
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensor Use and Usefulness: Trade-Offs for Data-Driven
Authentication on Mobile Devices

Citation for published version:
Micallef, N, Kayacik, HG, Just, M, Baillie, L & Aspinall, D 2015, Sensor Use and Usefulness: Trade-Offs for
Data-Driven Authentication on Mobile Devices. in Proceedings of PerCom 2015.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of PerCom 2015

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://www.research.ed.ac.uk/en/publications/a514bfee-b42f-489a-adad-d019d69f5ae9


Sensor Use and Usefulness: Trade-Offs for
Data-Driven Authentication on Mobile Devices

Nicolas Micallef∗, Hilmi Güneş Kayacık†, Mike Just‡, Lynne Baillie∗ and David Aspinall§
∗Glasgow Caledonian University, Glasgow, Scotland, {nicholas.micallef, lynne.baillie}@gcu.ac.uk

†FICO, 181 Metro Dr., San Jose, CA, guneskayacik@fico.com
‡Heriot-Watt University, Edinburgh, Scotland, m.just@hw.ac.uk

§University of Edinburgh, Edinburgh, Scotland, david.aspinall@ed.ac.uk

Abstract—Modern mobile devices come with an array of sen-
sors that support many interesting applications. However, sensors
have different sampling costs (e.g., battery drain) and benefits
(e.g., accuracy) under different circumstances. In this work we
investigate the trade-off between the cost of using a sensor
and the benefit gained from its use, with application to data-
driven authentication on mobile devices. Current authentication
practice, where user behaviour is first learned from the sensor
data and then used to detect anomalies, typically assumes a fixed
sampling rate and does not consider the battery consumption
and usefulness of sensors. In this work we study how battery
consumption and sensor effectiveness (e.g., for detecting attacks)
vary when using different sensors and different sensor sampling
rates. We use data from both controlled lab studies, as well as
field trials, for our experiments. We also propose an adaptive
sampling technique that adjusts the sampling rate based on an
expected device vigilance level. Our results show that it is possible
to reduce the battery consumption tenfold without significantly
impacting the detection of attacks.

I. INTRODUCTION

Mobile devices have increasingly become a part of our
daily lives. Their usefulness not only stems from their comput-
ing power but also their collection of sensors which allow rich
interaction between the device, the user and the environment.
However, an ever-present trade-off exists between the cost of
using a sensor and the benefit gained from its use. If all sensors
were to be switched off, then the battery life of a mobile device
would last for weeks without need for charging, but this would
lead to a considerable reduction in features. Certainly, the
battery capacity of mobile devices has been increasing steadily.
For instance, the standard battery for Samsung Galaxy S series
phones are 2100 mAh, 2600 mAh and 2800 mAh for S3, S4
and S5 respectively.1 However, this increase is often matched
by increased usage and resource requirements [1]; some users
charge their devices more than once a day [2] although this
is hardly convenient. Therefore, for numerous applications it
is important to understand the costs and benefits of mobile
device sensors.

Sensor data is often used in mobile applications to provide
location and context awareness, triggering specific actions or
offering the user relevant choices. Sensor data can also be used
to fingerprint user behaviour, enabling continuous data-driven
authentication, to ensure that the device is being used by its
proper owner: if the device detects an anomalous behaviour, it

1Retrieved from www.samsung.com, 20 Jan 2015, for the standard batteries
EB-L1G6LL, EB-B600BUB and EB-BG900BBU.

can take action to explicitly authenticate the user or raise an
alarm. Previous work (e.g., [3], [4], [5], [6], [7]) has shown
that data from a broad range of sensors can be used to provide
quite accurate authentication, but researchers have generally
not considered the cost of doing this, nor compared the relative
effectiveness of the various signals available. Work so far on
sensor power consumption (e.g., [8], [9], [10]) has focused
mainly on minimising use of ‘high drain’ sensors (such as
GPS), though only in terms of resource consumption and not
security protection. For practical security applications, we must
find an acceptable balance between power consumption and
dependable security alerts. For example, reliable authentication
depends on frequent sampling, which is costly: what effect
does a decrease in sensor sampling frequency have on resource
consumption and security? Our goal is not to perform a rigor-
ous analysis of different mobile device hardware capabilities
(batteries and sensors), but rather to establish a benchmark
regarding the cost and benefit trade-offs for using sensors for
data-driven authentication on some of today’s devices.

Our contribution is two-fold:

1) We examine the impact of mobile device sensors
in terms of battery consumption and authentication
effectiveness, under variations of sensor sampling
frequency and individual sensor contributions.

2) Drawing from our analysis, we propose an adaptive
sampling technique that adjusts the sensor sampling
rate according to several factors, based upon an
expected device vigilance level.

For our studies we make use of data from controlled experi-
ments using two Android devices, as well as data from field
studies of real mobile device usage.

In Section II we review the related research on sensor opti-
misation as well as on data-driven authentication. In Section III
we empirically compute the battery consumption per sensor
for different rates of sampling. In Section IV, we analyse the
effectiveness of all sensors for detecting attacks for different
sampling rates, as well as the contribution of each sensor
for attack effectiveness. An adaptive sampling technique is
proposed in Section V with results on its efficacy and resource
consumption. Conclusions and future work are discussed in
Section VI.

II. RELATED WORK

Previous work on sensor resource consumption investigated
the battery cost of mobile device sensors mainly to minimise



the use of ‘high drain’ sensors such as GPS, and also looked
into innovative techniques such as shared caching, speculative
sensing and adaptive sampling. However, optimising sensors
for security has not been considered. Work on data-driven
authentication has used a variety of sensors for modelling user
behaviour though has not considered individual sensor impact
on security effectiveness or resource consumption.

A. Research on resource consumption

Optimising resource consumption during mobile sensing
has been a popular topic of discussion in the area of context-
aware computing, mostly due to the increasing availability of
rich sensors on today’s mobile devices [8], [9]. Much of the
context-aware research focuses on improving resource con-
sumption by exploiting redundancy, using low power sensors.
Paek et al. [11] and Zhuang et al. [12] use the accelerometer
to define which localisation techniques to use, and to adjust
sampling rates based on the battery level. Lin et al. [8] and
Wang et al. [13] use low power sensors to detect user states and
context, and trigger high power sensors only when required.
With MobiSens, Wu et al. [10] reduce the GPS sampling
rate when a user is not moving. Schirmer at al. [14] took
a step further, by generalising the technique of improving
resource consumption by substituting a high drain sensor with
a semantically related but low drain sensor.

Sensor optimisation techniques by Li et al. [15] used
machine learning algorithms to improve the energy efficiency
of multiple high drain sensors by trading off the sensing
accuracy. They reported that their technique improves resource
consumption while at the same time keeping the sensing ac-
curacy higher than 90%. Other approaches exploit redundancy
across applications by sharing sensor data and inferred context
attributes among applications through a shared cache [16],
which also has the limitation of still being high drain if applica-
tions involve expensive sensors such as GPS and microphone.
ACE [17] proposed an improvement, which dynamically learns
relationships among various context attributes through the use
of speculative sensing (inferring the value of a high drain
attribute by sensing lower drain attributes). Nath et al. [17]
claim that ACE can reduce battery consumption by about 4.2
times, compared to a raw sensor data cache shared across
applications.

Selective sampling is also a popular approach used to
optimise resource consumption. Krause et al. [18] show that
by using optimised selective sampling schemes they could
increase the deployment lifetime of their eWatch wearable plat-
form by a factor of four without a substantial loss in prediction
accuracy. Following on this research Rachuri et al. [19] came
up with an adaptive sensor sampling methodology which relies
on dynamic selection of sampling functions depending on
history of context events. They show that a dynamic adaptation
mechanism provides better trade-offs compared to simpler
function-based rate control methods.

In our research, we also consider sensor optimisation,
though we are motivated to optimise security effectiveness as
well as battery consumption. Our use of adaptive sampling is
related to that described above.

B. Research on data-driven authentication

Profiles built from sensor data can subsequently be used to
identify a user for authentication or access control purposes,
if the sampled sensor readings are consistent with the profile.

Gupta et al. [3] proposed a model for the familiarity and
safety of a user’s device based upon its location, and used this
to automatically construct access control policies. Their model
distinguishes the behaviour of different users, and incorporates
user feedback for refinement, though they do not investigate
the contribution of the sensors used in their model. Shi et
al. [4] focused on implicit authentication by learning user
behaviour and assigning a score – positive for familiar events
and negative for unusual – based on recent user activity. They
show the power of fusing multiple features together though
they do not investigate which are the features that contribute
the most to their algorithms. Lin et al. [20] proposed a non-
intrusive authentication method based on orientation sensor
data using k-nearest neighbour classification. Despite having
the limitation of focusing on just one sensor, Lin et al. [20]
argue that while input from a single sensor may yield poor
accuracy, combining multiple sensor inputs would improve the
accuracy. To this end, Senguard [21] aimed to implicitly and
continuously authenticate users using input from many sensors
yielding a stronger classifier built from per-sensor classifiers.
This research introduces the concept of using different sensor
modalities based on which context the user is currently in,
though they do not evaluate the contribution of the sensors to
the accuracy achieved by each modality.

Kayacik et al. [7] describe a spatial and temporal model
for building user profiles from sensor data that is data-driven
and automatically builds profiles, sets thresholds and detects
behaviour drift. Despite using a variety of sensors (such as wifi
networks, cell towers, application use, etc.) from three different
datasets, they do not investigate the contribution of each sensor.
Furthermore, context aware authentication research [6], [22],
[23], [24] focused on sensing the context in which the device
is used (such as home or work) and providing access based on
device comfort computed from various sensor data.

Our research explores the effectiveness of the above sensor-
based models in terms of each sensor’s contribution to an
accurate authentication and to resource consumption.

III. BATTERY CONSUMPTION

Previous research on battery consumption distinguished
between high drain and low drain sensors [13], [14] but
very few [8] focused on quantifying the battery consumption
of sensors on mobile devices. Battery consumption depends
on a number of factors, including implementation decisions,
hardware specifications and the signal quality (e.g., Wi-Fi and
GPS). Here, we aim to empirically study the battery usage
of sensors using a benchmark data collection app. Hence,
our goal is to demonstrate relative differences in individual
sensor resource consumption at different sampling rates. To
limit the variability of our study, we focus in this section on
sensor cost only, and introduce the security detection tool in
Section IV. Trade-offs between security and consumption are
also considered.



A. Method

For our battery consumption experiments, we performed
a controlled lab study using 2 dedicated Samsung Galaxy S4
phones with 2GB RAM, 1.9 GHz Snapdragon 600 processors,
Li-Ion 2600 mAh battery, running Android 4.2.2. The devices
were configured with identical settings. Automatic updates,
location services and other features that may generate activity
are turned off. To ensure the devices are sensing data from
real life conditions (especially for GPS which experiences a
significant change in behaviour when used indoors rather than
outdoors) but at the same time experiencing the same exter-
nal conditions, the experimenter carried the devices together
throughout the duration of the studies. Using this setup the
devices experienced a full 4 days of the experimenter’s ‘daily
routine.’

To collect our experiment data, we used a tool with two
components (we add a detector component in Section IV):
a sensor data collector (collector), and PowerTutor [25] for
measuring the battery consumption. Zhang et al. [25] claim
that the power consumption estimates given by PowerTutor
app on HTC G1, HTC G2 and Nexus phones are within 5%
of actual values and that the average long-term error is less
than 2.5% over the application’s life span. The collector was
developed using Android SDK 4.2.2, and was tested on a set
of our research group’s lab phones. Before conducting these
experiments we used the collector on a wide range of Android
devices to collect data for some of our related studies.

The collector used in this experiment is configured with
the following settings. The microphone, accelerometer and
rotation sensors are configured to collect data for 5 seconds.
The light and magnetic field sensors are configured to collect
15 samples per reading (meaning that if the sampling rate is
set to 1 minute, with this configuration the system will collect
15 samples every minute). The app usage is configured to
execute a linux top command (which gets a detailed snap shot
of all processes currently running on the device) and saves
the returned values to a text file. The Wi-Fi sensor retrieves a
list of the detected Wi-Fi networks and cell towers each time
that it is triggered. Similarly, the GPS sensor is configured to
retrieve the current location and save them to disk each time
that this sensor is triggered.

For every second, PowerTutor collects the total mW con-
sumed by the collector. The total mW is divided by the voltage
to obtain the mA consumed for each second. Subsequently, we
compute the mA consumed by the app during every hour of
this study (mAh), which we then add together and divide by
96 hours to have the average mAh consumed by the collector
throughout the 4 days of the study. We apply this methodology
for each of the mAh values reported in Tables I and III.

B. Consumption for different sampling rates

To understand how resource consumption changes with
different sampling rates, we configured the collector to collect
accelerometer, magnetic field, light, rotation, Wi-Fi, app usage,
microphone and GPS data. The battery consumption values
reported in Table I represent the average battery consumed in
an hour by the collector during the 96 hours in which the
particular sampling rate was being used.

TABLE I. AVERAGE BATTERY CONSUMPTION PER HOUR (MAH)
CONSUMED BY THE COLLECTOR UNDER DIFFERENT SAMPLING RATES.

Rate Battery (mAh)
1 min 10.83
5 min 2.72

10 min 1.04
15 min 0.71
20 min 0.45

As expected, the battery consumption results reported in
Table I show that as the sampling rate decreases there is a
proportional drop in battery consumption. Falaki et al. [26]
report that light drain use consumes about 10 mAh, medium
drain use consumes about 90 mAh and high drain use con-
sumes about 250 mAh. We use these drain values together with
the battery consumption results reported in Table I to compute
an estimated time taken to drain the device (in hours) when
running the collector using different sampling rates (refer to
Table II). For these estimates we do not consider the night
period when the phone is often idle. To calculate the time
taken to drain the device when running the collector using a
1 minute sampling rate with light drain use, for example (as
reported in row 3, column 2 of Table II), we assume a battery
capacity of 2600 mAh 1, 10 mAh of light drain use and 10.83
mAh for 1 minute sampling. We divide the battery capacity
with the result of the addition of the light drain use to the
battery consumption for the 1 minute sampling rate:

2600 mAh

10 mAh + 10.83 mAh
= 124.80 hours (1)

TABLE II. PRACTICAL REAL-LIFE EXAMPLES OF TIME TAKEN TO
DRAIN THE DEVICE WHEN RUNNING THE COLLECTOR USING DIFFERENT
SAMPLING RATES. () = REDUCTION IN BATTERY LIFETIME COMPARED TO

BASELINE.

Rate Light Medium High
Baseline 260.00h 28.89h 10.40h

1 min 124.80h (52.0%) 25.79h (10.7%) 9.97h (4.1%)
5 min 204.39h (21.4%) 28.04h (2.9%) 10.29h (1.1%)
10 min 235.30h (9.5%) 28.55h (1.2%) 10.36h (0.4%)
15 min 242.79h (6.6%) 28.66h (0.8%) 10.37h (0.3%)
20 min 248.85h (4.3%) 28.74h (0.5%) 10.38h (0.2%)

The baseline (row 2) in Table II reports the time taken
to drain the device when the collector is not installed on the
device. The percentages next to each value show the percentage
reduction in battery lifetime of the particular sampling rate
when compared to the baseline. From these results, we can see
the impact of the different sampling rates on battery lifetime,
especially for the low drain and medium drain uses. For exam-
ple, if we assumed that users might tolerate a 10% reduction in
their battery lifetime to support data-driven authentication, then
1 minute sampling for both the low drain and medium drain
uses would be too costly, and even 5 min sampling for the low
drain use would be too costly. These results also indicate that
high drain uses would not experience a significant reduction
in battery lifetime when low sampling rates are used.

C. Consumption of different sensors

In order to measure the battery usage per sensor, we fixed
the sampling rate at 1 minute and ran the collector, activating
one sensor at a time. The battery consumption values reported



in Table III represent the average battery consumed in an hour
(in mAh) by the collector during the 96 hours in which one
sensor was switched on.2 The results reported in Table III
confirm that the GPS and accelerometer sensors are the highest
draining sensors.

TABLE III. AVERAGE BATTERY CONSUMPTION PER HOUR (MAH)
WHEN SENSORS ARE ACTIVATED ONE AT A TIME.

Active Sensor Battery (mAh)
Accelerometer 2.08
Apps Usage 1.46

GPS 2.31
Light 0.86

Magnetic Field 0.49
Microphone 1.71

Rotation 2.01
Wi-Fi + Cell 1.62

IV. ATTACK DETECTION

In our experiments, we use a publicly available tool for
building user profiles and attack detection as a benchmark
for our analysis, from which we provide some general results
that would be applicable to similar data-driven authentication
techniques. We study the effectiveness of attack detection, first
when all sensors are activated in userprofiler (Section IV-C),
and then when one sensor is activated at a time (Section IV-D).

A. Method

We use the publicly available userprofiler project [7], [27].
It is suitable for our experiments because (1) it is publicly
available, (2) it allows us to activate one sensor at a time and
(3) allows us to adjust the sampling rate on the fly. In this work,
we use userprofiler as a benchmark, with minimum changes
(to fit within our experimental framework) and mainly focus
on sampling rates and sensor contribution. Thus, extending
existing systems is not within the scope of this work.

Userprofiler builds temporal and spatial models from the
observed sensor data. The resulting profile consists of a set
of probability density functions built for different hour-of-day
and locations (as approximated from cell towers) describing
the general characteristics for that location or time through the
functions as shown in Figure 1. Using the temporal and spatial
models, the device assigns a score for each sensor event based
on its frequency of occurrence for that location or time. Higher
scores indicate high familiarity with the observed data while
low scores indicates an anomaly. If the observed behaviour
deviates from the norm as established by the probability
density functions, the detection score drops. Subsequently, an
alarm is raised and the device can potentially be locked down.

In order to evaluate the security of userprofiler, we em-
ployed two datasets, one containing the normal use of 4 users
over a 3 week field study and the other containing attacks
for one user. The attacks were generated under controlled
conditions, in which the device was not actually stolen, but
a participant is tasked with simulating ‘misuse.’ The sensor
data was collected from Android devices and in addition to
cell tower data for the userprofiler location, it included data
from wifi networks, application use, light and noise levels,
accelerometer, rotation, and magnetic field.

2Due to a constraint of our collector, the results for the radio sensors (Wi-Fi
and cellular) are reported as a single value.

B. Attack model

We created two attacks with varying levels of sophisti-
cation. An uninformed adversary has little knowledge of the
user’s behaviour and has the intention of stealing the device.
On the other hand, the informed adversary has reasonable
knowledge of the user and is aware of the detector running
on the device, and thus aims to keep the device in familiar
surroundings and use the device to extract sensitive informa-
tion. Additionally, we use one day of normal behaviour data
in which a typical weekday usage behaviour (i.e., 9 am - 5 pm
with commutes and without any anomalies) is captured.

To facilitate our experiments, we asked one of our partic-
ipants to use their device for 3 weeks. After the training is
complete and detector is deployed, we asked another partici-
pant to use the device for a few hours per scenario to create
the following attack scenarios:

- Uninformed adversary: The attacker took the device
and carried it with them for one day. The attacker
lived in another city, ensuring that the locations they
frequent were different from the owner’s. The attacker
had no additional information on how the owner uses
their device. The attack started at 2 pm. We claim that
this is similar to a typical device theft.

- Informed adversary: The attacker, who was the
owner’s housemate, used the device at the owner’s
home for the day. Thus, the location was well known
to the device. The participant attacker was provided
with a list of applications that the owner frequently
uses. The attacker used the device between 1 pm and
5 pm. This scenario corresponds to an insider attack
in which a capable insider attempts to use the device
at a well-known location.

For a comparison of the attack data to normal use, one day
of the owner’s usage is utilised to measure false positive rates
under normal conditions. The one-day normal data is extracted
from the user’s normal usage data, before creating the training
data for userprofiler. The normal day is selected to: (1) be a
weekday where the user is at work between 9 am and 5 pm; (2)
contain commute to work and; (3) be validated to be anomaly
free (i.e. no unusual travel and work hours).

C. Attack detection with all sensors

In order to measure detection rates, the training and the
attack data is collected with a 1 minute sampling rate. To
compute detection rates for lower sampling rates (e.g., 5
minutes), the data is down-sampled by sampling every N
minutes (from the original 1 minute sampled data), where N
is the current sampling rate. Detection results are provided
in Table IV in terms of detection time and detection rate.
Detection time is the time it takes, in seconds, for the detector
(in the userprofiler) to flag the behaviour suspicious from the
start of the attack. In the case of userprofiler, a detection occurs
after four anomalous events. Detection rate on the other hand
provides a percentage of samples marked as suspicious during
the duration of the attack, even after the detection occurs.
False positive rate provides a percentage of samples marked
as suspicious during the normal use day. Computing both
detection time and rate allows us to go beyond the immediate
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Fig. 1. Detection diagram for userprofiler.

device locking scenario and investigate what would happen if
the anomalous events were logged to make a security decision
based on historical data.

TABLE IV. DETECTION TIME (DT) AND RATE (DR) OF ATTACKS,
FALSE POSITIVE RATE (FPR) FOR A DAY WITHOUT ATTACKS UNDER

DIFFERENT FIXED SAMPLING RATES.

Rate Uninformed Informed Normal
DT DR DT DR FPR

1 min 183 s 92.07% 1657 s 28.82% 1.39%
5 min 3591 s 92.10% 6012 s 20.00% 0.72%

10 min 4790 s 92.98% Undetected 1.45%
15 min 5406 s 96.42% Undetected 3.26%
20 min 5987 s 95.65% Undetected 1.47%

The results show that reducing the sampling rate does
not substantially change the attack detection rates. In other
words, the attacks are (almost) equally detectable under dif-
ferent sampling rates although lower sampling rate shows a
slight increase in detection rate. This happens because lower
sampling favours frequently occurring samples, i.e., the attack,
in the case of the uninformed attack. However, detection
time increases as the sampling rate is reduced (the non-linear
increase in detection time, as a function of sampling rate, in
Table IV is due to the varied distribution of the four anomalous
events required for a detection). Given that detection requires
an anomaly to be observed, it takes longer to detect the attacks
under lower sampling rates. Compared to the battery consump-
tion results in Table I, battery improvement comes with the
expense of extending detection time over 10 times (i.e., when
rate decreases from 1 min to 5 min), which indicates that
fixed sampling rates over a few minutes would not be effective
against attacks. The particular userprofiler implementation, by
default, expects four events to be anomalous for detection,
therefore if an attack is “undetected”, it does not mean that
the score never drops below the detection threshold. Rather,
it means the score does not remain below the threshold long
enough to be detected.

There are at least a couple of options for improving
efficiency while maintaining a sufficient level of security. In
Section IV-D we investigate the option of using fewer sensors.
In Section V, we vary the sampling rate in different circum-
stances, and measure the effect on security and efficiency.

D. Attack detection with each sensor

To determine the individual sensor contributions (their
‘usefulness’), we compute the detection time, detection rate
and false positive rate that are observed when one sensor is
activated at a time. To this end, we extend the userprofiler tool
to selectively activate the sensors. As a result, we ran additional
experiments on two attack scenarios and a normal use dataset
while activating one sensor at a time. For our analysis, we
defined two ad-hoc sensor combinations (others are possible).
Ambient sensors consist of noise, magnetometer, light and wifi
and capture what is happening around the device. Behavioural
sensors consist of app usage, rotation, accelerometer and thus,
capture user’s use of the device. While other combinations are
possible, measuring efficacy per sensor and per ambient and
behavioural subsets allow us to determine not only individual
sensor usefulness but also whether ambient or behavioural
sensors are more useful in terms of detection rates and false
positives.

Table V provides the experimental results for attack scenar-
ios and normal use. Results are expressed in terms of detection
rates, times and false positive rates, as defined in Section IV-C.
An attack is undetected if the score fails to remain below the
detection threshold for four consecutive events, which was the
default detection rule for userprofiler. The last row shows the
results when all sensors are activated and amb and beh shows
the results for ambient and behavioural sensors, respectively.

TABLE V. DETECTION TIME (DT) AND RATE (DR) OF ATTACKS,
FALSE POSITIVE RATE (FPR) FOR A DAY WITHOUT ATTACKS WHEN

SENSORS ARE ACTIVATED ONE AT A TIME. SAMPLING RATE IS FIXED AT 1
MINUTE.

Uninformed Informed Normal
DT DR DT DR FPR

app 183 s 100.00% 1290 s 80.72% 40.98%
wifi 183 s 100.00% 1825 s 9.03% 28.10%

noise 1020 s 59.64% Undetected 0.66%
acc Undetected Undetected 0.58%

mag Undetected Undetected 1.83%
rot 593 s 94.73% Undetected 5.88%

light Undetected 3686 s 6.02% 40.98%
amb 183 s 97.36% Undetected 1.10%
beh 6233 s 13.15% 1825 s 3.61% 1.03%
all 183 s 92.07% 1657 s 28.82% 1.39%

Results indicate that no one sensor provides a good detector
on its own. While app and wifi sensors provide reasonable



detection rates under uninformed attack scenarios, they also
have high false positive rates under normal use. Similarly,
accelerometer, rotation and magnetic field produce low false
positive rates, though they are not particularly effective in
detecting the attacks. Using ambient and behavioural sensor
subsets improve both detection and false positive rates and
using the entire set of sensors produce the best results by
tempering the extreme positive and negative feedback that
might come from fewer sensors. Though while data from
multiple sensors might maintain low false positive and high
detection rates, it increases the battery consumption of the
device.

Thus, there there is no “one size fits all” solution, as using
the same sensor contributions and rates of sampling does not
take factors such as a user’s behaviour and the nature of
an attack into account. However, an adaptive solution could
control the trade-off between the battery consumption and the
detection capabilities. We explore the effectiveness of such a
solution in Section V.

V. ADAPTIVE SAMPLING

The results of Sections III and IV establish the trade-off
between battery consumption and detection efficacy. Adaptive
sampling can reduce the battery consumption by adjusting the
sampling rate and activating high drain sensors only when
they are needed, and we hypothesise that this can be done
without significantly impacting security. In this section, we
focus on defining and analysing options for the use of an
adaptive sampling rate.

We define expected vigilance level to be a state which sets
the sampling rate based upon conditions that could impact
device security, and is determined by the device. Needless
to say, establishing such a vigilance level requires care as
it might be exploited to launch attacks if the sampling rate
can be reduced by the attacker. We propose several techniques
to determine the vigilance level and adjust the sampling
rate of the device that are based on a number of factors
including detection score, location and time of day (others are
possible). Thus, we examine the following adaptive techniques
to determine the vigilance level; the first two are based upon
the device-computed detection score, while the latter two are
based upon external variables, location and time-of-day.

1) Change in detection score: This technique increases
the sampling rate of the device, if the difference in
detection score (a value between -1 and +1 in user-
profiler) increases by more than a threshold between
current and previous state. The difference in threshold
is empirically determined for the test user, but in
general, this technique aims to reduce the sampling
rate if the detector perceives the conditions to be
stable and normal. Needless to say, if the detection
score indicates an anomaly, the highest sampling rate
is utilised. This technique presents vulnerabilities if
the attacker can influence the sensors to stabilise for
example, by influencing the sensor data.

2) Detection score level: This technique determines the
sampling rate based on detection scores. Depending
on the detection score, sampling rates are adjusted,
e.g., high score (suggesting normal use) reduces the

sampling rate. As opposed to the previous technique,
this technique determines the sampling rate from the
current observation only without taking the trend
into account. Similar to the previous technique, it is
vulnerable if the attacker can influence sensor data.

3) Context based: This technique determines the sam-
pling rate based on the user’s whereabouts. Different
sampling rates are selected for frequently visited
locations (home and work in our experiments). For
any other location the sampling rate is selected to be
the highest. As opposed to the previous techniques,
this does not take detection score into account but
makes decisions based on location only. Thus, it is
vulnerable to attacks at known locations for which
the sampling rate is low. For our study, three leniency
levels related to context are defined (see Table VI).

4) Hourly: This technique determines the sampling rate
based on the hour of day. Higher sampling rates are
selected for active hours. However, this technique
is vulnerable to attacks at inactive hours. For our
study, three leniency levels related to time-of-day are
defined (see Table VI).

Table VI summarises the adaptive techniques that deter-
mine the vigilance level. In our experiments, the device can
choose from the following sampling rates: 1, 2, 5 and 10
minutes. This set provides balanced options from both high and
low sampling rates although providing more options may help
further optimise battery consumption and detection results. We
also compare the adaptive techniques with a baseline fixed
sampling rate of 1 minute.

TABLE VI. SUMMARY OF ADAPTIVE TECHNIQUES THAT DETERMINE
THE VIGILANCE LEVEL. OPTIONS (A) TO (C) PROVIDE LENIENCY LEVELS,

IN WHICH (A) IS THE MOST STRICT.

Technique and description
0 fixed sampling rate=1 at all times (baseline)
1 if score(tn)− score(tn−1) > 0.5: increase rate

if 0.1 < score(tn)− score(tn−1) < 0.5: maintain rate
else: decrease rate
where rate ∈ {1, 2, 5, 10} and rate(t0) = 1

2 if score(tn) > 0.9: rate=10
if score(tn) > 0.5: rate=5
else: rate=1

3a if at home: rate=5, if at work: rate=2, else: rate=1
3b if at home: rate=10, if at work: rate=5, else: rate=1
3c if at home: rate=10, if at work: rate=5, else: rate=2
4a if morning: rate=2, if noon: rate=1, night: rate=5
4b if morning: rate=5, if noon: rate=1, night: rate=10
4c if morning: rate=5, if noon: rate=2, night: rate=10

Table VII (as well as Figures 2, 3, and 4) details the
detection and battery consumption results for different adaptive
techniques as well as the fixed sampling rate of 1 minute. The
results show that the battery consumption can be improved
substantially whilst maintaining the detection time. For exam-
ple, Adaptive 1 provides detection rates as good as the baseline
while reducing the consumption from 10.83 mAh to 1.54 mAh
on a normal day and to 5.34 mAh under the uninformed attack
scenario. On days in which the detection score is low (e.g.,
uninformed attack which occurred from 2 pm onwards) the
battery consumption increases. This is especially evident in
Figure 2(i) where the sampling rate increases as the detection
score drops.



Figures 2, 3, and 4 show the changes in detection scores
(blue lines with squares) and battery cost (red lines with
circles) for four of the adaptive techniques from Table VI,
respectively for the uninformed attack, informed attack, and
normal use cases.

For Figure 2, Adaptive 1 and 2 (Figures 2(i) and 2(ii)) tech-
niques sharply increase the sampling rate when the uninformed
attack starts at 2 pm (the uninformed attack continues indefi-
nitely), reflecting a quick detection of this attack based upon
changes in the detection scores or score level, respectively.
Adaptive 3b and 4b (Figures 2(iii) and 2(iv)) techniques use
location and time to determine the sampling rate, and show
similar performance with a lower detection score, and higher
battery consumption when under attack. However, note that for
the Adaptive 4b technique, there is a vulnerability in this case
as the sampling rate is lowered in the evening, even though
the device was still in the attacker’s control.

(i) Adaptive 1 (ii) Adaptive 2

(iii) Adaptive 3b (iv) Adaptive 4b

Fig. 2. Detection scores and average battery consumption for uninformed
attack. X axis shows hours, red lines with circles show mean battery con-
sumption for the hour and blue lines with squares show the mean detection
score for the hour.

Figure 3 shows the detection scores and battery consump-
tion for the informed attack scenario (red lines with circles
= battery consumption; blue lines with squares = detection
score). Adaptive 1 and 2 (Figures 3(i) and 3(ii)) increase
the sampling rate (hence the cost) between 1 pm and 5 pm
when attack is taking place, and return to normal after the
temporary attack. Adaptive 2, maintains a high sampling rate
even before the attack because the detection scores for the
day were not high enough to reduce the sampling rate. Thus,
Adaptive 2 can potentially increase the battery consumption
on days when many unusual events (but legitimate deviations
from routine) are observed. Unlike the case of the vulnerability
for the unformed attack discussed in Figure 2(iv) above,
for the informed attack the Adaptive 4b technique provides
good detection results since the sampling rate coincidentally
happened to be higher prior to the attack.

In contrast, Figure 4 shows the detection scores and bat-
tery consumption for the normal day (red lines with circles
= battery consumption; blue lines with squares = detection
score). Adaptive 1 and 2 techniques (Figures 4(i) and 4(ii))
adjust the sampling rate based on user’s behaviour, increasing
the sampling rate as the detection score drops. Their patterns
differ as Adaptive 1 looks for the detection score to stabilise
whereas Adaptive 2 looks for the score to be high. Thus, on this

(i) Adaptive 1 (ii) Adaptive 2

(iii) Adaptive 3b (iv) Adaptive 4b

Fig. 3. Detection scores and average battery consumption for informed attack.
X axis shows hours, red lines with circles show mean battery consumption
for the hour and blue lines with squares show the mean detection score for
the hour.

normal day where detection score is stable, Adaptive 1 reduces
the battery consumption from 10.83 mAh to 1.54 mAh (see
Table VII). Such a reduction would have a substantial impact
on light and medium drain users. Referring to Tables I and II,
a consumption reduction from roughly 10 mAh to 1 mAh can
double the battery life for light drain users. Adaptive 3 and 4
(Figures 4(iii) and 4(iv)) are once again respectively dependent
upon changes in location and time of day. Interestingly in this
case, the sampling rate (and hence battery consumption) for
Adaptive 4 remains low even though there are some clear drops
in the detection scores at around 5pm and 8pm.

(i) Adaptive 1 (ii) Adaptive 2

(iii) Adaptive 3b (iv) Adaptive 4b

Fig. 4. Detection scores and average battery consumption for normal use. X
axis shows hours, red lines with circles show mean battery consumption for
the hour and blue lines with squares show the mean detection score for the
hour.

From these example attack scenarios and candidate adap-
tive techniques, we can highlight some general observations.
Referring to Table VII, Adaptive 3a, 3b and 3c detected the
attacks later because the attacks either started (in case of
uninformed scenario) or occurred (in the informed scenario) at
a location which the scheme deemed as ‘safe’. This shows a
potential vulnerability in context based adaptation, in which the
attacker may easily coerce the device to sample less by taking
it to a location familiar to the device. Similarly, Adaptive 4a, 4b
and 4c suffers from a similar vulnerability in which the attacker
may choose to attack the device when they know the sampling



rate is lower. Adaptive 1 and 2 on the other hand suffers from
a possible ‘replay attack’ where the attacker can try to alter
the ambient and some behavioural characteristics to influence
the detection score, causing the device to sample less before
carrying out their attack. This provides some more empirical
evidence confirming that there is no “one solution for all” in
this case, though smart selection of the potential techniques,
dependent upon factors such as the user’s behaviour, and
location and time context, would seem to be a viable path
for continued exploration.

VI. CONCLUSION

In this paper, we conducted a cost/benefit analysis of
sensors that are commonly found on today’s mobile devices.
To this end, we computed the sampling costs of sensors and
established their usefulness in a data-driven authentication
scenario. While previous work investigated the sensor costs,
we are – to the best of our knowledge – the first to investigate
this phenomenon in the context of data-driven authentication.
Given a large array of sensors that user behaviour modelling
techniques can use, we believe it is important to identify the
sensors that provide best support for detecting attacks and to
establish their sampling costs.

Our battery consumption results in Section III indicate that
with high sampling rates, light and medium drain users are
most impacted by sensor costs, but that rate reductions can
significantly reduce consumption. However, detection results
under different sampling rates in Section IV showed that
sampling rates over a few minutes would not be effective
against attacks. When we analysed the sensor data individually
we identified that using many sensors at once tempers the
extreme values from a single sensor and reduces false positives.
In the light of the battery consumption results and per sensor
analysis, we proposed various adaptive sampling techniques in
Section V that determine the vigilance level based on detection
score, location and time. Adaptive sampling results indicate
that it is possible to reduce the battery consumption from about
10 mAh to 1 mAh without impacting the detection of attacks.

Needless to say, measuring battery consumption and use-
fulness is not without its pitfalls. Differences in hardware,
software and the physical environment are some of the factors
that can affect the battery consumption. Our results provide
consumption and detection results for the collector and user-
profiler. While we believe it provides a good estimate of
each sensor’s battery drain and its usefulness, using different
collection and detection techniques is likely to affect the
detection and consumption results. Our field data is limited
to a relatively small number of users and the attack data is
collected from a single device. However, we highlight that our
objective is not to establish exact battery consumption and
usefulness metrics but rather to encourage adaptivity in design
where sampling rate does not have to be fixed and not all
sensors cost and contribute equally.

Our future work will focus on extending our study to a
wider range of sensors and with more users. We also aim
to investigate an adaptive modelling technique which utilises
the sensors selectively based on device context hence using
high benefit, low cost sensors first. This will allow a device
to leverage battery consumption costs and detection results to

learn the optimum strategy in terms of which sensors to use
and when and how frequently to sample.
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