
Online Unsupervised State Recognition in
Sensor Data

Julien Eberle, Tri Kurniawan Wijaya, and Karl Aberer
School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
Email: {julien.eberle, tri-kurniawan.wijaya, karl.aberer}@epfl.ch

Abstract—Smart sensors, such as smart meters or smart
phones, are nowadays ubiquitous. To be “smart”, however, they
need to process their input data with limited storage and
computational resources. In this paper, we convert the stream
of sensor data into a stream of symbols, and further, to higher
level symbols in such a way that common analytical tasks such
as anomaly detection, forecasting or state recognition, can still
be carried out on the transformed data with almost no loss
of accuracy, and using far fewer resources. We identify states
of a monitored system and convert them into symbols (thus,
reducing data size), while keeping “interesting” events, such as
anomalies or transition between states, as it is. Our algorithm is
able to find states of various length in an online and unsupervised
way, which is crucial since behavior of the system is not known
beforehand. We show the effectiveness of our approach using
real-world datasets and various application scenarios.

I. INTRODUCTION

In the near future, the role of sensor networks is expected to
become pervasive. Smart home and smart city concepts require
sensor deployment in almost every corner of our living space,
to make sure that homes and cities are “smart enough” to
assist and support the needs of their inhabitants. In addition,
the ever increasing capabilities of smart phones to record and
sense raises the promise of more personalized and contextually
relevant services. Given the numerous built-in sensors in
today’s smart phones (accelerometer, GPS, microphone), and
their access to their owner’s calendar, to-do list, SMS/call
history and internet it is not hard to imagine that in the near
future they will be capable of completely analyzing our daily
schedule and giving specifically tailored and highly personal-
ized recommendations. These could include what clothes to
wear (depending on predicted activities and weather forecast),
which route to take when to avoid traffic jams, and which items
to buy at the supermarket (depending on food preferences
or whether one plans to have guests). Owing to the rapidly
changing human behavior, then unsupervised learning is more
appropriate compared to supervised learning, whose ability is
often limited by its training context and environment.

Another interesting scenario for pervasive sensors and com-
putation are smart electronic appliances. These appliances are
equipped with sensors to measure their power use (including
patterns) and some (limited) storage, computational and com-
munication capabilities. Here also a generic and unsupervised
algorithm is more suited due to the huge amount of newly
introduced appliances and sensors [1], [2]. Additionally, their
ability to predict their own future states or usage patterns could
be useful, e.g., for participating in a demand response program
[3], or if electricity prices follow real-time dynamic pricing
schemes, then drawing/storing energy from the grid when the
price is cheap and using it later when the price is expensive

would save money [4], [5]. Energy consumption measurement
at the level of electronic appliances also enables us to detect
their different states. Owners can be notified if an unusual
operation or anomaly is detected, e.g. unusually long on states
detected on an appliance could mean that the owner forgot to
turn the appliance off. Detecting this unintended event leads
to energy and cost savings. Another example is an atypical
power consumption pattern, which could mean that the device
requires maintenance or indicate an imminent failure.

However, the data generated by all these sensors (from
buildings, public infrastructure, smart phones, smart electronic
appliances), is big data in every dimension: big volume, big
velocity and big variety. A centralized approach typically
involves communicating data from sensors to a central server
for processing. Most of the today’s popular location-based
services are examples of centralized solutions, i.e. GPS in-
formation from a mobile phone is communicated to a central
server, computation for the service requested is performed in
that server and the result is sent back to the phone. Similar
processes are envisioned for participatory sensing scenarios.
Additionally, since sensor data contain sensitive personal in-
formation, this solution is susceptible to breach of privacy. It
also requires vast data storage and significant computation and
communication costs. With an increasing number of sensors,
scalability becomes a serious issue. Furthermore, the high cost
of large storage requirements could potentially cause sensor
data processing to be dominated by a few big players (Big
Brothers holding most of our data).

In this paper, we focus on a decentralized approach where
we store and process the data as close to the sensors as
possible. Since only a little data (usually aggregated) leaves the
sensor or smart phone, privacy is preserved, communication
costs are greatly reduced and the whole system is more
scalable. However, the advantages of a decentralized approach
require that other challenges be solved: smart devices (such
as smart appliances and smart phones) only have limited
storage and computational power. Solving these challenges
means processing big (streaming) data as efficiently as possible
while maintaining data usability. To this end, the solution
should satisfy the following requirements: 1) For more efficient
processing, streaming sensor data should be processed online
(efficiently, some limited delay can be tolerated); 2) For
more efficient storage, data can be transformed into another
representation. However, it should allow efficient processing of
data mining algorithms, without “reverting” the representation;
Encoding can be lossy, but the states must be preserved as
much as possible; 3) Since a sensor is able to measure different
thing, the solution should be able to handle multidimensional
time series; 4) Since not all states could be observed apriori,

Fig. 1: An overview of our solution. We start with the initial symbolization pro-
cess (Spclust, see Section II). Next, we repeatedly compress the representation
using run-length encoding (RLE) and recognize states using StateFinder (see
Section III). The output is then used in various applications (see Section IV
and V).

the solution should be able to learn in an unsupervised way.
5) Since the length of states might vary, the solution should
also be able to find states of various length. Thus, algorithms
that assume a fixed/predefined length of states (or sequence or
sliding window) might not be suitable.

Hitherto, there is no solution in the literature which fulfills
all the requirements above (see our literature review in Sec-
tion VI). This paper fills the gap and proposes a framework
which satisfies them (see Figure 1). We summarize the key
contributions of this paper as follows.
• We propose a novel state preservation index which

quantifies how good a cluster/symbolic configuration is
(given the measurements) in preserving system’s states
(Section II).

• We propose a novel StateFinder algorithm which com-
bines the effectiveness of some well-known techniques,
such as Markov chain and subsequences clustering (Sec-
tion III). The algorithm is able to identify the states along
a data stream in an online and unsupervised way, using a
limited memory and computational footprint.

• We carry out experiments using real-world datasets from
different domains, e.g., human energy consumption and
activity recognition, and present different application sce-
narios, e.g., state recognition, forecasting, and anomaly
detection, to showcase the versatility of our approach
(Section V).

II. STATE-PRESERVING SYMBOLIC REPRESENTATION

In this section, we outline an initial step needed to deal
with noisy n-dimensional time series.

Definition 1: We define n-dimensional time series formally
as S = {s1, s2, s3, . . .}. Each si ∈ S is a tuple (ti, ~Vi), where
ti is a timestamp and ~Vi ∈ Rn is a vector of measurements.
We have i < j iff ti is earlier than tj .

Next, we explain how we learn to map measurement vec-
tors (or measurements) onto symbols to reduce data granularity
and process it more efficiently, while preserving system’s states
as much as possible. This process can also be viewed as
a preprocessing step (see Figure 1). The learning algorithm
below, Spclust, can be run either during the sensor calibration
phase or on top of historical data that capture the measurement
distribution. As similar measurement vectors are converted
to the same symbol, the symbolization process can also be
thought as a clustering process, where measurement vectors
are replaced by their cluster labels.

A. State Preservation Index
Measurements which are more likely to belong to the

same state, should be converted into the same symbols. Thus,
we consider the following two principles when developing

our symbolic representation: (i) measurements with similar
values are more likely to belong to the same state, and
(ii) a system is more likely to stay in its current state than
change to another state. Let C = {c1, . . . , c|C|} be a cluster
configuration (a set of clusters), where each cluster c ∈ C is
an n-polytope. Since a measurement ~V is essentially a point
in an n-dimensional space, we write ~V ∈ c if the point ~V lies
in the n-polytope c. We express the existence of a connection
between clusters c1 and c2 through si as a binary function:

is conn(c1, c2, si) =

{
1 if ~Vi ∈ c1 ∧ ~Vi+1 ∈ c2
0 otherwise

}
, (1)

and its distance as:

dist conn(c1, c2, si) ={
dist(~Vi, ~Vi+1), if ~Vi ∈ c1 ∧ ~Vi+1 ∈ c2
0 , otherwise

}
. (2)

In our experiments (see Section V), we use the Euclidean
distance. However, any distance metrics for two vectors could
also be used here.

We define the number of connections between c1 and c2
as #conn(c1 , c2) =

∑
si∈S is conn(c1, c2, si). And, for a

cluster c, we define its diameter, diam(c), as the farthest
distance between any two measurements in c. We measure
how compact the clusters in configuration C are by:

intra coeff (C) =
∑
c∈C

#conn(c, c)

diam(c)
, (3)

i.e., the higher the intra coeff value, the more compact the
clusters are. Note that, the division by the cluster diameter is
needed, so that the measure is cluster-size invariant.

We define the average connection length between two
clusters, c1 and c2, as:

avgConnLen(c1, c2) =

∑
si∈S dist conn(c1, c2, si)

#conn(c1 , c2)
.

Then, we measure the connection density between clusters in
configuration C as:

inter coeff (C) =
∑
c1∈C

[∑
c2∈C,
c2 6=c1

#conn(c1, c2)

avgConnLen(c1, c2)

]
, (4)

i.e., the fewer the connections between clusters and the farther
the connections between them, the lower the inter coeff
value. As we prefer to have clusters which are separated as far
as they possibly could, and fewer connections between them,
lower inter coeff is preferred in general.

Given a cluster configuration C, we design a scoring
function, state preservation index, which aims to measure
how good the configuration is in preserving system’s state
transition:

spi(C) =
intra coeff (C)

inter coeff (C)
, (5)

For a cluster configuration C, the higher its spi value, the
better. That is, we prefer clusters that are compact, densely
intra-connected, well separated and sparsely inter-connected.

B. The Spclust Algorithm
In general, finding the best cluster configuration for a

time series (which maximizes spi) is intractable. In order to
approximate it, we propose Spclust (see Algorithm 1), which is

Algorithm 1: Spclust
Input: n-dimensional measurement space M , grid size

G, threshold T
Output: cluster configuration

1 quantize M into n-dimensional hypercubes of length G
2 forall the hypercubes h do
3 count measurements in h
4 if count ≥ T then
5 density(h)← 1

6 else
7 density(h)← 0

8 find connected component (clusters) on all hypercubes
h, where density(h) = 1

9 assign distinct label to each cluster
10 enlarge the clusters incrementally to include hypercubes
h with density(h) = 0 until all hypercubes are clustered

11 return clusters

based on a spatial clustering algorithm, Wavecluster [6]. This
algorithm detects clusters of arbitrary shapes; it is fast, de-
signed for large databases and insensitive to noise. In contrast
to Wavecluster, which uses wavelet transformation, Spclust
uses a simple step function transformation (see line 3-7). Then,
it expands the resulting clusters to include hypercubes with
zero density (see line 10). In Wavecluster, those hypercubes
are not clustered since they are translated into noise or white
spaces. In our context, however, we need to partition the
space of measurements, as we might encounter these values
later in the future. To this end, we borrow the idea from
maximum margin classifiers to enlarge the resulting clusters
incrementally until all hypercubes are clustered. Next, from a
set of possible grid size, G, and threshold, T , we select G∗ ∈ G
and T ∗ ∈ T that maximize the spi value of the resulting
configuration. Finally, we transform each measurement in the
n-dimensional time series S with its cluster labels and obtain
a symbolic time series Ŝ. We define a symbolic time series
formally as follows.

Definition 2: Let A be our alphabet or a set of symbols.
We define a symbolic time series as Ŝ = {ŝ1, ŝ2, ŝ3, . . .},
where each ŝi ∈ Ŝ is a tuple (ti, ai), ti is a timestamp, and
ai ∈ A is a symbol. Additionally, ti is earlier than tj iff i < j.

C. Run Length Encoding
To improve storage space and access efficiency, we apply a

run length encoding compression algorithm over symbolic time
series. As our input time series contains only timestamp-value
tuples, we assume that a measurement stays valid until the next
one. However, special care was taken, in the experiments, so
that no huge gap (sensor down-time) was filled this way.

Definition 3: Let {ŝ1, ŝ2, ŝ3, . . .} be a symbolic time se-
ries, where each element is a tuple (ti, ai), as defined earlier.
The output of RLE is a sequence of {s̄1, s̄2, s̄3, . . .}, each
element being a triple (tbj , t

e
j , āj) which is defined as the

shortest sequence of triples such that:
RLE : (R,R)n 7→ (R,R,R)m

RLE({ŝ1, ŝ2, ŝ3, . . .}) := {s̄1, s̄2, s̄3, . . .}
where ∀i ∈ [1, n],∀j ∈ [1,m], if ti ∈ [tbj , t

e
j), then āj = ai.

This lossless process transforms a sequence of symbols into
a single triple composed of a starting time tb, ending time te
and a symbol. Hereafter, unless stated otherwise, we represent
time series as RLE compressed triples.

Fig. 2: Illustration: several consecutive occurrences of a pattern indicate that
the system is in a certain state.

III. THE STATEFINDER ALGORITHM

We define a state as a consecutively repeating pattern of
symbols that has several (significant) occurrences along the
time series. In previous works, the term pattern can be found
termed as primitive shape [8], frequent temporal pattern [9]
and motif [10], and what we call states is more similar to the
definition of the operating modes [11] or process states [12]
(illustrated in Figure 2). Finding states at various scale in
an online manner, however, is not trivial. Additionally, the
complete list of system states might be unknown beforehand.
Thus, the solution must find the states in an unsupervised
manner. However, current solutions in the literature (see also
our literature review in Section VI) aim to find either some
predefined patterns or patterns (which can also be extended
into states) of a fixed length only.

Our goal here is to find states of various length in an
online and unsupervised way, and replace them with new
symbols (hence reduce the overall data size, see Figure 3 for an
illustration), while allowing various inference to be performed
on top of the symbolic-state representation (see application
examples in Section IV and V). Additionally, more complex
patterns can be found by applying multi-pass StateFinder,
e.g., 1st pass of the StateFinder is applied to RLE triples,
2nd pass of the StateFinder is applied to the outcome of the
1st pass, and so on. The StateFinder algorithm consists of
two steps: (1) identifying subsequences with repeating pattern,
(2) clustering relevant subsequences and assigning a (new)
symbol to them. We explain the steps in more detail below.

A. Segmentation
One straightforward option is to take all possible subse-

quences and cluster them to directly separate the repeating
ones from others, seen as noise. However, it has been shown
in [13] that this approach does not actually work and produces
meaningless output. Therefore, we first need to isolate the
potential subsequences that show a regular pattern. Since the
patterns that we are interested in are characterized not by their
length, but by their dynamics, we use a Markov model as the
basis of our approach below.

We use a first-order Markov chain, but higher orders can
also be used to identify more complex states. In our case, the
use of a first-order Markov chain as model for the underlying
process is a low-cost and generic approximation and does not
imply that the process itself has such properties. If it is known
that the time series’ process is of higher order and enough
computational resources are available, it is possible to use
higher order Markov chains.
Length-frequency set. For each symbol transition, we define
an iteratively updated frequency of the next symbol length.

Definition 4: Let āu−1 and āu be the symbol of the u−1th

and the uth entry of the RLE represented input. Additionally,
let λ ∈ [0, 1) be a fading factor. For j ∈ A and k ∈ N,
we denote the (decaying) length-frequency of symbol j with

Fig. 3: We apply the Spclust algorithm to the raw data (sensor measurements) to produce the symbolic time series. After applying RLE to the symbolic time
series (not visible in this figure), we apply StateFinder to find the states. The StateFinder algorithm can be applied several times to build a multi-level state
representation. The raw data is displayed using the horizon graph [7].

length k following symbol i, as hki,j , and update it over time:

hki,j(0) := 0

hki,j(u) :=


hki,j(u− 1) · λ+ 1 , if i = āu−1 ∧ j = āu ∧

k = teu − tbu
hki,j(u− 1) · λ , if i = āu−1

hki,j(u− 1) , otherwise.

Hereafter, we refer to the set of all hki,js as the length-frequency
set.
In the definition above, we use the fading factor to forget the
old entries instead of using the sliding window approach, since
the searched patterns could have different length. Thus, setting
a predefined window length would be problematic, as too small
window would fail to capture long patterns and vice versa, too
big window would fail to capture short patterns.
Segments. When the underlying process generating the
symbols is in a stationary state, the elements of the length-
frequency set tend to be stationary as well, whereas between
the states, they may change a lot. In general, the length-
frequency set can be used to predict the next symbol (and
its length). To give a “smooth” estimation of the likelihood
of the uth entry of the RLE triples, we compute Pr(u) the
probability that symbol āu of length teu − tbu follows āu−1

using the Gaussian Kernel Density Estimation (KDE). Let
i = āu−1, j = āu, and Bi,j(u) = {k | hki,j(u) > 0} be the
set of symbol j’s lengths, following symbol i, with non-zero
(decaying) frequency. Then, we have:

Pr(u) :=

∑
k∈Bi,j(u−1)

(
hki,j(u− 1) · e

− ((teu−tsu)−k)2

2·σi,j(u−1)2

)
∑
α∈A

[∑
k∈Bi,α(u−1)

hki,α(u− 1)
] , (6)

whereA is the (symbol) alphabet set and σi,j(u) = 0.9An−1/5

is the kernel bandwidth computed using the Silverman’s rule
of thumb [14]. That is, n = |Bi,j(u)| and A = min(sd , IQR

1.34),
where sd and IQR are the standard deviation and the inter-
quartile range of the set {hki,j(u) | k ∈ Bi,j(u)}, respectively.
The gaussian term in the nominator is useful to smoothen the
symbol length estimation, while the denominator normalizes
it over all symbol (and symbol length) that occur after āu−1.
After computing Pr(u), we define the prediction error as:

E(u) := 1− Pr(u). (7)

Then, a segment is a predictable subsequence of RLE triples:
Definition 5: A subsequence of m contiguous RLE triples

starting at the uth entry is a segment, denoted as S̃(u,m) =
{(tbj , tej , āj)}, iif tej = tbj+1 and E(j) < p for all u ≤ j ≤ u+
m−1, where p is a threshold parameter. A maximum segment

Fig. 4: Illustration on how segments are formed, using the data from the birds’
calls dataset in [15]. The dashed line below shows the (three) symbols level
0, plotted as values 0.0, 0.1, and 0.2, the thin solid line is the prediction error
over time, and the thick solid line is the threshold paramater p = 0.9. The
grey areas shows the segments.

is a segment that cannot be lengthen by adding the preceding
or following symbols. By definition, maximum segments are
non-overlapping.
Hereafter, whenever the context is clear, we omit the parame-
ters u and m and refer to a segment simply as S̃. Figure 4
shows an example on how segments are formed.
Complexity. To analyze the time complexity of processing
each RLE triple, we need to consider both, the time to update
the length-frequency set (Definition 4) and the time to compute
the prediction error (Eq. 7). Both of them iterate over the set of
non-zero length-frequencies, namely, at the uth entry, we iterate
over the set Hāu−1

(u) = {hki,j(u) | k ∈ Bi,j(u), i = āu−1}
for j ∈ A and k ∈ N. We refer to this set as H for brevity.
This gives us O(|H|) time complexity. Below, we show that
|H| is bounded.

Lemma 1: Let λ be the fading factor in updating the
length-frequency set and ε be the smallest representable po-
sitive value greater than zero (either predefined or limited by
machine precision), i.e., for a value v where 0 ≤ v ≤ ε, we
have v = 0. Then, |H| ≤ logλ ε.

Proof: Since for a given (StateFinder-) pass the size of
the alphabet set is constant, H can only grow (linearly) when
we process an RLE triple by adding a new value for k that
has never seen before for a given transition. In the worst case
scenario, each incoming triple has a new length k. If this
happens, however, the value of the oldest element in H would
be λ|H|, since we apply a fading factor when updating the
length-frequency set. That is, when |H| > logλ ε, the oldest
value would be less than ε, and thus keeping |H| ≤ logλ ε.

Thus, we have O(logλ ε) time complexity, which is es-
sentially O(1), since ε is a constant. Regarding the space
complexity, at any uth entry, following Lemma 1, we need
to store |Hi(u)| entries for each i ∈ A. Thus, we have space
complexity O(|A| · logλ ε), which is also O(1).

B. Clustering
Following the definitions of segments, we represent a

segment as a transition matrix of its symbols, i.e., the Segment
Transition Matrix.

Definition 6: The Segment Transition Matrix of segment S̃
is an n× n matrix M (S̃) = {mi,j(S̃)}, where n = |A| is the
size of the alphabet and mi,j(S̃) is defined as follows, using
x as a temporary variable for better readability:

xi,j(S̃) :=
∑

(tbk,t
e
k,āk)∈S̃


tek − tbk − 1 , if i = j = āk
1 , if i = āk ∧ j = āk+1

0 , otherwise

mi,j(S̃) :=
xi,j(S̃)∑n
q=0 xi,q(S̃)

The row i, column j of the resulting matrix contains the
probability to have a transition from symbol i to j, the diagonal
being the probability to stay on that symbol. As our notation
excludes the ending time (tek) from the interval, we need to
subtract 1 in the top case.

To select which maximum segments are relevant and will
be replaced by new symbols, we group them into clusters. The
clustering algorithm should: (1) be able to run online (as in the
segmentation step), thus limiting its computational needs, (2)
make no assumption in the number of clusters in advance, as it
may increase over time, (3) be consistent, i.e., once a segment
is assigned to a cluster, it should not change its assignation in
future iterations. To satisfy all those requirements above, we
adapt the clustering algorithm described in [11] by computing
the distance between two segments S̃a and S̃b, using the cosine
distance of their vectorized transition matrices:

δ(S̃a, S̃b) =

n∑
i=1

n∑
j=1

mi,j(S̃
a) ·mi,j(S̃

b)√
n∑
i=1

n∑
j=1

(mi,j(S̃a))2 ·
√

n∑
i=1

n∑
j=1

(mi,j(S̃b))2

When a new segment is identified, the algorithm assigns it
to the nearest cluster within a maximum distance dmax ∈ [0, 1].
If there is no cluster within dmax , then a new cluster for the
segment is created. Each cluster is associated with a distinct
“higher level” symbol (see also Figure 3). If a segment is
associated with an already existed cluster (within dmax), it is
replaced with a new (higher level) RLE triples as follows. Let
S̃(u,m) be the segment to be replaced and ∆ be the symbol
of the cluster associated with the segment S̃(u,m). Then, we
replace S̃(u,m) with a single triple (tbu, t

e
u+m−1,∆). Finally,

we call the clustered segment as a state.

IV. APPLICATIONS

In this section, we show how various higher level applica-
tions can be built on top of our state representation without
converting it back to the original values, i.e., state forecasting,
anomaly detection, and compression. Additionally, since state
recognition is a “natural” capability of StateFinder, we refer the
readers directly to Section V-B. Due to the 8-page limitation,
we discuss state forecasting in supplementary material [16].
State Anomaly Detection. As the normal behavior of the
system (i.e., things sensed by the sensors, such as human
or natural phenomena) is characterized by some stability, it
would be converted to higher level symbols (or states) by the
StateFinder algorithm. An anomaly, however, would not be
converted. In other words, a capability to detect anomaly is

also implicitly built into the symbolic conversion. This makes
the anomaly detection task using our symbolic representation
rather straight-forward, without reverting them to their original
values. Additionally, RLE triple representation and StateFinder
also make the whole process more efficient since the normal
behavior is now much shorter (see also Figure 3 for an
illustration).

To detect anomalies, we adapt the algorithm in [17], where
the authors use the distribution of symbols’ occurrences in
the whole training set (in the supervised case), or in the
previous time window (in the unsupervised case) as the normal
reference. Unfortunately, this does not work in our case, since
human behavior is daily periodical. Thus, instead of using the
whole training set or only the previous time window, we use
the behavior of the same time of day/week (in the training set)
as the normal reference. In addition, the Segment Transition
Matrix implicitly contains the symbol distributions and thus
can be directly used for estimating them.

More formally, let r be a time duration (e.g. 15, 30,
or 60 minutes), as our detection resolution. We assume that
the system of interest inherits daily periodical behavior. We
then divide the a day into time intervals {R1, . . . Rn}, each
of length r. Then, we compute, over the entire training set,
{D1, . . . Dn}, the distribution of symbols’ lengths which occur
within each time interval, where Di is the symbol length
distribution within Ri. We also compute {D′1, . . . , D′n}, the
distribution of symbol length in the test set for each time
interval. Next, the anomaly score of time interval Ri in the test
set is computed as the dissimilarity between D′i and Di. The
less similar D′i is to Di, then the more likely Ri in the test set
contains anomalous behavior. Moreover, setting r differently
allows us to see anomalies with a different granularity.
Data Compression Because symbolization is a kind of time
series summarization technique, StateFinder can also be used
for compressing the time series. If one increases dmax at each
level, it is possible to compress further, but some information
will be lost. Compressing a completely random time series,
however, would be very challenging using this method.

V. EXPERIMENTS

In this section, we demonstrate the applications of our
approach to real-world dataset. To show the versatility of
StateFinder, we deliberately use datasets from various domain,
such as household energy usage, human activity recognition,
and location tracking. Unless stated otherwise, we use the
fading factor λ = 0.9 to update the length-frequency set (Defi-
nition 4).1 The state forecasting and running time experiments
and our source code can be found in [16].

A. State Preservation Index
In this experiment, we use the REDD dataset [19], contain-

ing smart meter readings for 6 houses, divided by appliances,
with a 3-second sampling rate. We show here the result from
channel 11 of house 1 which representing the microwave oven,
since (compared to others) it contains more heterogeneous
states. The time series plotted in Figure 5a has 745,878 values,
representing one month of data. Figure 5b represents one hour
of this same time series. On the left of the Figure, when the

1According to Papadimitriou et al. [18], a value around 0.96 is reasonable
for a stationary time series, however as we are dealing with switching between
several stationary states, a lower value is preferred.

Fig. 5: Complete microwave dataset, showing one month of usage (top) and
one hour of microwave oven usage (bottom), showing different power levels.

microwave oven is not set on full power, as it is on the right,
there are distinguishable heating cycles.

Figure 6 shows the state preservation indices (or spi, see
also Eq. 5) of different symbolization methods. For Spclust,
Figure 6a shows that the highest state preservation index is
obtained using grid size=20 and thresholds equal to 100, 200,
or 300. In addition, we also compare the symbolization results
from Spclust using other symbolization methods, i.e uniform,
median, distinct median [20] and KMeans clustering. Figure 6b
shows how Spclust and the other symbolization methods map
the microwave power usage into symbols. In this case, Symbol
1 can be interpreted to decodes the off or standby state,
Symbol 3 decodes the on state, whereas Symbol 2 decodes
the intermediary state. Spclust appears to be the most suitable
method to perform the symbolization since it has the highest
spi value (see Figure 6c).

Driven by the fact that Spclust significantly outperforms
other methods, while having rather similar power-to-symbol
maps, we carefully analyzed the mapping and the dataset.
There are some small power usages around 30 watts which
are put in the off state by almost all methods (except median).
This power reading appears only once in a while, and in a short
period (3 or 4 seconds) between the off states. Thus, it makes
sense to assume that it indeed belongs to the off state. We also
observe that there are some intermediary power usages around
60 watts. Unlike the 30 watt power usages, this 60-watt power
usages appear in longer duration (around 20 or 30 seconds)
and systematically between the on states (see e.g., Figure 7A).
While other methods include these usages in Symbol 1 (off
or standby states, which is not the case), Spclust includes
them in Symbol 2 (intermediary state, which confirms our
insight). After consulting our colleagues from the Electrical
Engineering department, they confirmed that Figure 7A indeed
shows how a microwave works when it is set to a medium
power. Rather than emit the exact medium power, it emits
high power intermittently (proportional to the power setting).
The 60-watt power usages are used for lighting, rotating the
plate, and (possibly) turning on its fan.

B. State Recognition
As StateFinder is designed to extract states in the input

data, state recognition is the most direct use of its output. The
resulting states can then be mapped to a specific semantic. For

Fig. 7: Prototypes of the states, generated from the transition matrices of the
microwave time series in Figure 5a.

instance, we show below how StateFinder is able to identify
different heating levels of a microwave oven.

Using Spclust grid size=20 and threshold=200, we ex-
tracted the states using StateFinder on the same dataset as
in Section V-A. Figure 7 shows the prototypes of each state
found. The four heating levels that were used during the ex-
periment, are noticeable as the states A, B, C and D, while the
other states shows different microwave usage patterns. Overall,
Figure 7 also shows that StateFinder is able to identify states of
various length or time scales (e.g., seconds, minutes, hourly).
Note that, the capability to automatically discover appliances’
states in an unsupervised way is crucial, especially since there
are countless new electrical appliances released every day.
For instance, a good smart home/energy management systems
should be able to learn and recognize the states of an appliance
that is newly bought by the home owner.

In addition, our algorithm is not specific to one domain, but
rather to a certain definition of the searched states. In the next
experiment, we illustrates another use-case involving mobile
phone accelerometer data. We use the dataset provided on the
UCI Machine Learning Repository by Anguita et al. [21]. The
data of user 6 is particularly interesting since the patterns are
clearly distinguishable by human eyes, and therefore makes it
possible to validate the output of our algorithm. In the Figure
8 (top) we show the tBodyGyro-mean()-X feature which, as
its named implies, represents the X axis of the gyroscope with
the 50Hz data being smoothed over a sliding window of 128
readings. The data is first symbolized using 3 symbols and then
given to the StateFinder. Different darkness levels indicate the
different symbols: 0 to 2 for the symbol level 0, and 3 to 4 for
the symbol level 1, which represent the states generated by
the StateFinder. To better understand the state identification,
Figure 8 (bottom) shows on the y-axis symbols level 0.

The states found can be matched to the user’s activity.
From the ground truth, provided with the dataset, we are able
to associate a semantic with the two identified states, namely
symbols 3 and 4. The first is “going upstairs” while the second
one is “going downstairs”. As other labels like “sitting” or
“standing” are not linked to any specific pattern on this axis
of the gyroscope, no state is linked to them.

C. State Anomaly Detection
We run our anomaly detection algorithms on symbols

level 1, using the same smart-meter dataset and symbolization
process as in Section V-B. For this experiment, we add a
synthetic anomaly, as if the microwave oven was left running
for around 2 hours. In Figure 9, the top plot shows the raw data
where the anomaly was added in the first quarter. The bottom
plot shows the output of our anomaly detection algorithm that

(a) State preservation indices of Spclust using different
grid size and threshold The higher the better.

(b) Power to symbol mapping of different
methods.

(c) State preservation indices of dif-
ferent methods. The higher the bet-
ter.

Fig. 6: Evaluation of symbolic representation on microwave dataset. In (a) the highest eval value is achieved using grid size=20 and threshold=100, 200, or 300.
Next, for (b) and (c), we set Spclust grid size to 20 and threshold to 200. The alphabet size of uniform, median, and distinct median is set to 3. For KMeans,
we set k=3.

Fig. 8: Gyroscope value on x-axis, recorder on a smartphone while the user
was performing different activities. Below is the symbolized version using 3
symbols and the color indicates the state detected by the StateFinder.

indicates the probability of an anomaly happening at any given
time, clearly shows a peak at the time when the anomaly
happened.

VI. RELATED WORK

Time series segmentation. A large family of methods for
segmenting time series aim to summarize them based on
piecewise approximations using different functions (see, e.g.,
[22]–[24]), where segmentation points are found either by
minimizing the model’s fitting error or at regular intervals.
Chung et al. [25] map a predefined set of patterns onto the
time series to identify the segments dynamically, while Guo et
al. [26] directly use a set of approximation functions to select
the best adapted models for each segment. Srinivasan et al.
[12] use the states found in a feedback loop, as contextual
information to classify the patterns in the time series in a
supervised manner. The classification output then allow the
time series to be segmented into different states. Kohlmorgen
and Lemm [11] presented an online algorithm for segmenting
time series using HMM and a modified Viterbi algorithm. All
the methods above, however, assume that every part of the time
series must belong to a state or a segment. On the contrary, we
keep the transitional part (as well as the rare sequences and
anomalies) as it is, so as to lose less information.
Time series subsequences clustering. Ramoni et al. [27]
present the BCD clustering algorithm, which is able to cluster
time series subsequences, using “event markers” (simultaneous
changes on at least three sensors) as segments separators.
Denton et al. [28] cluster time series subsequence using
a kernel-density-based algorithm. However, the size of the
subsequences has to be predefined and only the subsequences
with similar length can be compared, as they use the Euclidean

Fig. 9: Anomaly detection on states and symbols generated from the mi-
crowave dataset. The top plots shows the raw data including the anomaly
around hour 30. The bottom plot show the anomaly probability computed
from the the StateFinder output symbols.

distance. Rakthanmanon et al. [15] introduced the idea, which
we also applied, that not all the data should be clustered
and transition phases should be ignored. They developed a
clustering algorithm for discrete time series, based on the
Minimum Description Length principle. It requires, however,
approximate length of the motifs (or subsequences) that the
user interested in as input. Wang et al. [29] represent their
clusters as states of a Markov Chain, which is similar to
our approach. However, all time series segments, including
the transition and meaningless phases, are associated with a
state. Additionally, they require an extended Viterbi algorithm
and iterative refinement steps, which are both computationally
expensive and less suitable for online processing.
Online frequent pattern mining. In addition to segmentation,
online processing has also been pushed into the field of mining
frequent patterns. Han et al. [30] surveyed some methods for
mining frequent itemsets over data streams (see Chapter 5.3).
Mueen and Keogh [31] proposed an algorithm to maintain
exact motifs over a time-window for time series summariza-
tion/compression. Together with other more recent works [32],
[33], and those mentioned in the survey by Aggarwal [34], all
these algorithms identify size-dependent patterns. Furthermore,
there is a fundamental difference between our definition of
state and what they refer to as patterns, i.e., patterns are
characterized by their length, whereas states are by their
dynamics. Additionally, depending on the dynamics of the time
series, a pattern could also appear in different states.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an online and unsupervised
state recognition algorithm StateFinder that is able to detect
and identify states in symbolic time series. Since initial sym-
bolization determines StateFinder performances, we proposed
a state preservation index to assess how good a symbolic
representation is at preserving systems’ state transitions. We

also proposed the Spclust algorithm to build the initial sym-
bolization, also for multidimensional time-series. In addition,
learning on top of higher level symbols is faster, requires much
less space, and produce comparable accuracy. It also enable us
to perform analytics locally on smart devices and appliances,
which have limited computational and storage capabilities.
However, further refinement should be done for non-stationary
time series. Next, we plan to deploy our algorithms in real
environment [35]. Additionally, since Spclust and StateFinder
preserve interesting events and reduce data size, they could be
used to complement Round Robin Database, i.e., to store data
further in the past given the same amount of space available.

VIII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
helpful feedback. This project is evaluated by the Swiss Na-
tional Science Foundation and partialy funded by Nano-Tera.ch
with Swiss Confederation financing and the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 288322 (Wattalyst) and 288021 (EINS). Tri Kur-
niawan Wijaya is supported in part by IBM PhD Fellowship.

REFERENCES
[1] D. E. Phillips, R. Tan, M.-M. Moazzami, G. Xing, J. Chen, and D. K.

Yau, “Supero: A sensor system for unsupervised residential power usage
monitoring,” in IEEE International Conference on Pervasive Computing
and Communications (PerCom). IEEE, 2013, pp. 66–75.

[2] A. Rai, Z. Yan, D. Chakraborty, T. K. Wijaya, and K. Aberer, “Mining
complex activities in the wild via a single smartphone accelerometer,”
in Proceedings of the Sixth International Workshop on Knowledge
Discovery from Sensor Data, ser. SensorKDD ’12. New York, NY,
USA: ACM, 2012, pp. 43–51.

[3] T. K. Wijaya, M. Vasirani, and K. Aberer, “When bias matters: An
economic assessment of demand response baselines for residential
customers,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1755–
1763, July 2014.

[4] A. Mishra, D. Irwin, P. Shenoy, and T. Zhu, “Scaling distributed
energy storage for grid peak reduction,” in Proceedings of the Fourth
International Conference on Future Energy Systems, ser. e-Energy ’13.
New York, USA: ACM, 2013, pp. 3–14.

[5] P. Vytelingum, T. D. Voice, S. D. Ramchurn, A. Rogers, and N. R.
Jennings, “Agent-based micro-storage management for the smart grid,”
in Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, ser. AAMAS ’10, 2010, pp. 39–46.

[6] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “Wavecluster: A multi-
resolution clustering approach for very large spatial databases,” in
VLDB, 1998, pp. 428–439.

[7] J. Heer, N. Kong, and M. Agrawala, “Sizing the horizon,” in Pro-
ceedings of the 27th international conference on Human factors in
computing systems - CHI 09. New York, USA: ACM, Apr. 2009.

[8] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule
discovery from time series,” in KDD, R. Agrawal, P. E. Stolorz, and
G. Piatetsky-Shapiro, Eds. AAAI Press, 1998, pp. 16–22.

[9] F. Höppner, “Discovery of temporal patterns. Learning rules about the
qualitative behaviour of time series,” in Proceedings of the 5th European
Conference on Principles of Data Mining and Knowledge Discovery,
ser. PKDD ’01. London, UK: Springer-Verlag, 2001, pp. 192–203.

[10] B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time
series motifs,” in Proceedings of the ninth International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’03. New York,
NY, USA: ACM, 2003, pp. 493–498.

[11] J. Kohlmorgen and S. Lemm, “An on-line method for segmentation
and identification of non-stationary time series,” in Neural Networks
for Signal Processing XI, 2001. Proceedings of the 2001 IEEE Signal
Processing Society Workshop, 2001, pp. 113–122.

[12] R. Srinivasan, C. Wang, W. Ho, and K. Lim, “Context-based recognition
of process states using neural networks,” Chemical Engineering Science,
vol. 60, no. 4, pp. 935–949, Feb. 2005.

[13] E. Keogh, J. Lin, and W. Truppel, “Clustering of time series subse-
quences is meaningless: implications for previous and future research,”
in Third IEEE International Conference on Data Mining (ICDM), 2003,
pp. 115–122.

[14] B. W. Silverman, Density estimation for statistics and data analysis.
London New York: Chapman and Hall, 1986.

[15] T. Rakthanmanon, E. Keogh, S. Lonardi, and S. Evans, “Time series
epenthesis: Clustering time series streams requires ignoring some data,”
in IEEE 11th International Conference on Data Mining (ICDM), Dec
2011, pp. 547–556.

[16] “Statefinder repository,” https://github.com/LSIR/StateFinder.
[17] L. Wei, N. Kumar, V. Lolla, E. J. Keogh, S. Lonardi, and C. Ratanama-

hatana, “Assumption-free anomaly detection in time series,” in Proceed-
ings of the 17th International Conference on Scientific and Statistical
Database Management. Berkeley, CA, USA: Lawrence Berkeley
Laboratory, 2005, pp. 237–240.

[18] S. Papadimitriou, J. Sun, and C. Faloutsos, “Streaming pattern discovery
in multiple time-series,” pp. 697–708, Aug. 2005.

[19] J. Z. Kolter and M. J. Johnson, “REDD: A public data set for energy
disaggregation research,” in Proceedings of the SustKDD workshop on
Data Mining Applications in Sustainability, 2011.

[20] T. K. Wijaya, J. Eberle, and K. Aberer, “Symbolic representation of
smart meter data,” in Proceedings of the Joint EDBT/ICDT Workshops,
ser. EDBT ’13. New York, USA: ACM, 2013, pp. 242–248.

[21] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Hu-
man activity recognition on smartphones using a multiclass hardware-
friendly support vector machine,” in Proceedings of the 4th Interna-
tional Conference on Ambient Assisted Living and Home Care, ser.
IWAAL’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 216–223.

[22] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel
symbolic representation of time series,” Data Mining and Knowledge
Discovery, vol. 15, no. 2, pp. 107–144, 2007.

[23] D. Lemire, “A better alternative to piecewise linear time series segmen-
tation,” in SIAM Data Mining, 2007.

[24] Z. Yan, J. Eberle, and K. Aberer, “Optimos: Optimal sensing for
mobile sensors,” in IEEE 13th International Conference on Mobile Data
Management (MDM), July 2012, pp. 105–114.

[25] F.-L. Chung, T.-C. Fu, V. Ng, and R. Luk, “An Evolutionary Approach
to Pattern-Based Time Series Segmentation,” IEEE Transactions on
Evolutionary Computation, vol. 8, no. 5, pp. 471–489, Oct. 2004.

[26] T. Guo, Z. Yan, and K. Aberer, “An adaptive approach for online
segmentation of multi-dimensional mobile data,” in Proceedings of the
11th International Workshop on Data Engineering for Wireless and
Mobile Access. New York, USA: ACM, May 2012, pp. 7–14.

[27] M. Ramoni, P. Sebastiani, and P. Cohen, “Bayesian Clustering by
Dynamics,” Machine Learning, vol. 47, no. 1, pp. 91–121, Apr. 2002.

[28] A. M. Denton, C. A. Besemann, and D. H. Dorr, “Pattern-based
time-series subsequence clustering using radial distribution functions,”
Knowledge and Information Systems, vol. 18, no. 1, Mar. 2008.

[29] P. Wang, H. Wang, and W. Wang, “Finding semantics in time series,” in
Proceedings of the International Conference on Management of Mata -
SIGMOD ’11. New York, USA: ACM Press, Jun. 2011, pp. 385–396.

[30] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current
status and future directions,” Data Mining and Knowledge Discovery,
vol. 15, no. 1, pp. 55–86, Jan. 2007.

[31] A. Mueen and E. Keogh, “Online discovery and maintenance of time
series motifs,” in Proceedings of the 16th International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’10. New York,
USA: ACM, 2010, pp. 1089–1098.

[32] L. Chen, Y. Chen, and L. Tu, “A Fast and Efficient Algorithm for
Finding Frequent Items over Data Stream,” Journal of Computers,
vol. 7, no. 7, pp. 1545–1554, Jul. 2012.

[33] J. S. Tan, Z. F. Kuang, and G. G. Yang, “An Efficient Frequent Patterns
Mining Algorithm over Data Streams Based on FPD-Graph,” Advanced
Materials Research, vol. 433-440, pp. 4457–4462, Feb. 2012.

[34] C. C. Aggarwal, “Mining sensor data streams,” in Managing and Mining
Sensor Data, C. C. Aggarwal, Ed. Springer US, 2013, pp. 143–171.

[35] “Opensense2,” http://www.nano-tera.ch/projects/423.php.

