) between

neighboring pixels, as seen in Fig. 1. Since the area and the

maximum energy that can be sampled in each camera pixel

is finite, IPI leads to an effective reduction in signal energy

per pixel. Unlike fading in RF wireless channels, distortions in

camera channels are deterministic, and can be modeled using

camera imaging theory, as exercised in this paper.

A. Perspective Distortion Factor

We model the perspective distortions in the screen-camera

channel as a composite effect of signal energy reduction due to

perspective scaling of pixel area owing to camera projection,

signal energy reduction due to lens-blur, and background

photon noise, as shown in Fig. 2. In this regard, let us consider

that the signal energy on each pixel is weighted by perspective

distortion factor α, that represents the effective area scaling

(down) due to perspective and lens-blur in the camera imaging

process, while the rest of the light-energy on the pixel is from

ambient photon noise. We define this factor such that it can

take values in 0 ≤ α ≤ 1, where α = 1 indicates that the

screen pixel is at the focus of the camera and also incurs no

signal reduction due to lens-blur, and α = 0 indicates that no

part of the screen-pixel gets imaged on the camera pixel.

As discussed earlier, lens-blur causes the signal energy to

leak outside the area of a single pixel. Camera lens-blur,

characterized by the PSF, can be approximately modeled as

a 2D gaussian function [6], [16], where the amount of spread

in area is quantified using its variance σ2
blur (a large variance

indicates more blur3). In our model we account for lens-blur

distortion using the factor αb = (2σblur)
2, to account for the

spread in area over two dimensions of the square pixel. If

scam is the side length of a camera pixel, then the effective

signal energy on that pixel will be proportional to s2cam
1

1+αb
.

We treat this signal energy reduction is proportional to this

reduced pixel area over which the signal accumulates.

Let αp represent the perspective scaling of the area of an

imaged screen pixel when perturbed from camera focus. We

model this perspective scaling factor and derive a general

expression for αp in Appendix A using camera projection

theory [15], that uses the camera projection matrix which maps

the location of the screen pixels from the world coordinate

frame to the camera coordinate system. In the simplest case,

3For an ideal pin-hole camera energy spread over a pixel would be uniform
and hence σ2

blur
is infinitesimally small



Fig. 3. Illustration of interference between pixel-blocks due to perspective
distortion for SINR computation

where the screen and camera are perfectly aligned at distance

d, this factor can be expressed as,

αp = (
fcamst

scamd
)2 (2)

where fcam, st are the focal length of the camera and

side-length of the screen pixel, respectively. As can be seen

from equation 2 (or 16), αp is a function of the distance and

angle between the screen and camera. We can observe from

equation (2) that, αp = 1 when the camera is at the focus

(d = fcam) and if scam = st. However, in reality, the physical

size of a screen and camera pixel may not be the same. In

our system, we assume that the focal point is at a distance

df = fcamst
scam

to the screen; which we term as focal-distance.

If α denotes the average distortion in each pixel of the

camera image, we express α as the effective pixel area

reduction due to perspective scaling factor αp on the reduced

pixel area due to lens-distortion αb = 4σ2
blur, as

α = αp ×
1

(1 + αb)
(3)

B. Signal-to-Interference Noise Ratio

We quantify the quality of the signal at the camera receiver

in the screen-camera channel using the average SINR per

pixel,

SINRα =
αP 2

avg

(1− α)P 2
avg + σ2

n

(4)

where, Pavg denotes the average transmit pixel intensity (for

example, a screen-camera system using black (0) and white

(255) intensities for transmission will have Pavg = 127.5).

By using the digital value of the average signal Pavg , instead

of its analog equivalent (pixel photon-current squared), our

model accounts for the quantization limitations in cameras.

The 1 − α term in equation (4) quantifies the fraction of the

pixel area affected by interference. σ2
n denotes average AWGN

noise energy in each pixel, and since noise uniformly affects

the entire area the pixel it does not depend on the scaling

factor α.

Pixel blocks. A small value of α indicates that more screen

pixels interfere on one camera pixel. In reality, screen pixels

are very closely spaced (fraction of a mm), and so, IPI will be

inevitable even at short distances (since αp is very small as st
is very small) resulting in low SINRs. A potential solution is

to leverage the MIMO structure of the screen-camera channel,

by grouping multiple screen pixels in a block, such as a 2D

barcode, to transmit with same intensity, and combine those

imaged pixels on the camera receiver to improve SINR. This

technique, in principle, is similar to diversity combining used

in RF MIMO. Pixel-blocks merely represent that a group of

antennas are used to transmit the same intensity, to improve the

SINR at the receiver. By using pixel blocks, we draw analogies

of the screen-camera channel to an equivalent MIMO system,

and not multiple-level modulation or coding. Since channel

capacity is essentially independent of the type of modulation

or coding used, we reserve our discussions on modulation and

coding schemes for screen-camera communication for future.

Misalignment of Pixels and Blur. Mismatch between the

physical size of screen display and camera pixels can cause an

imaged screen pixel not to align with a camera pixel, even if

the screen pixel were at the camera focus. Such misalignments

will cause a deviation in the distortion factor for each pixel

as the perspective changes. However, such deviations can be

assumed to be negligible when considering an average distor-

tion factor over the camera image. Though, one can assume

some vibrations on the pixels, especially when the camera

is not stable, which means that the area of misalignment

can keep changing with perspective. Such dynamic change in

perspective arises primarily when the camera is hand-held, due

to hand-shakes or lateral movements; it also applies for many

more stationary scenarios. In such cases, the distortion effect

seen is in the form of blurry and mixed frames due to motion-

blur; the blur effect arises due to movement within or between

camera frames, and has been well studied in computer vision

literature [16]. The impact of misalignments, and also lens-

blur, will become smaller as one block covers more pixels

on the camera and only affect pixels near the boundary as

shown in Fig. 3. As a convention in our model, we treat a

pixel block as a boundary block if it is not all surrounded

by blocks with same intensity. Such a structure minimizes the

‘interference’for a non-boundary pixel, and is negligible when

the camera and screen are static with respect to each other.

In this case, even for a non-zero blur or pixel misalignment,

since the same signal adds-up on the pixel, it enhances signal

energy of that pixel; in which case the SINR of that pixel

converges to the average-SNR.

In general, the expression for the average SINR per imaged

block in a screen-camera channel, using B pixel square blocks

of a screen can be given as,

SINRblk(α,B) = γ1SINRα + γ2SNRα∀αB > 4

= SINRα ∀αB ≤ 4
(5)

where SINRα is from equation 4, SNRα =
αPavg

σ2
n

, and

the coefficients γ1 = 4(
√
αB − 1) and γ2 = (

√
αB − 2)2

represent the number of boundary-blocks and non-boundary

blocks, respectively. We consider that minB = 4 (i.e. 2 × 2
pixels), and αB ≤ 4 indicates that each B pixel block projects

onto a maximum of 1 camera pixel area and αB > 4 indicates



that the block projects onto multiple camera pixels.

IV. CAPACITY UNDER PERSPECTIVE DISTORTIONS

Recalling the capacity expression from equation (1), we

can express the capacity of screen-camera communication in

bits/sec as,

Ccam(α) =
Wfps

2
α||Rcam||log2(1 + SINRα) (6)

where SINRα is the signal-to-interference noise ratio from

equation (4), ||Rcam|| denotes resolution of the camera and

Wfps denotes the frame-rate of the camera in frames-per-

second. The camera frame-rate, and hence bandwidth, is

halved (following Nyquist sampling theory) to avoid the mixed

frames caused by aliasing resulting from the synchronization

mismatch between screen updates and the camera sampling.

The term α||Rcam|| represents the total number of camera

pixels that contain the image of the screen pixels, and is

essentially the spatial-bandwidth term Ws in equation 1. This

is very different from RF MIMO, where, all the receiver

antennas can potentially receive the signal, independent of

distance between the transmitter and receiver. In a camera

receiver, due to its LOS nature, the signal from each transmit

element is always limited to a finite number of, but never all,

receive elements.

The capacity in equation 6 represents the upper bound on

the total number of bits that can be communicated with neg-

ligible error from 1 screen pixel to a camera pixel. Grouping

pixels into blocks improves the SINR and reduces bit errors,

but the effective throughput scales down as the number of

parallel channels are reduced. If Tblk(α,B) represents the

MIMO capacity or maximum throughput of screen-camera

communication for block-size B, at distortion factor α, then

Tblk(α,B) =
Wfps

k
(
α||Rcam||

B
)log2(1 + SINRblk(α,B)),

(7)

where
α||Rcam||

B
represents the number of parallel channels

for multiplexing, and SINRblk(α,B) is from equation (5).

The factor k implies that a minimum of k temporal samples of

the camera pixel are required for reliable decoding. In practice,

to minimize detection and decoding errors, the camera frame-

rate has to be synchronized with the modulation rate of

pixel intensities on the screen as well as the refresh rate of

the screen (typically 120Hz). Synchronization of cameras for

communication is challenging due to the jittery nature (owing

to software limitations and hardware design errors) of the

frame-sampling using CMOS sensors that are widely used in

mobile devices today.

V. EXPERIMENTAL CALIBRATION AND VALIDATION

In this section we describe the experiments we conducted

to validate our screen-camera channel model. Since channel

capacity cannot be measured directly, we estimate capacity

indirectly by substituting the measured SINR, perspective

distortion factor α, and AWGN noise σ2
n into the analytical

Fig. 4. Experiment setup showing LCD screen displaying black and white
blocks of B = 60× 60 pixels each

capacity expression derived in (6). We also show effect of

perspective (position and orientation) and MIMO design pa-

rameters such as screen pixel block-size on the throughput of

camera communication, by plotting the capacity estimates for

the specific parameter choices. We then compare our capacity

estimates with the throughput achieved by existing screen-

camera communication prototypes.

A. General Experiment Methodology

The experiment setup, as shown in Fig. 4, consisted of a

21.5inch Samsung LCD screen monitor of resolution Rs =
1920 × 1080 pixels, that served as the screen-transmitter,

and a 8MP camera of a ASUS Transformer Prime tablet

(that ran Android OS version 4.1), that served as the cam-

era receiver. The camera was operated at a resolution of

Rcam = 1920 × 1080 and with no image compression.

Exposure setting and white-balancing on the camera were

set to auto (default setting in Android devices). Environment

lighting conditions were the same for all our experiments.

All our measurements were taken indoors in a lab-conference

room setting equipped with fluorescent ceiling lighting. We

fixed the screen and tablet onto stands so as to ensure the

least amount of error in the measurement of distance and angle

between the tablet and camera image planes. The raw dataset

for our analysis consisted of image snapshots of the screen,

displaying a chessboard pattern (blocks of B pixels each),

captured by the tablet’s camera at resolution of Rcam pixels

using a standard Android image capture application. The pixel-

intensity of a white block was set to 255 and the black at 254

on the screen (the average intensity Pavg = 140). The image

datasets consisted of 100 snapshots of the screen displaying

the chessboard pattern, with the ceiling lights ON (an another

dataset with lights OFF), at a set of distances, angles, and

block-sizes. We changed angle between screen and camera by

rotating the screen with respect to the X axis; distortions can

be considered symmetrical on X and Y axis.

Camera Calibration: We obtained the the camera parame-

ters, such as the focal length, pixel-side length, etc., through

camera calibration procedure using the Caltech calibration

toolbox [4], using which we determined the focal-distance to

4Due to the screen’s residual back-lighting, intensities in [0,25] range did
not cause any change in screen brightness
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Fig. 5. (a) Capacity in bits/camera pixel (Ccampixel(α)) for different perspective scaling (α) of screen image on camera (b) Throughput in bits/frame v/s

α for different blocksizes (1 frame = Rcam pixels, B = 152 means 15× 15 pixel block on screen) (c) SINR per block v/s α for different blocksizes B
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Fig. 6. (a) SINR for different perspective scaling (α) of screen image on camera (b) Perspective distortion α v/s angle between screen and camera (c)
Perspective distortion factor α v/s distance between screen and camera

be df = 39cm. We also measured the blur variance σ2
blur

by experimentally measuring the PSF of the tablet camera.

The experiment involved emulating a point light source by

illuminating one pixel on the LCD screen, and capturing its

image from a distance of df (so as to nullify any perspective

scaling). Our results indicated that a Gaussian curve with a

variance σ2
blur = 0.25 was the best fit to our measurements

on each dimension. Table II summarizes the list of measured

parameters from our experiments, along with the screen and

camera specifications.

B. Channel Capacity

We estimate capacity of screen-camera channel by substi-

tuting the measured values of SINRα, perspective distortion

factor α, and noise variance σ2
n in equation 6. We evaluate ca-

pacity in bits per camera pixel as Ccampixel(α) =
Ccam(α)

Ws
2 ||Rcam||

.

The measurement procedure for α, SINRα, σ2
n are ex-

plained in detail in sections V-C, V-D , and V-E respectively.

(1) Capacity v/s Perspective distortion factor: We plot

the measured capacity in bits/camera-pixels for different per-

spective distortion factor values in Fig. 5 (a). The distortion

factor α on the x-axis is comprehensive of those obtained

for each distance and angle combination. Fig. 5 (a) shows

the our estimate from measurements fit well with the model

(maximum error margin of 3%). Fig. 5 (a) also shows that

capacity depends significantly on the perspective of the cam-

era, which is unique to camera channels, and unlike radio

channels where multipath-fading plays a more significant role.

We can observe that, about 1bit/camera pixel is achievable

even when the screen is perspectively scaled onto only 15%
on each dimension (α = 2%) of the camera image. For the

LCD-tablet system we used, this translates to a distance of

2.6m (
df

0.15 ). At a sampling rate of 30fps5 and at a resolution

of 1920× 1080, a data-rate of 31Mbps is achievable from an

average-sized LCD monitor and a tablet camera. Assuming

all parameters are the same, except the size of the screen is

doubled, the same data-rate can be achieved at twice the range.

Such data-rates are even sufficient for streaming applications,

perhaps, to even download a video.

(2) Throughput with Block-size: We plot the screen-camera

communication throughput from equation 7 in bits-per-frame

(
Tblk(α,B)
kWfps

) for different values of perspective distortion fac-

tors, and block sizes B, in Fig. 5 (b). We can observe from

Fig. 5 (b) that capacity falls of steeply as α becomes smaller

for smaller block-sizes; for example, at B = 152 and 302. The

trend can be attributed to the low SINR at those perspectives

as IPI increases due to the dense arrangement of bits (pixels

carrying unique information). A block-size of 1 does not

follow this trend as the gain due to capacity scaling due to

more number of parallel channels compensates for most of

the loss in SINR, however, trades-off with receiver complexity

5Typical frame-rate on smartphone/tablet cameras is 30fps. IPhone 5S has
a 120fps capability [5]



to detect the very low SINR signal. The trend in Fig. 5 (b)

indicates that, while small block-size can yield considerable

throughput at small distance (or angles), it is judicious to

switch to a larger block-size at farther distance (or angle),

and if such adaptations are not possible then it is judicious to

use a globally optimal (determined through calibration) block-

size. For example, for the block-sizes in Fig. 5 (b) B = 302

looks close to optimal.

(3) Comparison with Prototypes: We compare our MIMO

capacity estimates (Tblk(α,B)) with the throughput of existing

prototypes of screen-camera communication. In PixNet [20],

bits are modulated onto LCD screen pixels that are decoded by

an off-the shelf point and shoot camera. PixNet uses OFDM

for modulation and adds (255,243) reed-solomon coding for

error correction. Consistent with the definition of a block in

our model, PixNet uses a block-size of 84 × 84. PixNet was

evaluated using a 30inch LCD screen as the transmitter and

6MP CCD camera at the receiver, and up-to a maximum

distance of 14m. The authors also reported the throughput

from their implementation of QR codes, which we will call

QR-P. The QR-P uses a version 5 QR code with a block size

of 5×5 pixels, and that encodes 864 bits per QR code. On the

other hand, COBRA [14] uses color barcodes to communicate

between smartphone screen and camera, and was evaluated

up-to a maximum distance of 22cm, and with a blocksize of

6 × 6 pixels. The authors of [14] have also implemented a

smartphone (receiver) version of PixNet, which we will call

PixNet-C, where the settings remained the same as original

PixNet system.

COBRA PixNet-C PixNet QR-P

4.5x 3x 2.5x 7x

TABLE I
RATIO OF CAPACITY OVER EXISTING PROTOTYPE’S THROUGHPUT (3X

INDICATES THE EXISTING PROTOTYPE IS 1/3RD OF CAPACITY)

In table I, we report the ratio of throughput from equation 7

to the throughput of the these prototypes, for the same parame-

ter settings, of blocksize and α as in their existing implementa-

tions. Our estimates indicate that there is room for atleast 2.5x

improvement in throughput when compared to capacity. The

discrepancy in throughput in these existing prototypes can be

attributed to different parameter choices. For example, PixNet

uses OFDM modulation and coding which add communication

overheads, which have to be incorporated in a limited spatial

bandwidth available on the screen. COBRA also incurs loss

in throughput due to coding overheads, and additionally the

small block size allows for more interference, reducing SINR.

COBRA minimizes blur by using repetitive colour patterns

and intelligent placement of those patterns on the screen.

While this strategy minimizes the effect of interference from

neighboring pixels, the repetition causes under-utilization of

the spatial bandwidth. In general, our findings, supported by

these exemplar comparisons, open up interesting questions in

the design space for improving information throughputs of

screen-camera communication systems.

C. Perspective Distortion Factor

The objective of this experiment was to determine the per-

spective distortion factor α from our measurements to estimate

capacity. Since α quantifies the relative area occupancy of

the screen in the camera image, we measured the average

distortion factor as,

αm =
||R||

||Rcam||
1

(1 + 4σ2
blur)

(8)

where ||R|| represents to the total number of camera pixels

that correspond to the imaged screen pixels, and Rcam is the

resolution of the camera. In figures 6(b) and 6(c) we plot

αm as a function of angle and distance, respectively. As can

be seen from these plots the measured spatial-bandwidth fits

well with the model (maximum error margin of 1.5%). The αm

reported here is the perspective distortion factor for our LCD

- tablet (camera) channel. The distance and angle at which

αm = 0 in these plots can be construed as the communication

range of a system with the same screen and camera parameters.

For example, for a screen with 10x the size (a billboard [2])

the distance range is close to 10x (about 40m) that of our

experimental system.

D. Signal-to-Interference Noise Ratio

To facilitate capacity estimation, we measured the signal-

to-interference noise ratio SINRαmeas in our experimental

system. We will now discuss the measurement procedure

in detail. Let WiON (x, y) and WiOFF (x, y) represent the

intensity of a pixel from a white block at location (x, y)
on the camera image where the lights were ON and OFF

respectively, and i (i = 1, 2 . . . 100) being the index of the

image in the dataset (similarly, BiON (x, y) and BiOFF (x, y)
represent pixel intensities from a black block). Let SINRW

denote the signal to interference noise ratio for the white pixel

and SINRB for the black, then

SINRαmeas =
1

2

∑

(

SINRW

||W || +
SINRB

||B||

)

SINRW = γ1m
s(W )

k(B) + n(W )
+ γ2m

s(W )

n(W )

SINRB = γ1m
s(B)

k(W ) + n(B)
+ γ2m

s(B)

n(B)

s(W ) =
1

100

100
∑

i=1

∑

x,y

(αmWiON (x, y))2

k(B) =
1

100

100
∑

i=1

∑

x′,y′

(1− αm)(BiOFF (x
′, y′))2

n(W ) =
1

100

100
∑

i=1

∑

x,y

(WiON (x, y)−WiOFF (x, y))
2

(9)
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Fig. 7. Screen-Camera mapping

where (x′, y′) 6= (x, y), ||W || and ||B|| represent the total

number of white and black blocks respectively. γ1m and γ2m
represent the measured number of pixels on the boundary and

non-boundary blocks of the imaged block respectively.

We plot SINRαmeas (from equation. (9)) versus α, along

with the analytical SINRα from equation (5), in Fig. 6 (a).

We can observe from that our SINR measurements are in close

agreement with our model (maximum error margin of 1.5dB).

We plot the per-block measured SINR (SINRblk(α,B) using

SINRαmeas) versus α for different block-sizes B in Fig. 5

(c).

We can infer from Fig. 5 (c) that, larger the block higher

is the the per-block SINR. We can also observe that for a

block-size B = 1, though it provides large number of parallel

channels for multiplexing, the signal energy on each channel

is much lower than the noise level, even for medium values of

α. In this case, additional signal processing is necessary at the

receiver can help decode the low SINR signal with minimal

errors. In general, the choice on the size of blocks becomes a

primary design parameter as it affects SINR performance.

E. Noise Measurement

We empirically measured noise power for SINR compu-

tation, to aid analytical capacity estimation. The experiment

dataset for this analysis consisted of 200 continuous camera

snapshots of the LCD screen at 2m (and perfect alignment),

displaying gray-level intensities from 0-255 in steps of 5 (total

52 sets). Based on our measurements we realized that the

intensity mapping between screen and camera can be linear

approximated(as shown in Fig. 7) and can be numerically

expressed as g(x) = 0.6481x+10.06 where x = 0, 1, . . . 255,

and the constant 10.06 accounts for the deterministic DC

noise in the pixel. The factor 0.6481 can be treated as the

path loss factor analogous to RF. As mentioned earlier, the

AWGN noise from the background manifests as the temporal

variance in the pixel intensity. We compute the noise energy

per pixel in our LCD screen- tablet camera channel, using

the mean-variance ( ˆvar(g(x): averaged over 52 samples) of

the intensity mapping between the screen’s actual intensity

and the measured intensity on the camera pixel as, σ2
n =

10.062 + ˆvar(g(x)) = 101.28.

Parameter Value

Cam pixel side-length scam[µm] 65

Cam focal length fcam [×scam] 1573

Screen pixel side-length st[mm] 0.248

Principal point (ox, oy) (960.1,539.2)

Noise-variance σ2
n 101.28

Lens-blur variance σ2
blur [×s2cam] 0.25

||Rs|| (=||Rcam||) [pixels] 1920×1080

Focal-distance df [m] 0.39

TABLE II
TABLE OF SCREEN, CAMERA AND MEASURED PARAMETERS

VI. RELATED WORK

Camera based communication is an example of visual

MIMO communication [10] where camera is used as a receiver

for information transmitted from arrays of light emitting

elements. In our earlier work in [10] capacity of a camera

channel was estimated by treating the transmitter light emitting

array and the camera are perfectly aligned. The channel is

considered as an analog communications channel where the

signal at the receiver is the sampled photocurrents from each

image pixel, and do not take into account the quantization

limitations in the camera.

The LCD screen-camera channel capacity estimates [17]

were based on a water-filing algorithm assuming the camera

channel can be equalized to encounter the effects of spatial

distortions. But the model and the prototype were designed for

a fixed distance of 2m between the screen and camera and did

not study the effects of perspective on the estimated capacity

and throughputs achieved. Perspective distortion has been

studied by the imaging community previously [12], [22], but

the fact that the camera is a part of a wireless communication

channel (captured object is the light source itself) presents

a new domain of challenge for applying imaging models in

analyzing communication channels.

The advent of high-resolution cameras in mobile devices has

spurred interest in using cameras for communication to retrieve

information from screens [1], [14], [18], [20]. These applica-

tions use specific receiver processing schemes to combat visual

distortions. PixNet [20] proposes to use OFDM modulation

to combat the effect of perspective distortion on images by

inverse filtering on the estimated channel, and using forward

error correction. COBRA [14] proposes to leverage from

encoding on the color channels to achieve throughput gains

for smartphone screen-camera communication, but at very

short distances (22cm). The fact that several prototypes have

been constructed reveals that screen-camera communication is

gaining large momentum.

VII. CONCLUSION

In this paper, we discussed the applicability of cameras for

communication. We considered the example where cameras

could be used as receivers for data transmitted in the form of

time-varying 2D barcodes from display screens. We modeled a



screen-camera channel using camera projection theory, which

addressed visual channel perspective distortions in more detail

than prior works. We discussed and modeled the effect of

perspective distortion on the information capacity of screen-

camera communications, and validated the same through cal-

ibration experiments. Our capacity estimates indicated that,

even with the frame-rate limitations in off-the-shelf mobile

cameras, data-rates of the order of hundreds of kbps to Mbps

is possible even when the 2D barcode from the screen images

onto only a small portion of the camera image. Our findings

indicated that camera communications is still promising for

medium sized data-transfer or even streaming applications;

such as downloading a file from a smartphone screen or

streaming a movie from a large display wall. Our estimates in-

dicate that current prototypes have only achieved less than half

their capacity, which means that designing efficient techniques

to address perspective distortions is still an open problem for

building high-data rate camera communications.
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APPENDIX

A. Derivation For Perspective Scaling Factor αp Using Cam-

era Projection Theory
Consider a point [Xw, Yw, Zw]T in world 3D space coordinates with respect to

the camera image axis.The camera image 2D coordinates [x, y]T are given as,

[

x y 1
]T

= C
[

R T
] [

Xw Yw Zw

]T
(10)

where T denotes transpose operation, C, R, T are the camera calibration matrix,

rotation matrix and translation vector respectively. Camera calibration matrix C accounts

for the projection and scaling of the coordinates in the image ((ox, oy) is image center).

R is the rotation matrix that accounts for the 3-tuple rotation angle (θx, θy, θz). and

T accounts for the translation between the world coordinate and the camera axis. If

cθ = cos θ, sθ = sin θ then,

R =









cθz −sθz 0

sθz cθz 0

0 0 1

















cθy 0 sθy

0 1 0

−sθy 0 cθy

















1 0 0

0 cθx −sθx

0 sθx cθx









(11)

C =









f
scam

0 ox

0 f
scam

oy

0 0 1









T =









Tx
w

Ty
w

T z
w









(12)

Consider two adjacent pixels p1 and p2 (of side-length st) of the screen transmitter

situated at distance d from the camera, as shown in Figure 8. Let xt, yt denote the

distance of pixel p1 from the screen’s center in X and Y dimensions respectively. Then

using camera projection matrix equation from equation 10, the distortion in each pixel,

α(xt,yt)
(x, y) can be derived as,









xp1

yp1

1









= C[R T]









xt

yt

d

















xp2

yp2

1









= C[R T]









xt + st

yt + st

d









(13)

α(xt,yt)
(x, y) = |xp2 − xp1| × |yp2 − yp1| ∀(x, y) ∈ R

= 0, otherwise
(14)

α(xt,yt)
(x, y) = st

fcam
scam

(cθy + sθxsθy) + ox(sθy − sθxcθy)

xtsθy − ytsθxcθy + cθxcθyd

× st

fcam
scam

(cθy) + oy(sθy − sθxcθy)

xtsθy − ytsθxcθy + cθxcθyd

(15)

where |.| denotes the absolute value. R denotes the set of camera pixels corresponding

to the screen’s projected image. We assumed that, st (order of microns) « d (order of

cm or m) in our derivation.

Using equation15 the average distortion factor αp can be determined as,

αp =
1

||Rs||

∑

∀(xt,yt)

1

||Rcam||

∑

∀(x,y)

α(xt,yt)
(x, y) (16)

where ||Rs||, ||Rcam|| are the screen and camera resolutions respectively.


