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Abstract—Secure spontaneous authentication between devices
worn at arbitrary location on the same body is a challenging, yet
unsolved problem. We propose BANDANA, the first-ever implicit
secure device-to-device authentication scheme for devices worn on
the same body. Our approach leverages instantaneous variation
in acceleration patterns from gait sequences to extract always-
fresh secure secrets. It enables secure spontaneous pairing of
devices worn on the same body or interacted with. The method
is robust against noise in sensor readings and active attackers. We
demonstrate the robustness of BANDANA on two gait datasets
and discuss the discriminability of intra- and inter-body cases,
robustness to statistical bias, as well as possible attack scenarios.

I. INTRODUCTION

Scalable secure device pairing in the wake of the Internet
of Things (IoT) is a pending problem that has not yet been
solved satisfactorily. Current pairing protocols include pin-
based approaches (e.g. Bluetooth) or out-of-band communi-
cation [1]. Example out-of-band channels are, for instance,
a secret printed on or displayed by a device, Near Field
Communication [2] or audio1[3]. Alternatively, the standard
approach for IoT security is to have the device connect to a
dedicated trusted server which then handles the pairing and
necessary key-exchange of the devices in question [4].

These approaches are sufficient for one-time manual pairing
of a limited number of devices. However, the personal device-
network in the IoT is expected to experience frequent fluctu-
ation in device count and identity [5]. New devices are added
in the context of use while others are discarded. Examples are
pairings to a multitude of body-worn smart devices (watches,
glasses, smartphone, bio-sensors), fitness trackers, changing
smart textile, or to temporarily used external devices such
as bicycles, cars, shopping carts, or equipment in a fitness
center. While seamless pairing without manual user interaction
among such devices promises new, personalised services, the
threat of privacy exposion to malicious adversaries needs to
be controlled by novel secure pairing schemes that scale.

As depicted in Figure 1, we envision spontaneous secure
pairing which allows frequent re-pairing (restricted to the time-
of-use), and ad-hoc implicit (no manual interaction required)

1A popular commercially implemented example using audio to initiate
device pairing is the chromecast protocol

Fig. 1: BANDANA creates implicit security barriers towards
devices in proximity, while establishing ad-hoc spontaneously
secure connections between devices worn on the same body.

secure authentication bound to an individual. The desired
solution shall not require a trusted third party.

This paper proposes a solution to this challenge by intro-
ducing a secure pairing scheme among on-body devices based
on common movement patterns due to co-location on the same
body. In particular, we exploit instantaneous variations in gait
sequences for implicit generation of a shared secret among all
devices on the same body. The contributions of our work are

1) a secure ad-hoc pairing scheme for devices worn on the
same body

2) the experimental verification of the protocol on a number
of large-scale gait datasets

3) security analysis on the pairing approach covering En-
tropy, statistical bias, and attack scenarios

The remainder of the paper is organized as follows. In
section II we introduce previous studies on ad-hoc secure
device pairing and how they relate to our work. We will
then in section III introduce basic methodology on gait cycle
detection, datasets utilised in our evaluation, and data prepa-
ration, before introducing our secure ad-hoc pairing scheme,
BANDANA in section IV. In section VI, attack models on
the protocol are discussed and in section V, the proposed ad-
hoc pairing based on instantaneous gait-patterns is evaluated
on a number of large-scale gait datasets and with respect to
Entropy, statistical bias, as well as random and sophisticated
attacks. Finally, section VII concludes our discussion.

ar
X

iv
:1

61
2.

03
47

2v
1 

 [
cs

.C
R

] 
 1

1 
D

ec
 2

01
6



II. RELATED WORK

A popular sensor to detect co-presence is the accelerometer.
For instance, [6] present a process to generate shared keys
based on shaking processes. They propose a threshold-based
protocol conditioned on the magnitude of the co-aligned ac-
celeration processes. A similar approach has been followed by
Mayrhofer et al. [7], who demonstrated that an authentication
is possible when devices are shaken simultaneously by a
single person, while an authentication was unlikely for a
third person trying to mimic the correct movement pattern
remotely. Improvements to this protocol have been proposed,
for instance, in [8], where the success probability of devices
in proximity is increased by considering acceleration patterns
derived in the order of their magnitude. Also, [9] solves the
issue of different sample rates on paired devices and non-
aligned starting points while [10] mitigate relative differences
in rotation among devices. Based on this protocol, [11, 12]
presents an approach to unlock a mobile device with the help
of a smartwatch when both are shaken simultaneously. Their
approach, however, requires that acceleration sequences are
exchanged and compared via an established secure channel.
Another implementation was presented in [13] to authenticate
from the acceleration pattern of a vibrating device lying
on a flat surface. Applications for such schemes have been
proposed, for instance, in [14] where devices connected via
NFC are authenticated via acceleration traces of vibrating
smart phones that touch each other. Also, [15] propose to
prevent man-in-the-middle relay attacks on NFC payment by
requiring matching acceleration sequences generated during
double-tapping one device on the other [16]

For authentication based on arbitrary co-aligned sensor data,
the candidate key protocol is proposed in [17]. It interactively
exchanges hashes from feature sequences as short secrets and
concatenates the key from the secrets with matching hashes.

Examples for possible sensor modalities that can be used
for unattended co-presence-based device pairing apart of ac-
celeration are magnetometer [18], RF-signals [19, 20] lumi-
nosity [21] or audio [3]. These, however, have in common that
the pairing is not constrained to devices on the same body but,
more generally, to devices in proximity.

We are, in contrast, focusing on the pairing of devices on the
same body or interacted with by the same person. Consider, for
instance, [22], where key-card authentication is extended with
additional acceleration patterns.Another example is presented
in [23] to authenticate a user wearing an acceleration-capturing
bracelet during interaction with a keyboard device. The device
is locked when keyboard-interaction and acceleration patterns
mismatch.

Very related to our study is the work of Cornelius et al. [24]
to identify devices co-located on the same body via correlated
acceleration readings. An important problem to consider when
comparing acceleration sequences among devices on the body
is that orientation and placement significantly impact the
recorded acceleration, gyro and magnetometer sequences [25].
Solutions to receive placement independent features are, (A)

to calculate the norm or magnitude mi =
√
x2i + y2i + z2i

(thereby discarding information on acceleration along individ-
ual axes [26]), (B) to first detect the location on the body
and then to try to deal with changes that occur due to place-
ment [25], or (C) to tackle disorientation and misplacement
errors by calculating the rotation matrix from magnetometer
readings [27]. Even though after (A), the resulting signal
still differed greatly due to inherently differing movement
of underlying body parts (e.g. arm vs. head vs. legs) [28],
Cornelius et al. [24] succeeded to show good correlation
among all body locations from mean, standard deviation,
variance, mean absolute deviation and interquartile range as
well as signal’s energy. This result is a strong indication that
secure keys conditioned on co-location on the same body
exist. However, as correlation can be alternating positively
and negatively, it remains unsolved how this can be exploited
for the generation of keys, when the sequences shall not
be disclosed to an adversary listening to any communication
between nodes.

A weakness of using arbitrary acceleration sequences for
spontaneous pairing of on-body devices is that for a signifi-
cant number of daily activities, upper body and lower body
movements are only weakly or not correlated. An activity
that can be well recognized over the whole body though
is walking or gait [29]. For instance, identical step patterns
from acceleration sequences have been utilised for co-location
detection [30]. The authors in [31, 32] employ gait cycles
to authenticate a user on his smart-phone by matching the
current walking pattern against a previously saved walking
template exploiting a fuzzy commitment scheme [33]. Another
gait-based authentication system is proposed in [34] where
a two-stage classifier first distinguishes walking from other
activity to then exploit individual gait patterns. A concern
for any authentication scheme based on implicit features is
that the generated key sequences employ a high randomness
and are uniformly distributed over the key space so that an
adversary can not easily guess or re-produce the key. To this
end, [35] recently presented an approach to generate a key
fingerprint from the difference of a mean world gait (spanning
the complete population) to the mean gait of an individual.
By computing the mean gait over the whole population, the
authors assured that the resulting sequence is well balanced
and uniformly distributed.

These studies on gait-based authentication (1) do not ad-
dress the impact of different on-body locations and sensor
orientation and (2) intend to use gait as a unique biometric
feature that does not change for an individual over time. In
contrast, in our case, we intend to generate an always-fresh au-
thentication key based on instantaneous acceleration sequences
for arbitrary location on the human body. Muaaz et al. [36]
confirmed the significant challenge of (1) but demonstrated
gait-based authentication covering closely related locations on
the human body (from one to the other side of the hip) is
possible but suffers from high error rate.

For the verification and security analysis of gait-based
authentication schemes, it is crucial to test the approach on
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(a) Unmodified accelerometer reading (z-axis) at 50Hz.
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(b) Application of Madgwick’s algorithm. It should be noted that the
gravity g = ∼ 9.81m/s2 can now be recognized, indicating a correct
orientation relative to the ground.
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(c) Application of Type-II Chebyshev bandpass filter.
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(d) Resampling to ρ = 40 and Gait Cycle Detection with q = 8 gait
cycles.

Fig. 2: Example of our process for sensor data pre-processing and gait cycle detection. Here, the z-axis of an accelerometer
is depicted, which is attached to the forearm of one subject.

a large number of participants. To this end, [37] present a
gait dataset for 100 participants wearing accelerometers at the
hip. Another dataset with 744 subjects has been presented
in [38]. Participants traverse a parcours featuring distinct
walking conditions such as straight, coarse ground, upwards,
downwards and steps. Also, Sztyler et al. created a real-world
dataset used for Position Aware Activity Recognition [39]
in which 15 subjects, equipped with sensors on 7 distinct
locations on the body performed different actions for a time
period of approximately 10–12 minutes each.

Another, conceptional challenge with all context-based au-
thentication approaches is that due to sensing inaccuracies,
different hardware and noise the sensed signals are likely
not identical but only similar. Fuzzy cryptography presents
a methodology to obtain identical keys from similar pat-
terns [33]. In particular, by mapping the patterns into the
codespace of an error correcting code, mismatches can be
mitigated without disclosing the pattern over a potentially
insecure channel.

III. FUNDAMENTALS

A. Gait Cycle Detection

In this section, our gait cycle detection algorithm is pre-
sented which builds on ideas by Hoang et al.[31, 32]. In
addition, we also utilize gyroscope readings to normalize the
sensor’s orientation and keep only the z-Axis that points in
the opposite direction of gravity.

As depicted in Figure 3, a gait cycle is defined as the “time
interval between two successive steps” , e.g., if a cycle starts
with the initial contact of the right foot, it ends with the same
position of the right foot [41]. Thus, the goal of the algorithm

Fig. 3: A full gait cycle starting with the initial contact of the
right foot. Characteristic intermediate positions are depicted
separately. (modified from [40])

is to find repetitive cycles in the raw acceleration signal.Its
input is a vector of amplitude values

z = (z1, . . . , zn)

of the accelerometer z-axis (cf. Figure 2a).Its output is a gait
sequence of consecutive gait cycles with normalized length.

To find repetitive parts in the signal, a naive approach
would search for local minima and then use these to split the
raw signal into cycles. However, the list of all local minima
(comparing only direct neighbors) contains too many minima
within single gait cycles. Thus, this list must be filtered for
minima having the same distance to each other to define
clearly separated cycles.

Our filtering method is based on autocorrelation and dis-
tance calculation. The discrete autocorrelation at time lag k
and with variance σ2 is estimated as

Acorr(k) =
1

(n− k)σ2

∑
t∈Z

zt+k · zt

where zt represents the conjugate of zt. The resulting auto-
correlation

a = (a1, . . . , an)



Mannheim: The Real-World Dataset by Sztyler et al. was used for
position aware activity recognition [39]. 15 Subjects performed
different actions for a time period of approximately 10 - 12
minutes each. They were equipped with 7 sensors on different
parts of the body. These parts were chosen in order to gather
data from every part of the body that acts different during human
action.

Osaka: The OU-ISIR Gait Database [38] consists of samples
taken from three triaxial accelerometers and gyroscopes worn on
different parts of the thigh (left, right, center). With this setup,
subjects were asked to walk down a path, upstairs and down a
slope. A total of 460 records exist within this dataset.

Fig. 4: Datasets utilised in our study

leads to m non-ambiguous local maxima in a, stored as

ζ = {ζ1, . . . , ζi, . . . ζm}.

The distances between these indices and a mean distance

δmean =

⌈∑m−1
i=1 ζi+1 − ζi
m− 1

⌉
are calculated. δmean defines the length of half a cycle, i.e., the
time between the initial contact of the starting foot followed by
the initial contact of the subsequent foot. Thus, for q describing
the number of gait cycles, m = q · 2. For the gait-cycle
extraction, we assume healthy subjects, where the movement
of the right foot is sufficiently similar to the left foot and thus
have nearly the same distance. δmean can now be used to select
indices of minima from z that represent clear cycles with the
same length:

µ = {µ1, . . . , µi, . . . , µm−1};
µi = argmin(zζi−τ , zζi−τ+1, . . . , zζi+δmean+τ ).

Every µj represents the index of a minimum in z limited to
the range of δmean where τ defines an additional user defined
factor to account for small deviations in the gait duration. The
indices in µ can now be used to split the raw data z into full
gait cycles

Z = {Z1, . . . , Zi, . . . , Zq};
Zi = (zµ i

2

, . . . , zµi , . . . , zµ i+1
2
−1); (1)

i = {2, 4, ..., q}.

Finally, the length of gait cycles are normalized by resampling
every Zi using a Fourier method to a fixed number of samples
ρ per gait cycle so that |Zi| = ρ (cf. Figure 2d). For
ease of presentation, we will, in the following, describe such
normalized gait cycle with Zi = {Zi1, . . . , Ziρ}. The choice
of ρ depends on factors such as sample rate and requirements
of the quantization algorithm discussed in Section IV.

B. Datasets

In our work, we used two different datasets gathered for
evaluation of human movement (cf. Figure 4). We refer to

(a) Before

z
y x

g

(b) After Madgwicks algorithm

Fig. 5: Different Sensors worn on a human body. Depicted are
the devices’ coordinate systems before and after application of
Madgwicks algorithms. Note the remaining degree of freedom
along the xy-plane.

the datasets as the osaka respectively the mannheim dataset
in accordance with the hometown of their collectors. Unfortu-
nately, the osaka dataset has certain faults.A conceptual issue
lies in the fact that all sensor units were located on pretty close
positions on the body. As well, they were mounted to the same
harness, introducing a possible error. Finally, the osaka dataset
yields only 6-8 Gait Cycles of stationary walk per subject.

C. Data Pre-Processing

In a real-world setting, it is very likely that different sensor
platforms are worn at different positions, which introduce dy-
namically changing orientations due to body part movements
(cf. Figure 5a). For our gait cycle detection to work well, it
is crucial to align these every data point of these different
orientations such that one of the axes is facing in the opposite
direction of gravity as depicted in Figure 5b.

Nowadays, most mobile devices contain gyroscopes in ad-
dition to accelerometers [42]. We therefore posses information
about the initial device orientation (since the force of gravity is
included in every measurement recorded by the accelerometer)
as well as the angular velocity of the sensor platform itself.
Thus, it is possible to correct the ongoing orientation error.
We employ the algorithm proposed by Madgwick et al. [43] to
rotate all measurements zi accordingly, resulting in a signal as
shown in Figure 2b. Note that the output is only guaranteed to
be aligned along the z-axis which is in parallel with the gravity
axis. When comparing two readings, both other axes may point
in different directions because no second fixed direction as, for
example, the direction of North is obtainable.

Madgwick’s algorithm only changes the sensor orientation
(see Figure 5), it does not remove any noise. Therefore, we
apply a Type II Chebyshev bandpass filter with passband
chosen between 0.5Hz and 12Hz. Cutoff frequencies are
further discussed in section V-B. The resulting signal is shown
in Figure 2c.
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fwaist f forearm

80% similarity

Fig. 6: Independent fingerprint generation on sensor positions waist and forearm: The graph shows energy levels above the
average gait cycle A as blue and below as red areas. After quantization in (a), reliabilities are calculated and assigned to each
bit in (b). The darker the color, the more reliable the bit. Finally, in (c) the fingerprint is sorted by reliability vector of the
forearm with a cutoff at 24.

IV. BANDANA

After recording raw accelerometer as well as gyroscope data
and correcting sensor-orientations together with applying a
band-pass filter, the gait cycle detection algorithm produces
a periodic filtered signal. For BANDANA’s device-to-device
authentication, shared secrets need to be generated based on
these signals independently on participating devices and, in
particular, without disclosing information on the gait sequence
on the communication channel.

A. Quantization

To generate binary fingerprints from the continuous gait
sequence, we propose a quantization algorithm inspired by
Hoang et al. [31]. Recall the definition of Zi from equa-
tion (1) with the normalized gait cycle |Zi| = ρ and Zi =
{Zi1, . . . , Ziρ}. We define the average gait cycle as

A = (A1, . . . , Aj , . . . Aρ);

Aj =

∑q
i=1 Zij
q

.

Fingerprint bits are extracted by calculating the energy differ-
ence between each gait cycle Zi andA as depicted in Figure 6.
To extract b bit per Zi, each Zi is split into b parts of the same
length ρ/b. Thus, a binary fingerprint is defined by

f̃ = (f̃11, . . . , f̃1 ρb , . . . , f̃b1, . . . , f̃b
ρ
b
)

f̃ij =

{
1, δij > 0
0, otherwise.

δij =

ρ/b∑
k=0

Ai+k − Zi+k,j .

as exemplary shown in Figure 6 (a). In the following, the
fingerprint vector is written as

f̃ = (f̃1, . . . , f̃M).

B. Reliability

To calculate the reliability of the extracted bits, the differ-
ences of the quantization algorithm are stored as

δ = (δ11, . . . , δ1b, . . . , δq1, . . . , δqb).

The indices of δ are sorted in descending order by the
absolute value of each associated difference |δij | to retrieve
the reliability ordering

r = (r1, . . . , rM) with ri ≥ ri+1.

We will refer to r in the following as the reliability vector.
It contains those indices which experienced the highest dif-
ference between the mean gait cycle A an an instantaneous
normalized gait cycle Zj . These bits are most reliable in the
sense that they have high probability to be identical for devices
at arbitrary body positions. In Figure 6 (b) we used colors
to indicate the associated reliability. The elements of f̃ are
then sorted according to their corresponding values of r and
the most reliable first N constitute the final fingerprint f =
(fr1 , . . . , frN ) (cf. Figure 6 (c)).

C. Fuzzy Cryptography

To derive unique shared secrets on both participating devices
without exchanging additional information for comparison,
error correcting codes are utilized. Error correcting codes are
normally used to encode messages from the messagespace
m ∈ M into codewords of the (larger) codespace c ∈ C
introducing redundancies.

m
Encode−−−−−→ c.

This process allows to correct errors introduced when trans-
mitting c over a lossy channel before decoding it back to m
with

c
Decode−−−−−→ m.

We apply error correcting codes in a different way. In a
sense, our fingerprints f are lossy as they are not entirely
equal on the devices trying to mutually authenticate. Here,
the codespace C is chosen in a way that we can directly pick



a fingerprint f from this codespace and apply the Decode-
method with

f
Decode−−−−−→ k

to derive a binary key k that is error corrected. Due to
the usage of binary fingerprints we propose the usage of
BCH codes over the Galois field F2. A BCH code can be
parameterized to correct up to t errors, which in our case
must be chosen carefully to allow for errors within different
positions on the same body but not for correction of errors
between different bodies. As with the other parameters, t is
chosen based on our evaluation in Section V.

D. Protocol

Finally, we introduce BANDANA’s full protocol flow be-
tween two devices A and B worn on the same body. Following
Figure 7, the gait cycle detection is applied on recorded
accelerometer data corrected by Madgwick’s algorithm and
Type-II Chebyshev bandpass filter. For two co-aligned devices
A (Alice) and B (Bob), fingerprints fA (fB) and reliability
vectors rA (rB) are derived on both devices independently.
To utilize the same vector for reliability ordering on both
sides, a random value xA (xB) is transmitted together with
rA (rB). The same reliability vector r is then used to sort rA
and rB . To account for errors, we apply the BCH decoding-
method to reduce both rA and rB to a unique k, which
is then used as the password for a Password-Authenticated
Key Agreement (PAKE). Both devices now share the same
secret s protected by a key agreement authenticated by their
gait fingerprints. We propose the usage of a modern non-
patented PAKE that feature additional countermeasures for low
entropy passwords, such as Password Authenticated Key Ex-
change by Juggling (J-PAKE) [44] or Secure Remote Password
protocol (SRP) [45].

For devices with high clock drift, the protocol can be
extended to allow for multiple tries with different fingerprints.
For this to work, before quantization the gait sequence should
be shifted by half -gait cycles to the right by both devices A
and B.

V. EVALUATION

In this section, we present the evaluation of our approach
as well as experiments that led us to choose certain parameter
configurations.

A. Signal Coherence

After applying Madgwick’s algorithm (cf. section III-C),
we end up with sensor readings where the z-axis has been
aligned to point to the ground. This allows to examine the
relation between these sensor readings. For this, we calculate
the spectral coherence for different sensor combinations to test
whether any causality between readings taken simultaneously
by sensors located in different positions on the same body
exists — apart from just the correlation for the respective
motion in general. Figure 8 clearly shows that there is hardly
any similarity between arbitrary recordings, but a considerably
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A

A

A

A

A

B

B

B

B

B

B

Authentication Request

Sensor Recording
Madgwick, Bandpass Filter

Gait Cycle Detection
Quantization, Reliability
⇒ f̃A, rA

Random xA ∈ F290

Sensor Recording
Madgwick, Bandpass Filter

Gait Cycle Detection
Quantization, Reliability

⇒ f̃B , rB

Random xB ∈ F290

(rA , xA) (rB, xB)

If xB > xA

rA = rB

fA = Rel(f̃A, rA)

fA
Decode−−−−−→ k

If xA > xB

rB = rA

fB = Rel(f̃B , rB)

fB
Decode−−−−−→ k

PAKE

s = PAKE(k) s = PAKE(k)

Fig. 7: BANDANA protocol sequence between two devices A
and B worn on the same body.
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Fig. 8: Average spectral coherence over full sensor readings
of the Mannheim dataset for same and different subject.

high correlation between those records being taken simultane-
ously. Only between 0Hz up to 0.5Hz, a correlation between
arbitrary records exists. This leaves us with two major results:
• There is a measurable causality between sensor readings

taken simultaneously on the same body
• Some unwanted correlation at lower frequencies still

exists

B. Bandpass Filter

Following the results from the previous section, we continue
filtering the sensor readings. As visualized in Figure 8, there
still exists some unexpected correlation between arbitrary



readings on low frequencies. As these frequencies - up to
approximately 0.5Hz - only add noise, we would like to filter
them out while keeping all the frequencies above. We thus
employ a Type-II Chebyshev filter, which is known to have
a very steep drop at the cutoff frequency. Furthermore, in
contrast to Type-I, Type-II Chebyshev filters do not have any
ripple in the passband.

Researchers in the domain of Activity Recognition report
that human motion does not affect any frequencies signifi-
cantly above 10Hz [46]. Based on this observation and the
coherence depicted in Figure 8, we decided to choose an upper
cutoff frequency of 12Hz.

C. Reliability

Our quantization scheme defines that iff δij > 0 for fixed
i, j is true for Alice, the same has to apply for Bob for at
least 80%. Some Zij are less prone to leading to different
bits between sensors at different body locations than others,
namely those with a higher difference δij to the mean gait A.
Both Alice and Bob keep a reliability value for each bit of the
fingerprint. According to the BANDANA-Protocol as shown
in Figure 7, one of these reliability vectors is chosen randomly
and the fingerprint is sorted by each party following tis
reliability vector’s order of indices (see Figure 6). In a last step,
the fingerprint’s most unreliable bits are discarded. To show
the viability of this approach, we calculated the fingerprints’
similarity over all 15 subjects and all 7 sensor positions. As
shown in Figure 9, we chose different fingerprint sizes M with
cutoff at N = 128 to test how many additional bits should
be discarded by BANDANA to gain the best similarity. The
mean-similarity improves with greater values of M and settles
around N+64 with an average improvement of approximately
4%. Thus, we chose N + 64 for our configuration.

D. Discriminability of Intra- and Inter-body Fingerprints

Figure 10 illustrates the discriminability between intra-
body and inter-body fingerprints. The intra-body case with
M = N+64 with N = 128 is compared against the inter-body
cases of different sensor positions. Here, we evaluated whether
similarities exist between different subjects but same sensor
positions. While the intra-body case tests only similarities
between differing sensor position on the same body (315
similarities), the inter-body case is much larger. Each inter-
body position case contains 8880300 similarities. As expected,
the mean similarity between different subjects is 50%. It is
important to note that this test evaluates the worst case of
brute forcing all possible combinations between subjects. In
reality, an attacker is constrained to ∼ 432 tries per day (cf.
Section VI). In the inter-body case, it can be seen that a small
number of fingerprints match with unexpected high similarity
values (outliers). We assume that these collisions happen in
case of gait sequences with very low entropy still exhibiting
specific pattern due to the design of the quantization scheme.
While this should be investigated further, only 0.0642% of
these collisions show similarity values above 80%.
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Fig. 9: Different fingerprint sizes M with cutoff at N = 128
to evaluate the influence of Rel() on intra-body similarity.
Each value in this graph is defined by the similarity of
two differing sensor positions within the same subject (intra-
body). The graph contains all possible similarities within each
subject and all her sensor position-combinations. Fingerprints
are generated by a sliding window over the sensor data with
half-overlapping windows. Only fingerprints generated from
the same windows are matched against each other.
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Fig. 10: Comparison of intra-body against inter-body similar-
ity. Each value in the intra-body boxplot is defined by the
similarity of two different sensor positions within the same
subject (all possible similarities within each subject and all
her sensor position-combinations). For the inter-body test,
each boxplot defines a different sensor position. Only different
subjects are tested against each other with the same sensor
positions. Fingerprints are generated by a sliding window over
the sensor data with half-overlapping windows for M = 192
with cutoff at N = 128.



TABLE I: Detailed comparison of sensor position-combinations
worn on the same body (intra-body). Shown is the mean over
all 15 subjects.
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chest 1.0 0.82 0.74 0.78 0.78 0.88 0.81
forearm 0.82 1.0 0.8 0.81 0.88 0.89 0.89
head 0.74 0.8 1.0 0.8 0.76 0.77 0.78
shin 0.78 0.81 0.8 1.0 0.77 0.78 0.8
thigh 0.78 0.88 0.76 0.77 1.0 0.85 0.84
upperarm 0.88 0.89 0.77 0.78 0.85 1.0 0.88
waist 0.81 0.89 0.78 0.8 0.84 0.88 1.0

Fig. 11: Illustration of 128 binary keys after removing 64
unreliable bits from the fingerprint. Each row contains one
128 bit fingerprint with 1 = black and 0 = white.

E. Similarities between Sensor Position-Combinations

Table I illustrates how well differing sensor positions au-
thenticate against each other. We found out that chest against
other positions and head against other positions perform worse
while forearm and waist perform best.

F. Statistical Bias

For the robustness against a potent adversary, it is important
that the keys generated from gait sequences are random. For
instance, Figure 11 exemplarily depicts 128 keys we extracted
using BANDANA with fingerprint length M = 192 bits after
removing 64 unreliable bits (cutoff at N = 128 bits) for
an intuitive illustration of the randomness of the generated
fingerprints.

We rigorously tested the keys generated by BANDANA
against statistical bias and employed the dieHarder battery
of statistical tests for this end [47]. While these tests can
not replace cryptanalysis they are designed to uncover bias
and dependency in the pseudo random sequence. Every test
has an expected distribution of outcomes. Test runs produce
a value that is compared to the theoretical outcome. A p-
value, describing the probability that a real Random Number
Generator (RNG) would produce this outcome, between 0 and
1 is computed. A good RNG will have a range of p-values
that follows a uniform distribution. A p-value below a fixed

significance level α = 0.001 indicates a failure of the PRNG
with probability 1 − α. For instance, a p-value ≤ 0.05 is
exptected 5% of the time.

Our results are depicted in Figure 12. Observe that the p-
values are well distributed over the complete range and clus-
tered in the center which indicates a good random distribution
of the p-values.

G. Final Parameters

Throughout the paper, we introduced parameters without
assigning a definitive value. We now present the configuration
we propose for a deployment of BANDANA in real-world
applications. The parameters have been carefully chosen based
on our evaluations performed on the datasets from Mannheim
and Osaka University. When using an accelerometer resolution
of 50Hz, we propose a resampling rate of ρ = 40 for bit
extraction of b = 4 bits per gait cycle Ri resulting in τ =
ρ/b = 10. We target M = 192 bit gait fingerprints with a
cutoff at N = 128 bit, i.e., for b = 4 we extract q = 48 gait
cycles. An upper bound for the required length of the data r
is given with 48 · ∼2 s = 96 s.

Following the results depicted in Figure 10, we chose to pa-
rameterize the BCH codes to allow correction of at maximum
20% of the bits in the fingerprint with t = b128 · 0.2c = 25.
Consequently, at least 80% similarity between the fingerprints
is required. This results in a 103-bit security level for k used as
a password for PAKE. While we have shown that the entropy
of our fingerprints is sufficiently high, PAKE takes additional
countermeasures for low entropy.

VI. SECURITY MODEL

In the following, we analyze BANDANA’s security model
by discussing possible attack scenarios. The attacks are dis-
cussed in order of increasing severity.

1) Mimic Gait: An imposter could try to mimic the gait
of the victim to produce fingerprints above 80% similarity.
In BANDANA, the impersonator is constrained to mimic the
gait for a very specific time frame where the authentication
between the impersonator’s device and the victim’s device
happen. While we do not have actual sensor data of imper-
sonators, the evaluation of the Mannheim dataset show that
there are only a small number of accidental collisions between
fingerprints from different subjects (cf. Section V-D) over all
possible pairwise comparisons of all 14:1 subjects at 10-12
minutes duration each. As shown in [37], a minimal-effort
impersonation attack does not improve the chances of success.
In BANDANA, the default configuration allows for one try of
PAKE only, before starting a completely new authentication
process. For M = 192 bit long fingerprints, BANDANA’s full
process takes up to ∼ 200 s. Thus, an optimal imposter — one
who is always following the victim — is constrained to ∼ 432
tries per day.

2) Brute Force: Without requiring additional knowledge
about the victim’s gait, an attacker may want to brute force
keys k by exhausting the space of all possible keys C = F2103 .



Fig. 12: Distribution of p-values achieved for 128bit keys (fingerprint length M = 192, 64 unreliable bits removed) in the
various statistical tests of the dieHarder set of statistical tests.

As discussed in the previous scenario, an attacker is con-
strained to ∼ 432 tries per day, where every try generates
a new k completely independent from the previous one.
Thus, previously tried keys need to be tried again making it
impossible to exhaust C.

3) Video Recording: An attacker controlling surveillance
cameras could create a video recording of the victim’s gait
for the timespan where the device-to-device authentication
happens. Using motion detection software she could try to
infer acceleration values to generate similar fingerprint. It will
be difficult to extract all acceleration changes by just extracting
features from a video. Recall that our fingerprint is based
on tiny convulsions between a sliding window mean gait A
and the instantaneous gait cycle Zi, happening on the z-axis
pointing towards the ground. For every gait cycle b = 4 bits
are extracted from these changes. While we believe that it will
be difficult to accomplish this attack, a detailed analysis is left
for future work.

4) Attach Malicious Device: To access the BAN, an at-
tacker could attach a malicious device to the body of the
victim, e.g. by slipping a small sensor node into the victim’s
jacket or by selling a compromised device to the victim.
This device could create a second communication channel to
forward traffic from inside the BAN to an outsider. Due to the
fact that BANDANA works without explicit user interaction,
this attack could succeed if executed properly and unnoticed.
We would like to remark, though, that this physical attack also
contains significant risk for the attacker to be revealed when
such malicious device is detected.

VII. CONCLUSION

We have presented BANDANA: the first-ever implicit se-
cure device-to-device authentication scheme for devices worn
on the same body. No user interaction is required to establish
shared secrets implicitly and authenticated by fingerprints
generated from the user’s gait. The protocol accounts for
errors without comparing the fingerprints directly, but utilizes
fuzzy cryptography based on error correcting codes. A novel
quantization method for independently generating similar fin-
gerprints at differing sensor positions has been proposed and

evaluated. By selecting only reliable bits, we were able to
boost the similarity by 4%. Our final fingerprints between
devices worn on the same body have a similarity of 82% in
comparison to devices worn on different bodies with 50%.
Therefore, we were able to show that BANDANA works
considering its security model. Our main future work will be
the investigation of the small number of matching fingerprints
in the inter-body case and on a detailed entropy analysis.
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