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Abstract—RFID-based positioning is emerging as a promising
solution for inventory management in places like warehouses and
libraries. However, existing solutions either are too sensitive to
the environmental noise, or require deploying a large number
of reference tags which incur expensive deployment cost and
increase the chance of data collisions. This paper presents CSRP,
a novel RFID based positioning system, that is highly accurate
and robust to environmental noise, but relies on much less
reference tags compared with the state-of-the-art. CSRP achieves
this by employing an noise-resilient RFID fingerprint scheme and
a compressive sensing based algorithm that can recover the target
tag’s position using a small number of signal measurements.
It provides a set of new analysis, algorithms and heuristics
to guide the deployment of reference tags and to optimize the
computational overhead. We evaluate CSRP in a deployment site
with 270 commercial RFID tags. Experimental results show that
CSRP can correctly identify 84.7% of the test items, achieving
an accuracy that is comparable to the state-of-the-art, using an
order of magnitude less reference tags.

I. INTRODUCTION

Radio Frequency IDentificaiton (RFID) is rapidly emerging
as a viable means for tracking and localizing objects [1]–[6].
By simply attaching tags to objects, one can then identify
the ID of an object of interest and locate its position – by
using an contactless RFID reader to gather data from object
tags based on a pre-defined radio frequency and protocol.
RFID-based positioning is widely seen as a promising solution
for inventory management in places like warehouses and
libraries [7].

Prior works in RFID-based positioning systems exploit the
received signal strength (RSS) information of surrounding
object tags to estimate the target’s location [1]–[4]. However,
such an approach is unreliable as the RSS reading is inherently
sensitive to the environmental noise. As an alternative, the
Angel of Arrival (AOA) approach [8]–[10] employs multiple
antennas to cancel the environmental noise. An AOA scheme
calculates the target object’s location by measuring the dif-
ferences of the radio frequency (RF) signal phases between
the target tags and antennas. The working mechanism of AOA
assumes that the RF signal travels in a direct, line-of-sight
(LOS) path from the source to the receiver. This assumption
means that the positioning precision can be greatly affected by
any physical object that obstructs the signal transmission path,
a problem known as non-line-of-sight (NLOS) propagation.

PinIt is the current state-of-the-art RFID-based positioning
system [6]. It was proposed to address the NLOS issue. PinIt
works by first deploying reference tags at known locations,
and then using a reference tag that has the most similar
signal characteristics to the target tag to estimate the target’s
position. To achieve a high accuracy, PinIt requires placing
a large number of reference tags, sometimes having more
reference tags than the deployed ones. This large number of
reference tags not only incurs high deployment cost, but also
increases the chance of data collision between tags and leads to
deleterious performance in a large-scale deployment. To make
RFID-based positioning practical at scale, we must find ways
to greatly cut down the number of reference tags required.

This paper introduces CSRP, a novel RFID positioning
system that works with NLOS. One of the advantages of CSRP
is that it requires significantly less reference tags than the state-
of-the-art but without scarifying the precision. Our key insight
is that the number of tags to be positioned at a given moment in
a large-scale deployment is highly likely to be smaller than the
total number of tags. If we consider the problem of positioning
as finding a location vector where an element with a value of
‘1’ marks a target tag of a specific location and ‘0’ otherwise,
then most of the elements of the vector will be zero, i.e., the
location vector is sparse. The sparsity of the location vector
suggests that through optimization, it is possible to recover the
sparse location vector by sampling a small number of reference
tags – using a recently established signal processing technique
called compressive sensing (CS) [11]. Essentially, CS allows
one to reconstruct a sparse signal (i.e., the location vector in
our case) from far fewer samples (i.e., reference tags in our
case) than required by the Shannon-Nyquist sampling theorem
under certain conditions [12]. If this can be achieved, we can
then greatly reduce the number of reference tags required; and
consequently, we can save cost and time, and decrease the
chance of data collision in a large-scale RFID deployment.

Transforming this high-level idea into a practical system is
non-trivial, because we have to rely on a small number of
reference tags. It is undesirable to use the signal measurement
of a deployed target tag as the fingerprint for positioning, like
prior works did [1], [4]. This is because an instantaneous mea-
surement for a tag can significantly differ from the previous
measurement of the same tag due to dynamic environmental



noise. We cannot use the signal multipath profiles of nearby
reference tags as fingerprints to estimate the location of a
deployed target tag like PinIt does either. This is because
our small number of reference tags will have to be sparsely
distributed in the deployment site and as a result, many object
tags will be far from a reference tag.

Our solution is to calculate, for a deployed ojbect tag, its
spatial relation with respect to each reference tag in terms
of their multipath profiles. We then use this relation to build
a fingertip matrix (or database) for all object tags. The key
of our approach is to use the relatively stable spatial relation
between the ojbect tag and static, fixed reference tags to reduce
or even cancel the dynamic environmental noise. Since the
spatial relation is automatically calculated, the fingertip matrix
will be updated if any of the object tags has been replaced or
removed. This ability allows CSRP to adapt to the changing
deployment environment without human involvement.

To locate a target tag, we first use an RFID reader to
measure the multipath profile of that tag. Next, we calculate
the spatial relation between the multipath profiles of the target
tag and each static reference tag. We organize the calculated
spatial relations as an one-dimensional vector of real values,
for which we called a real-time measurement. We then
use a sparse recovery algorithm under the CS framework to
estimate the target tag’s position. Specifically, the algorithm
tries to find a one-dimensional vector, whose multiplication
production with the fingerprint matrix is as close as possible
to the real-time measurement vector. The found vector is
essentially the sparse location vector that we are looking for.
The element with a value of ‘1’ in the location vector indicates
the estimated position or location id for the target tag.

However, performing the recovery algorithm on a large
fingerprint matrix could be expensive. To reduce the com-
putational overhead, we decouple the problem into two sub-
problems. We first divide the deployment region into subareas
(e.g., different book shelves in a library), so that each subarea
contains a subset of the object tags – on which a smaller
fingerprint matrix can be constructed. To locate a tag, we
first use an offline learned classifier to predict which subarea
the target tag belongs to, and then apply the sparse recovery
algorithm to the smaller fingerprint sub-matrix to quickly find
the location vector. This divided-and-conquer strategy allows
our algorithm to scale to a large RFID deployment.

A natural question is: “how many reference tags are
needed"? Deploying too many reference tags will waste money
and time, but having too few of them will result in poor
performance. In this paper, we prove that organizing the
reference tags as a mesh of equilateral triangles is the most
cost-effective way to achieve high precision, and develop a
heuristic to determine the minimum number of reference tags
and how to organize them in a specific region.

We have developed a prototype of CSRP and evaluated it in a
library room with rich multipath and NLOS. Our experimental
results show that CSRP is able to correctly locate 84.7%
of the test items with an average location accuracy of less
than ten centimetres across all test items. This performance

is comparable to PinIt, but CSRP uses an order of magnitude
less reference tags and does not rely on specialize hardware.

This paper makes the following contributions:
• We present a novel RFID-based positioning system. Our

system offers high positioning precision but requires an
order of magnitude less reference tags than the state-of-
the-art. As a result, it saves cost and time in a large-scale
deployment.

• Our work is the first to employ compressive sensing for
RFID-based positioning.

• We show how to translate our novel idea to a practical
system. We present new analysis and algorithms to cal-
culate the optimal number of reference tags as well as
the best way for organizing reference tags.

• Our approach is immediately deployable on off-the-shelf
RFID hardware.

II. OUR APPROACH

A. Overview

Fig. 1 illustrates a high-level overview of CSRP, which
consists of four offline and online stages described as follows.

Offline Deployment and Data Collection: The first step is to
deploy a number of reference tags in the deployment site. We
then collect the signal phase readings for all object tags and
reference tags. This process only needs to perform once. If an
object tag is replaced, we recollect the phase reading of the
new tag. If an object tag is removed, we take its reading out
from our database. We show that placing the reference tags at
the intersections of a mesh of equilateral triangles gives the
best cost-effective performance. See Section II-D.

Offline Fingerprint Matrix Construction: After collecting
the data for each tag, we fingerprint each object tag by calcu-
lating the spatial relation between the object tag’s multipath
profile and each reference tag’s. This process gives us a
fingerprint matrix for all object tags. See Section II-C.

Online Measurement Vector Acquisition: To locate an item
with an known tag ID, we first use an RFID reader to track
the RF signal associated with the tag ID. We take the real-time
signal phase measurements of the target tag and each reference
tag. The measurements are then used to compute the real-time
measurement of the spatial relation between the target and
reference tags. This results in a real-time measurement vector.

Online Target Tag Positioning: The real-time measurement
is fed into a machine learning classifier to predict which
subarea the target tag belongs to. We then use a sparse
recovery algorithm to take in the real-time measurement and
the fingerprint matrix of the predict subarea to estimate the
location of the target object. See Section II-E.

B. Problem Formulation

Fig. 2 depicts an example deployment setup of our ap-
proach. In this example, there are in total N objects where
each object is attached with an RFID tag. We also deploy M
(M � N) reference tags. Suppose that there are K target
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Fig. 1: Overview of CSRP. At the offline deployment phase, the object tags and a few number of reference tags are deployed
in the entire region, and CSRP automatically calculates the fingerprint matrix. During online localization, CSRP obtains a
measurement vector, predicting which subarea the target tag belongs to, and then using the measurement together with the
fingerprint matrix to derive a location vector that indicates the target’s location.

1 2

54

Reference tag

1 2 3 ...

NN-1M

Object tag

Target tag

3

Estimated position

Fig. 2: An example CSRP deployment setup with N object
tags and M reference tags. Unlike [6], the number of reference
tags is signifantly less than the total number of object tags,
i.e., M � N .

tags that we want to locate. These target tags are randomly
distributed among N objects. We use a location vector Φ to
represent the positions of K tags as:

φ = [φ(1), · · · ,φ(j), · · ·φ(N)]T , (1)

where φ(j) ∈ {0, 1}, and when the tag is in the position j,
φ(j) = 1, otherwise, φ(j) = 0. We want to highlight that
the number of target tags is equal to the number of non-
zero elements in Φ, i.e., K =

∑N
j=1 φ(j). If the number

of target tags, K, we want to locate at a given moment is
significantly smaller than the total number of object tags, N ,
then the location vector, Φ, will be a sparse vector. Based on
the sparse property of Φ and according to the CS theory in
sparse recovery [13], when the number of target tags equals
1 (i.e., we want to locate an object at a time), the target tag
positioning can be formulated as:

yM×1 = XM×N · φN×1 +N , (2)

where yM×1 is the real-time measurement vector, and XM×N
is the fingerprint matrix, N is the measurement noise. Ac-
cording to prior works [11]–[14], when the fingerprint matrix
satisfies the restricted isometry property (RIP), the location
vector can be accurately recovered by solving Equation (2).

Our approach can also be used to solve a multiple-target
positioing problem (i.e. when K is greater than 1). Because
the readings of different tags can be separated using their IDs
(which are given to the RFID reader), we can estimate the

position of each tag one by one. Specifically, each tag would
have its own real-time measurement vector, y, and a generated
location vector, φ. Thus, Equation (2) can be re-defined as:

YM×K = XM×N · ΦN×K +N ,
X = [x1, · · · ,xj , · · · ,xN ],xj ∈ RM×1,

Y = [y1, · · · ,yj , · · ·yK ],yj ∈ RN×1,

Φ = [φ1, · · · ,φj , · · ·φK ],φj ∈ RN×1. (3)

where xj is the fingerprint of j-th target tag, yj and φj are
the measurement vector and location vector, respectively.

As shown in Equation (3), only measurements of M ref-
erence tags are needed to locate one target tag. In contrast,
PinIt would have to collect the phase readings from at least N
reference tags (i.e., the number of reference tags is equivalent
to the total number of object tags) [6]. Therefore, CSRP
reduces the number of measurements by N−M

N (M � N ) over
PinIt. This reduction means that we can save the deployment
cost and reduce the data conflict in large-scale deployment.

C. Fingerprint matrix construction

Like the common practice in RFID positioning [1], [5],
[6], CSRP also use the signal fingerprint information of tags
to locate a specific object. There are two types of signal
measurments can be directly obtained from an object tags
using a RFID reader, RSS and the phase. We choose to use
the phase to construct the fingerprint because it is more robust
to the multipath effect and NLOS when compared to RSS [6].

In this paper, we use the multipath profile [6] as a measure-
ment feature for each tag. Formally, a multipath profile is a
vector P (θ) which records the power of tag’s received signal
in the beam with the direction θ ∈ [0◦, 180◦]. Given a reader
with Q uniformly spaced antennas as shown in Fig. 3(a), the
received signal will be projected by each antenna to obtain a
narrow beam in the θ ∈ [0◦, 180◦] direction, and the power
received in the θ direction can be obtained by (see [6]):

P (θ) =
∣∣∑Q−1

q=0
w(q, θ) · sq

∣∣2, (4)

w(q, θ) = e−j
2π
λ ·xq cos θ, (5)
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Fig. 3: Collecting the phase readings for feature extraction.

where sq is the tag’s signal observed from the qth antenna,
w(q, θ) is the weight to sq when steering the beam to θ, λ is
the wave length and xq is the position of the kth antenna.

Traditional fingerprint methods suffer from low accuracies
due to subtle environmental changes. In this work, we design
a novel fingerprint to avoid the issue of environmental noise.
Specifically, we compute the spatial relation of each object
tag with the reference tags. Because the spatial relationship
keeps unchanged as long as the deployment pattern is fixed,
thus we use the spatial similarities of each deployed tag with
the reference tags as a new fingerprint. We use the dynamic
time warping (DTW) distance [15], a widely used similarity
metric for time series, to compute the spatial similarity, and
the fingerprint for the object tag j can be represented as a
column vector:

xj = [x1j , · · · , xij , · · · , xMj ]
T ,

xij = ‖Pj(θ)− Pri(θ)‖DTW , (6)

where Pj(θ) and Pri(θ) are the multipath profiles of the j-
th object tag and the ith reference tag, ‖·‖DTW quantifies the
similarity of multipath profiles between them [6]. By collecting
the multipath profiles of N object tags, the fingerprint matrix
can be constructed.
Online measurement vector acquisition. To locate a specific
tag, we collect the phase readings of the target tag and the
reference tags within a region. This is done using Equation (6).
Here, the real-time measurement vector yj for target tag j is
defined as:

yj = [yj(1), · · · , yj(i), · · · , yj(M)]T ,

yj(i) = ‖Pj(θ)− Pri(θ)‖DTW , (7)

where yj(i) is the DTW distance between multipath profiles of
the target tag and the ith reference tag.

There are a number of reasons that we set the fingerprint
matrix X as the form described in Equation (6). First, since
the number of reference tags is much smaller than the object
tags, by using the multipath profile distance between each
location and M reference tags as the fingerprint, the row
number for the fingerprint matrix M is much smaller than
the number of possible positions N . Then the location vector
φj can be recovered by only collecting M measurements
for the vector yj . Second, the measurement vector yj is the
inner product of the location vector φj and the row vector
xi (ith row of fingerprint matrix), thus xi should include
all the multipath profile distances between the reference tag

i and N different locations. Third, based on the rigorous
proof in Section II-E4, the constructed fingerprint matrix in
(6) obeys the RIP, which is the sufficient condition to conduct
CS recovery. The detailed process about solving the location
vector in (3) will be presented in Section II-E.

D. Offline Reference Tag Deployment

In this subsection, we will introduce the principles about
the reference tags’ deployment. We present two theorems that
provide guidance on how to deploy reference tags to achieve
a good performance in a cost-effective manners. We want to
answer two specific questions: “how many reference tags are
needed?" and “how should they be deployed?".

1) How many reference tags are needed?: In a practical
deployment, the number of target tags K to look for is known.
According to the CS theory, the number of measurements
needed to accurately recover an K-sparse location vector, φ,
should at least O(K log(N/K)). Therefore, the number of
reference tags needed to recover the K-sparse location matrix,
Φ, should satisfy the term, M > O(K log(N/K)). Because
O(K log(N/K)) < M � N , the number of reference
tags would be much smaller than the number of object tags.
Compared to the state-of-the-art work PinIt, which needs to
deploy at least N number of reference tags, CSRP significantly
reduces the deployment cost. Besides, the package collision
among tags would decrease, as shown in Section IV-D.

2) How to deploy reference tags?: The goal of CSRP is
to maximize the positioning accuracy under a given budget
of reference tags. This requires us to maximize the distinc-
tion between different elements of the constructed fingerprint
matrix. Specifically, this require us to satisfy two criterions.
First, the distance between any two neighboring reference tags
should be maximized. For the fingerprint matrix, neighboring
elements in one column represent the difference of one object
tag to two neighboring reference tags. That is to say the
neighboring rows in the fingerprint matrix should have the
maximum dissimilarity. Secondly, the distance between each
tag and its nearest reference tag should be minimized. For the
fingerprint matrix, there exists a minimum for each column
and the positions of these minimum in different columns
are different. As a result, the neighboring columns in the
fingerprint matrix can reach the maximum dissimilarity.

By making sure our fingerprint matrix meets the two crite-
rions described above, we can make the neighboring elements
along both the rows and columns as different as possible.
Hereafter, we have two theorems to prove that when the
locations of reference tags form a mesh of equilateral triangles,
the above two requirements can be satisfied. The detailed
proofs are similar to the one presented in [16] which is used
to choose the measurement points.

Theorem 1: The distances between each pair of reference
tags can be maximized when they are at the intersections of
a mesh of equilateral triangles.

Proof 1: Given the number of reference tags and the de-
ployment area, the theorem can be proved through its opposite
proposition. We just need to prove that when the distance of
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neighboring reference tags is fixed, the deployment area can
be minimized when the reference tags are deployed at the
intersections of a mesh of equilateral triangles. Note that when
the reference tags are evenly deployed, the area can be divided
into acute or right neighboring triangles1.

Suppose that the distance between neighboring reference
tags is dm, and we draw circles centering on each reference
tags with radius dm/2 and there is no overlap between them,
as shown in Fig. 4. According to the Thue’s Theorem, the
ratio between the total area of these triangles Sn and the area
of the deployment region S is restricted to π/

√
12 as:

Sm/S = 2Mπ(0.5dm)2/S ≤ π/
√

12, (8)

S ≥
√

3Md2
m, (9)

and when the edge length of the triangles are equivalent, S
achieves its minimum value with

√
3Md2

m. This prove that
the deployment of reference tags with equilateral triangles
maximize the distance between reference tags.

Theorem 2: When the deployment of reference tags are a
mesh of equilateral triangles, the distance between each tag
and its nearest reference tag can be minimized.

Proof 2: Since the area can be divided into triangles, each
tag can be treated as uniformly distributed in one of the
triangles. Suppose the tag p is located in ∆abc, as shown in
Fig. 5, oa1, ob1 and oc1 are three midperpendiculars of edge
bc, ac and ab, respectively. Thus the nearest reference tag to p
is a, b or c if p ∈ �ab1oc1, �ba1oc1 or �ca1ob1, respectively.

To proof the above theorem, we first compute the expected
distance between p and it’s nearest reference tag, let Epa
denotes the expected distance between p and a in ∆aob1, S _

∆h

and S
a
_
∆h

denote the area of radian
_

∆h and the sector a
_

∆h:

Epa =
1

|ob1|

∫ |ob1|
0

S
a
_
∆h

S _
∆h

d
_

∆h

=
1

|ob1|

∫ |ob1|
0

∫ φ
0

∫ r
0
x2d∆rd∆φ

r2φ
/

2
d
_

∆h

=
|oa|
3

+
|oa| sin2∠aob1

3 cos∠aob1
ln
(

cot
∠aob1

2

)
. (10)

1The evenly deployed reference tags are bound to form a mesh of par-
allelograms, and any parallelogram can be divided into two acute or right
triangles.

In the same way, the expected distance between p and b in
∆boc1, p and c in ∆coa1 can be obtained. Since S∆aob1 =
S∆aoc1 , S∆boc1 =S∆boa1 , S∆coa1 =S∆cob1 and |oa| = |ob| =
|oc|, the expected distance between p and its nearest reference
tag in ∆abc can be obtained by:

Ep =
2(Epa · S∆aob1 + Epb · S∆boc1 + Epc · S∆coa1)

S∆abc
, (11)

as S∆aob1 =|oa|2 sin 2∠aob1/4, S∆boc1 = |oc|2 sin 2∠boc1/4,
S∆coa1 = |oc|2 sin 2∠coa1/4 , (11) becomes:

Ep =
1

3

√
2S∆abc

sin 2∠aob1 + sin 2∠boc1 + sin 2∠coa1

+
2

3

√
2S∆abc

(sin 2∠aob1 + sin 2∠boc1 + sin 2∠coa1)3
·

(
sin3∠aob1 ln(cot

∠aob1
2

)+ sin3∠boc1 ln(cot
∠boc1

2
)

+ sin3∠coa1 ln(cot
∠coa1

2
)
)
. (12)

Since S∆abc is fixed, Ep can be minimized if and only if
∠aob1 = ∠boc1 = ∠coa1 = π/3. Finally, the expected
distance is minimized.

Furthermore, we introduce how to choose the edge length
of the triangles to accurately recover the location vector. As
shown in Fig. 6, suppose a rectangular region with area size
la× lb (length la and width lb). Suppose the region is divided
into γ rows of equilateral triangles, and the maximum number
of bottom edge for one row is β. Let α represents the edge
length of one triangle. The segmentation goal is to make
the total area of triangles coverage the region as much as
possible, meanwhile satisfies the following three conditions:
(a) the number of triangles vertexes is equal to the number of
reference tags and M>O(K log(N/K)); (b) the total length
of bottom edges for β triangles should smaller than the region
length; and (c) the total length of triangle heights for γ rows
should smaller than the region width.

The edge length α for each triangle can be obtained by
solving a linear programming problem described as follows:

max β × 2γ ×
√

3
4 α

2,
(β + 1)× (γ + 1) ≤M,
β × α ≤ la,
γ ×

√
3

2 α ≤ wb.

(13)



E. Target Tag Positioning

We first present the detailed positioning process. Then
we prove that the fingerprint matrix satisfies the restricted
isometry property (RIP) with a high probability.

1) Locating the target tags: To estimate the position of the
target tags in a large-scale case, a recovery algorithm with low
complexity and high accuracy is needed. If we directly apply
the sparse recovery algorithm on the fingerprint matrix, it will
cause high computation cost. This problem will be exacerbated
when the number of deployed object tags increases. Besides,
we prefer to provide a contextual positioning result such that
"firstly in which shelf, further in the second rack, and lastly
the exact position" rather than a general answer like "the fifth
or fifteenth position.". Considering these reasons, we propose
a hierarchical algorithm which consists of two steps.

In the first step, we divide the fingerprint matrix into
sub-matrixes corresponding to different subareas (shelves).
We employ the marginal fisher nalysis (MFA) [17] to the
fingerprint matrix to train a classifier. The target tag is first
positioned to two candidate shelves in this step. We have also
explored several alternative classification techniques. This is
discussed in Section IV-G.

In the second step, we apply the sparse recovery algorithm
on the candidate sub-matrixes to recover the location vectors
for multiple target tags. Each target tag’s real-time measure-
ment vector is used to recover the location vector. To get a high
accuracy, we utilize the popular orthogonal matching pursuit
(OMP) algorithm which is robust to errors and noise [18].

2) Step 1: Predicting the target tag’s subarea: MFA is a
widely used supervised classification algorithm. Specifically,
the samples are projected into a subspace, where the samples
in the same class are made as compacted as possible, and
the different classes are made as far as possible. To illustrate
the intraclass compactness, MFA constructs an intrinsic graph
where each sample is connected to its k1 nearest neighbors in
the same class. And a penalty graph is constructed to describe
the adjacency relationship between interclass marginal samples
[19]. Through minimizing the ratio of the intrinsic graph and
penalty graph, each target tag can be first pointed into a
specific subarea.

Specifically, we term each fingerprint (column vector) as a
sample x, and EINij represents the weight of sample xi and
xj , which in the same class. EINij = 1, if xj is a k1-nearest
neighbor of xi or vice versa; otherwise, EINij = 0. In a same
way, the weight between different class samples xi and xj is
EPij = 1, if xj is a k2-nearest neighbor of xi or vice versa;
otherwise, EPij = 0. And if the number of subareas is L, the
MFA subspace minimizes:

Y(W )=

L∑
i=1

L∑
j=1

(WTxi −WTxj)
T (WTxi −WTxj)E

IN
ij

L∑
i=1

L∑
j=1

(WTxi −WTxj)T (WTxi −WTxj)EPij

=
tr
(
WTX

(
DIN − EIN

)
WTX

)
tr (WTX (DP − EP )WTX)

(14)

where DIN and DP are diagonal matrices with the ith entry
DIN
ii =

∑N
j=1E

IN
ij and DP

ii=
∑N
j=1E

P
ij .

W = arg min
W

Y (W ) , (15)

and Y (W ) is the direction of linear project. To ensure the
following positioning accuracy, each time we choose two
candidate subareas for further processing in the experiment.

3) Step 2: Positioning using the sparse recovery algorithm:
In this step, the measurement vector of each target tag together
with the candidate sub-matrixes are used to recover the loca-
tion vector. Due to the data lost and noise during the signal
propagating, the measurement vector for one tag will mismatch
the fingerprint. The large-scale deployment will exacerbate this
problem. We thus leverage the robust and simple recovery
algorithm OMP to accurately positioning the target tags:

min ‖Φ̂‖2,
s.t. ‖X†(Y −XΦ̂)‖2 < δ. (16)

It has been proved that if the fingerprint matrix X satisfies
the RIP and the dimension of measurement vector yk for the
k-th target tag obeys M =O(K log(N)), the location vector
φk can be accurately recovered by the OMP algorithm [18].

Complexity analysis. Now we discuss the computation com-
plexity of our recovery algorithm. In fact, the complexities
of the MFA algorithm and OMP algorithm are O(L2) and
O(KMN), respectively. By using our hierarchical algorithm,
the complexity is O(L2 + KMN

L ). Note that the number of
subareas is usually smaller than the number of reference tags,
that is L < M and M ≤ N , thus the complexity of our
algorithm is about O(KMN

L ). When compared with the case
of solely applying OMP algorithm which has a complexity of
O(KMN), our algorithm reduces the complexity by L times.

4) Meeting the RIP constraint: We now prsent the theoret-
ical analysis, showing that the fingerprint matrix X is highly
likely to satisfy the RIP constraint.

Theorem 3: When the number of reference tags satisfies
M = O(K logN) and each row xi (i ∈ [1,M ]) in the
fingerprint matrix is independent identically distributed (i.i.d.),
the probability for X to satisfy:

(1−δ) ≤ ‖XΦ‖22
/
‖Φ‖22 ≤ (1+δ) . (17)

for all N -dimensional K-sparse matrix Φ tends to 1, i.e., X
obeys RIP, where δ ∈ (0, 1).

III. EXPERIMENTAL SETUP

A. Hardware

Our system is built upon omnidirectional antennas and
commercial UHF RFIDs, and we use a commercial off-the-
shelf contactless RFID reader to track tags.

RFID Reader: We use an ImpinJ Speedway RFID reader
(modeled R420) [20] during test. This reader is compatible
with the EPC Gen2 standard [21], operating in a frequency
range of 920.5–924.5 MHz. We did not modify any hardware
component or firmware of the reader.



Fig. 7: Experiment deployment layout. The antenna array is deployed at the middle region of the library room. We choose 12
racks to deploy object tags and the reference tags. There are in total 270 object tags and 26 reference tags deployed.

Antenna Array: We deployed eight Q900F-900 omnidirec-
tional antennas [22] to form a linear antenna array with a
16 cm half-wavelength space between adjacent antennas. The
antenna provides a communicate range of around 12 meters
even when the RFID devices backscatter a week signal.

Tags: We use the Alien Squiggle General Purpose UHF RFIDs
as object and reference tags. These are passive backscatter
RFIDs working in the UHF band, but other passive RFIDs
can also be used. Furthermore, reference tags are placed at
the selected reference positions (found using the heuristic
described in Section II-D), which are expected to remain
unchange throughout their lifetime.

B. Evaluation Scenarios

Evaluation Environment: We evaluate our approach in an
indoor library room with rich multipath and NLOS. The
reference tags and object tags are deployed on 12 racks (46
book shelves), as shown in Fig. 7. The racks are made of
mental and wood. The reference tags are set at the vertex of
the equivalent triangles to cover the whole test region. Note
that we did not put any tags outside of the shelves, so there are
no tags except for the reference and object tags. Each wall of
the indoor room is attached with shelves and each shelf is full
of books, which result in a complex multipath environment.

Offline Data Collection: To construct the fingerprint matrix,
we first extract the phase by using the RFID reader to read data
of each tag to measure its multipath profile. Next, we calculate
the DTW values between the multipath profiles of each object
tag and reference tags.

Competitive Approach: We compare our approach against
PinIt, a state-of-the-art RFID-based positioning system [6]. We
faithfully repeated PinIt’s setup in our deployment site, by
evenly distrributing reference tags between objects. In total, we
have placed 285 reference tags to be used by PinIt. To locate
an object tag, PinIt selects a reference tag (whose location
is known ahead of time) which has a multipath profile that
is most similar to the target tag’s, and then uses the selected
reference tag to estimate the target tag’s location.

Evaluation Methods: We have conducted extensive exper-
iments to evaluate the performance of CSRP, and compare

it with PinIt. We also evaluate the deployment cost and
data collisions of both approaches, and analyze the working
mechanism of our approach. To provide a fair comparison, we
have used all deployed objects as test items in our experiments.

IV. EXPERIMENTAL RESULTS

In this section, we first present the overall accuracy of
CSRP, showing that it achieves a similar accuracy as the state-
of-the-art. Next, we evaluate the effectiveness of our sparse
recovery algorithm, and how does the number of reference tags
affects positioning accuracy, data collisions, and deployment
cost. We then show that CSRP works effectively in LOS
and NLOS environments, before discussing the alternative
modeling techniques for subarea predictions.

A. Overall Performance

From Fig. 8, both CSRP and PinIt achieve a good posi-
tioning performance. CSRP and PinIt are able to correctly
identify the location id for 84.7% and 86.4% of the test items
respectively. For 95% of the object tags, the average location
accuracy of CSRP is within 7cm. This is slightly better than
the average accuracy of 8.5cm given by PinIt. This improved
accuracy is largely due to the fact the CSRP uses significantly
less reference tags (26 vs 285) and the spatial relation to cancel
the environmental noise, which in combination reduces the
negative impact of data collisions. Overall, CSRP delivers a
similar positioning performance when compared with PinIt,
but uses an order of magnitude less reference tags.

B. Comparison of Positioning Recovery Methods

In this experiment, we compare our sparse recovery algo-
rithm against two alternatives: a standard CS approach and the
DTW-based matching method used by PinIt. In this experiment,
we use the 26 reference tags deployed under our scheme for
positioning.

The Cumulative Distribution Function (CDF) chart in Fig. 9
describes how positioning accuracy for each method changes
as the accepted location error changes. If we consider a
location error of within 10cm as an accepted criterion, then
CSRP gives a average accuracy of 87.9%. Under this assess-
ment criteria, the traditional CS method and PinIt achieves
an accuracy of 74.9% and 17%, respectively. Clearly, CSRP
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Fig. 8: Positioning accuracy comparison.
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Fig. 9: Performance of different position-
ing methods.
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Fig. 10: Impact of number of reference
tags.

Fig. 11: Tag collision comparison.
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Fig. 12: Deployment cost comparison.
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Fig. 13: Impact of different environments.

outperforms both approaches. If we relax the assessment
criteria to allow the positioning error to be less than 80cm,
the sparse recovery algorithm still remains the best method
among the three approaches.

We can also see from the diagram that CS-based methods
clearly outperforms PinIt. This is large because PinIt needs
a large number of reference tags to work efficiently. For
the CS method, owning to its high robustness against the
environment noise, it achieves a reasonably good performance.
Our approach enhances the standard CS scheme by first
predicting which of the subareas the target tag belongs to.
This prediction helps us in removing most of the outliers from
the candidate locations, leading to better performance over the
CS-based approach. Note that there is a huge accuracy decline
for PinIt with respect to the accuracy of 13 cm reported in [6].

C. Impact of The Number of Reference Tags

In this experiment, we deploy 26, 46 and 81 reference tags
in the our evaluation scene and test how does the number of
reference tags affect the positioning accuracy of CSRP. Fig. 10
shows the corresponding positioning errors under different
reference tag configurations. When using 26 reference tags,
84.7% of the target tags are positioned in the correct positions.
While for the cases of 46 and 81 reference tags, the number of
correctly positioned target tags are 90.2% and 94.3%, respec-
tively. For 95% of the testing tags, the positioning error for
the configurations of 26, 46 and 81 reference tags are within a
distance of 7 cm, 6.3 cm and 3.2 cm, respectively. Using more
reference tags indeed can improve the positioning accuracy,
but the number of reference tags used by our approach is still
considerably smaller than PinIt.

D. Data Collisions

In order to quantify the data collision between tags (both
the reference tags and the object tags) under four different
deployment cases, we calculate the collected data rate ω
within a time period to characterize the collision probability.
Specifically, ω can be written as: ω = Sall−Srec

Sall
, where Sall

is the sum of the number of deployment tags and Srec is
the total number of tags received by the reader, Sall and
Srec both contain the data of object tags and reference tags.
Fig.11 shows that the collision probability increases with more
tags, i.e., fewer number of reference tags leads to slighter tag
collision when the number of object tags remains the same. In
conclusion, CSRP can reduce the tag collision by deploying
fewer and sparsely distributed reference tags.

E. Deployment Cost

To compare the deployment cost, we calculate the number
of reference tags for CSRP and PinIt when the positioning area
increases. According to the default setups, when the number
of object tags increases to 200, only 48 extra reference tags
are needed to implement CSRP. While for PinIt, 528 reference
tags are needed. Fig.12 shows how does the deployment cost
increase as the number of reference tags increase. In this
example, we assume each tag costs $ 0.05. When the total
number of object tags are 40,000, the number of reference
tags and deployment cost for CSRP and PinIt are 3,800, $190
and 4,2400, $2,120, respectively. As a result, CSRP reduces
91.0% deployment cost compared with PinIt. This massive
reduction also means that there will be less human involvement
in installing and maintaining the reference tags



TABLE I: Classification accuracy per model

Classifier Accuracy (%) Classifier Accuracy (%)

Naive Bayes 85.2 SVM 91.2
MLP 88.1 KNN 85.4
Decision Tree 89.2 ANN 89.6
MFA 100

F. Performance of LOS and NLOS environments

To test the performance of our system in different environ-
ment, we place 11 reference tags and 150 object tags on four
movable shelves. To mimic a LOS setting, we put the book
shelves in an empty hall. For NLOS environment, we block the
direct paths by setting the shelves in an office environment.
As shown in Fig.13, we can infer that: i) CSRP achieves the
positioning accuracy about 90% in both LOS and NLOS when
the tags are spaced in a range of 2 m to 8 m. ii) No matter
in LOS or NLOS scene, the accuracy of positioning has no
regular changes when the distance between the tags and the
receiver is increasing. Thus, we conclude that the accuracy of
CSRP dose not affect obviously by distance.

G. Alternative Classification Methods for Subarea Prediction

Table I gives the sub-area prediction accuracy of various
alternative classification techniques and our RF model. The
alternative models that were built using the same features and
training data. Due to the high-quality features, all classifiers
deliver reasonably good prediction accuracy. We choose MFA
because it gives the best prediction accuracy and is proven to
be effective in modeling time series data [17].

V. RELATED WORK

In this section, we summarize the most related researches
from the RFID positioning technologies.

RSS based methods. RSS reflects the received signal
strength in the power level. Early systems [1], [4] locate a
tag with the help of some anchor tags with know locations.
Specifically, by comparing the RSS measurement of a target
tag with a dense deployed reference tags, the location of
target tag is estimated. To achieve the anchor-free localization
purpose, work [23] tries to model the signal propagation in
a complex environment. Work [3] combines the RSS and the
tag’s reading rate to design a tag order identification system.
However, RSS is sensitive to multipath or non-line-of-sight
paths environment [24], and it is highly related to the antenna
gain and tag orientation. As a result, these systems have a
limited localization accuracy [5].

Phase based methods. Phase is an indication of the distance
that a wireless signal goes through. Phase based methods
can be generally divided into two categories, AoA (Angle of
Arrival) and SAR (synthetic aperture). AoA based work [8]–
[10] locate the target tag by measuring the phase differences
of different antennas. The major limitation for these methods
is the poor performance in multipath environment. Work [25]
track the trajectory of target tag using grating lobes, while the
working distance is only tens of centimeters. To reduce the

hardware cost, work [26]–[29] utilizes SAR to simulate mul-
tiple antennas. Minsen et al. [28] employs a moving antenna
to simulate the SAR and location the target by constructing
a hologram. Similarly, PinIt [6] exploits the moving antenna
and locates the target tag by comparing the multipath profile
with a dense deployed reference tags. Benefiting from the
SAR method, PinIt is able to locate the target tag with a sub-
meter level accuracy even in the non-line-of-sight path and
rich multipath environment. However, PinIt requires placing
a large number of reference tags, which not only incurs high
deployment cost, but also increases the chance of data collision
between tags and leads to deleterious performance in a large-
scale deployment.

Other methods. Besides the above methods, there is a
number of related RFID localization work [5], [7], [30]–[32].
Liu et al. [30] introduces an hyperbolic localization method to
associate the phase measurement and the target tag’s location.
Li et al. [31] leverages a multi-frequency based ranging
method to locate the target tag. Tagoram [5] achieves a cen-
timeter level tracking accuracy through the designed hologram
which taking the thermal noise into consideration. Shangguan
et al. [32] designs a tag ordering system by means of the
spatial-temporal dynamics in the phase profiles. Further, a
autonomous wheeled robot reader [7] is implemented achieves
an exact spatial order in very close spacings. Although great
progress has been made by these systems, it still remains a
great challenge to realize a large-scale deployment.

Comparing to the existing works, CSRP is the first work
designed for large-scale deployment scene. In accordance with
the state-of-the-art work PinIt, CSRP employs the SAR method
to capture the multipath profile. While, different from PinIt,
CSRP achieves a comparable high accuracy with only a small
number of reference tags deployed. On the other hand, the
measurements needed to locate multiple tags in a large-scale
deployment are greatly reduced benefiting from the CS theory.

VI. CONCLUSIONS

This paper presents CSRP, a novel, fine-grained RFID
positioning system based on compressive sensing. CSRP works
on commercial RFID hardware, aiming to greatly reduce the
number of reference tags used in RFID-based positioning
systems. CSRP utilizes the stable spatial relationship between
the item tag and reference tags to construct a noise-resilient
fingerprint matrix. With a compressive sensing based recovery
algorithm, the fingerprint matrix is used in combination with
the real-time signal measurement to localize the target item.
CSRP offers analysis and methods for the optimal deployment
of reference tags and optimization of computational overhead.
We evaluated CSRP by applying it to a real-world deployment
of 255 commercial RFID tags. Experimental results show that
CSRP can successfully locate 84.7% of the test items, reaching
a performance-level that is comparable to the one provided by
the state-of-the-art, but with only 9% of the reference tags used
by the state-of-the-art. The massive reduction in reference tags
suggests that significant saving in deployment cost and time
can be achieved in large-scale RFID deployment.
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