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Crowd Counting Through Walls Using WiFi
Saandeep Depatla and Yasamin Mostofi

Abstract—Counting the number of people inside a building,
from outside and without entering the building, is crucial for
many applications. In this paper, we are interested in counting
the total number of people walking inside a building (or in
general behind walls), using readily-deployable WiFi transceivers
that are installed outside the building, and only based on WiFi
RSSI measurements. The key observation of the paper is that
the inter-event times, corresponding to the dip events of the
received signal, are fairly robust to the attenuation through walls
(for instance as compared to the exact dip values). We then
propose a methodology that can extract the total number of
people from the inter-event times. More specifically, we first show
how to characterize the wireless received power measurements as
a superposition of renewal-type processes. By borrowing theories
from the renewal-process literature, we then show how the
probability mass function of the inter-event times carries vital
information on the number of people. We validate our framework
with 44 experiments in five different areas on our campus (3
classrooms, a conference room, and a hallway), using only one
WiFi transmitter and receiver installed outside of the building,
and for up to and including 20 people. Our experiments further
include areas with different wall materials, such as concrete,
plaster, and wood, to validate the robustness of the proposed
approach. Overall, our results show that our approach can
estimate the total number of people behind the walls with a
high accuracy while minimizing the need for prior calibrations.

I. INTRODUCTION

The ability to estimate the total number of people in an

area can be useful for several applications. For instance, smart

buildings can optimize the energy consumption based on the

number of people in the building [1], [2]. Retails can better

plan their business by assessing which parts of the store get

more visitors [3]. Smart cities can better plan the resources by

estimating which areas of the city are more crowded [4].

A survey of the literature indicates that the problem of

crowd counting has been investigated by researchers from

computer-vision, wireless networking, and environmental sci-

ence communities. In computer-vision, for instance, photo-

graphic images of an area are used to identify the number

of people present in the area [5]–[7]. However, these methods

1) require a network of cameras to be installed in the area

of interest and as such have a high deployment cost, 2)

cannot work in the dark, 3) cannot work behind walls, and 4)

pose privacy issues. Researchers in the environmental science

community utilize the characteristics of the area of interest

such as temperature, concentration of carbon dioxide, and dew

point to identify the number of people in the area [8]–[11].

However, sensing the environment in this manner requires a

direct access to the area of interest and cannot be used in

areas occluded by walls or in areas where access is restricted.

Furthermore, they require installing specialized sensors.

The ability of radio frequency (RF) signals to penetrate

through objects, such as walls, combined with the ubiquity

of wireless devices, such as WiFi routers, provide a great

potential for imaging [12]–[14], tracking [15], and occupancy

estimation using RF signals. Crowd counting based on wireless

devices can be mainly classified into (i) device-based active

and (ii) device-free passive methods. The device-based active

methods rely on people to carry a communication device

[16], [17], which can limit their applicability. For this reason,

there has recently been a considerable interest in device-free

methods, which do not require people to carry any device.

Instead, device-free methods rely on the interaction of the

wireless signals with the people in the area of interest.

In this context of device-free counting, [18] classifies the

crowd density in an area into low, medium, and high using

a network of wireless nodes. [19] uses the variance of the

WiFi received signal strength indicator (RSSI) to estimate

up to 7 people. In this approach, an extensive prior learning

phase with different number of people is used. Furthermore,

the approach requires a large number of wireless nodes (10
Rx and 1 Tx). [20] simultaneously estimates the number and

the location of up to 4 people with 22 wireless nodes. [21]

uses differential channel state information (CSI) to classify the

number of people. The method has an extensive calibration

phase and is only tested with up to 7 people. [22] counts up

to 30 people, using CSI measurements at 30 subcarriers and

with 4 WiFi links located in the area. The method requires an

extensive training phase with 7 experiments and up to 7 people

walking in the same area a priori. [23] counts up to 10 people

in an area using only the RSSI measurements of a single WiFi

link by deriving a probability density function (PDF) of the

received signal strength. While the approach in [23] does not

require extensive prior calibrations, such as having different

number of people walk in the area, there is still a need to

make measurements when a small number of people stand on

the Line of Sight (LOS) link a priori. Furthermore, [23] relies

on labeling the dips of the received signal, which can be prone

to errors in behind-wall scenarios due to the high attenuation

by the walls.

In summary, great progress has been made towards crowd

counting with WiFi signals. However, all the aforementioned

work are on counting in the same room where the transceivers

are located and do not count through walls. In other words, to

the best of our knowledge, there is no work in the literature

that has demonstrated through-wall counting. Furthermore,

utilizing the existing work for the through-wall scenarios does

not work. For instance, we tested [22] in our through-wall

settings and observed errors of up to 7 people when 10
people were present. Our previous approach [23], on the other

hand, relies on the dip values which can be highly attenu-

ated and thus prone to measurement errors in through-wall

settings. In summary, through-wall counting is a considerably
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challenging problem as the walls can heavily attenuate the

signal, making the corresponding estimation problem more

challenging, which is the main motivation for this paper.

Moreover, most existing work on non-through wall counting

have a demanding calibration phase that can be as involved as

the main experiments. For instance, [22], [19], and [21] require

running multiple experiments where up to 7 people walk in

the area of interest. However, extensive calibration may not be

feasible in through wall scenarios. In this paper, our proposed

approach has a small calibration phase that does not have to be

in the same environment. Finally, even when counting in non-

behind wall settings, several existing work require a number

of links for counting. For instance, [22] and [19] have utilized

4 and 11 links respectively in areas with a comparable size

to ours. In this paper, we show how to count up to 20 people

from behind walls with only one link. Furthermore, we only

utilize RSSI measurements for counting, which can be easily

measured in any WiFi card, or can be implemented on any

general wireless transceiver such as a Bluetooth device.

We next summarize our key contributions:

• We show that the effect of a single person on the WiFi

link can be modeled using a process that we refer to as a

“Renewal-type” random process.

• We then show that the inter-event times carry vital informa-

tion on the total number of people, and are more robust to

the attenuation caused by the walls (as compared to the dip

values), enabling a high-accuracy estimation through walls.

More specifically, we use theories from Renewal process

literature to model the effect of N people as a superposition

of “Renewal-type” processes. We then derive the Probability

Mass Function (PMF) of the inter-event times based on this

model, and use it to estimate the number of people using a

maximum likelihood (ML) estimator. It is noteworthy that

no existing work has shown the relationship between inter-

event times and the total number of people.

• We extensively validate our framework using 44 real ex-

periments in five different areas on our campus, three

classrooms, a conference room, and a hallway (see Fig. 6,

8, 9, 11, and 12). More specifically, we show that we can

estimate up to and including 20 people with an error of

2 people or less 100% of the time and with an error of

1 person or less 75% of the time. Our experiments further

include areas with different wall materials, such as concrete,

plaster, and wood, to validate the robustness of our approach.

The rest of the paper is organized as following. In Section II,

we summarize our motion model and discuss the impact of the

movement of the people on wireless channel measurements.

In Section III, we then propose our framework to estimate the

total number of people by using properties of the inter-event

times. In Section IV, we thoroughly validate our framework

using several experiments in five different areas on our cam-

pus. We conclude in Section V.

II. PROBLEM SETUP

Consider an area that is enclosed by walls, such as a room,

where N people are walking. Fig. 1 shows an example of this.

Fig. 1: An illustration of the workspace with people walking inside. The red
outer boundary denotes the walls. The WiFi Tx and Rx are located behind the
walls and collect wireless measurements as people walk in the region. The
goal of this paper is then to estimate the number of people in the workspace
using only the wireless measurements. People affect the link in two major
ways: LOS blockage and multipath, as shown.

Our goal is then to estimate the number of people walking

in this area, using only RSSI measurements of WiFi nodes

that are located outside of the area. In this section, we first

summarize the motion model of people and then briefly discuss

the impact of movement of people on wireless measurements.

A. Motion Model

In this paper, we assume that people are walking casually

in the area of interest. In [23], we proposed a simple motion

model to model the casual motion of people. In this paper,

we adopt this model in our theoretical derivations. We next

briefly summarize this motion model.

Consider the motion of a single person in the workspace D

of Fig. 1. Let x(k) and y(k) denote the position of the person

along x and y-axis respectively at time instant k. Furthermore,

let θ(k) represent the heading of the motion w.r.t the x-axis

and at time instant k, as indicated in Fig. 1.1 For the sake of

mathematical simplicity, x(k), y(k), and θ(k) are assumed to

only take discrete values. The following model then captures

a casual walk [23]:

θ(k) =

{
θ(k − 1) with probability p

Uniformly from µ with probability 1− p,
(1)

where µ = [0,∆θ, 2∆θ, . . . , 2π − ∆θ], and ∆θ is the dis-

cretization step size for the heading angle. Given the heading

direction, the position dynamics is then given by the following:

x(k + 1) = x(k) + vδt cos(θ(k))

y(k + 1) = y(k) + vδt sin(θ(k)),
(2)

where v is the speed of the person, and δt is the time step.

Equation (1) basically describes a casual walk in which a

person maintains her/his direction for a while, after which

she/he may switch to a new direction. When a person reaches

the boundary of D, she/he is furthermore assumed to reflect

off of the boundary, similar to a ray of light. Equation (2) can

then be extended to account for the boundary behavior. We

refer the readers to [23] for the corresponding expression for

1Throughout this paper, we use time instant k to refer to kδt for notational
convenience, where δt is the time step.



the sake of brevity. Based on this simple dynamics, the motion

can be modeled as a discrete-time Markov chain, as shown in

[23]. We adopt this motion model in this paper and use the

properties of the underlying Markov chain in the subsequent

sections. We note that during our experiments, we simply ask

people to walk casually, without any specific instruction, and

the aforementioned model is only used for the purpose of

mathematical derivations.

B. Impact of People on Wireless Measurements

Consider the scenario shown in Fig. 1, where multiple

people are walking inside a building. A pair of WiFi nodes

are located outside of the building. The WiFi transmitter

(Tx) transmits wireless signals that interact with the walking

people and the static objects in the area of interest, and

are then received by the receiver (Rx). In general, properly

capturing the interaction of the people with the transmitted

signal requires detailed wave modeling to capture several prop-

agation phenomena. In [23], it was shown that the two main

phenomena of LOS blockage and multipath suffice to capture

the impact of walking people on a wireless transmission. We

next briefly summarize these two impacts:

(i)LOS Blocking: When l > 0 people are along the line

joining the Tx and Rx (i.e., the LOS link), the received power

measurements are significantly attenuated.

(ii)Multipath Effect: The wireless signals from the Tx

get reflected off of the people and interfere construc-

tively/destructively at the Rx, depending on the position of the

people. This causes the wireless measurements to fluctuate as

people are walking.

Fig. 1 illustrates the LOS blocking and multipath effects.

The fluctuations of the received signal power, due to both LOS

blocking and multipath effects, implicitly contain information

about the total number of people walking in D [23]. In the

next section, we propose a method for crowd counting behind

the walls, based on LOS blockage and Renewal theory.

III. CROWD COUNTING BEHIND THE WALLS

In this section, we propose a new framework to estimate

the number of people walking inside an occluded area using

only the RSSI of WiFi nodes located outside of the area.

Specifically, we first model the motion of a single person as

a discrete-time random process. We then utilize theories from

the Renewal process literature to characterize the impact of

multiple people and identify the statistics that can be used to

estimate the number of people. As we shall see, the inter-event

times of the resulting process carry vital information on the

number of people, as we shall mathematically characterize.

A. Motion of a single person as a Renewal-type process

Consider a scenario where N people are walking in the

workspace D, as shown in Fig. 1. Without loss of generality,

assume that the transmitter and the receiver are at the midpoint

of the corresponding walls. We then say a person crosses the

LOS link at time k + 1, if x(k + 1) ≥ B
2

and x(k) ≤ B
2

or

x(k + 1) ≤ B
2

and x(k) ≥ B
2

. The time intervals between

successive crosses (i.e., LOS crossings) implicitly carry vital

Fig. 2: A sample realization of the event sequence, where an event is crossing
the LOS link. The events occur at S1, S2, . . . , Sn+1. The inter-event times
are denoted by T1, T2, . . . , Tn.

information about the total number of people walking in the

area, as we show in the next section. In this section, we first

mathematically characterize the statistics of the time intervals

between successive crosses, when a single person is walking

in D. We then utilize the results derived here to model the

impact of N on the statistics of the cross times in the next

section, when N people are walking in D.

Consider a single person walking in the workspace D. Let

E denote an event of the person crossing the LOS link. Due

to the non-deterministic nature of the walk, the times at which

event E happens are random in nature. Let X1, X2, . . . , XT

denote a sequence of random variables such that,

Xi =

{
1 if E happens at time instant i

0 otherwise.
(3)

Let S1, S2, . . . , Sn+1 denote the times at which event E

occurs and let T1, T2, . . . , Tn denote the inter-event times. As

mentioned in Section II-A, we have discretized the time to

a step size of δt. Thus, Si, for 1 ≤ i ≤ n + 1, and Ti, for

1 ≤ i ≤ n, are non-negative integers.

Fig. 2 shows a sample realization of the process along

with the sample occurrence times and the inter-event times.

Under the casual motion model of (1), the positions/headings

will have a uniform distribution asymptotically in theory and

after a sufficient time in practice [23]. We thus assume that

the positions/headings have no spatial bias in our derivations.

Then, we have,

P (Ti = k) = P (Xi+k = 1, . . .Xi+1 = 0 | Xi = 1)

= P (Xj+k = 1, . . .Xj+1 = 0 | Xj = 1)

= P (Tj = k) ∀ i, j, and k,

(4)

where P (.) denotes the probability of the argument. This

implies that {Ti} , for i ∈ {1, 2, . . . , n}, are identically dis-

tributed. If the inter-event times are also independent, then the

process is called a Renewal process [24]. However, the inter-

event times of our case are not necessarily independent. We

thus use the term “Renewal-type process” in this paper, to refer

to this type of process where the inter-event times are iden-

tically distributed but not independent. We next characterize

the PMF of the inter-event times.

Let f denote the PMF of the inter-event times Ti. Let Z(k)
denote the backward recurrence time at k, i.e., the time from

time instant k that we need to travel back before encountering

an event, as shown in Fig. 2. Let g(z; k) denote the PMF of

Z(k). We next characterize the relationship between f and

g(z; k), which we shall utilize in Section III-B.

Let h(k) denote the probability that E occurs at time k,

i.e., h(k) = P (k = Sj) for some j, where P (.) denotes the

probability of the argument. Then, g(z; k), i.e., the probability



that we need to travel backward z time steps from time k to

encounter an event, is the product of the probability of an

event occurring at time k− z and the probability that there is

no event at times {k− z +1, k− z + 2, . . . k− 1}, given that

an event occurs at k − z. Formally, g(z; k) can be written as

g(z; k) = h(k − z)Fc(z), (5)

where Fc(z) is the complimentary cumulative distribution

function (CCDF) of the inter-event times. As shown in [23],

h is given by the following:

pc , h(k − z) =
2vδt

Bπ
, ∀ k ≥ z. (6)

Therefore,

g(z; k) = pcFc(z), ∀ k ≥ z. (7)

B. Motion of Multiple People as a Superposition of Renewal-

type Processes

In this section, we characterize the PMF of the inter-event

times when N people are walking in D and show that it

contains useful information about the total number of people

N . We then propose a ML estimator to estimate N , based on

our characterization of the inter-event times.

Consider N people walking in the workspace D. Let {Xj
i },

for 1 ≤ i ≤ T , denote the sequence of events as defined in

(3), but for the j th person. Let {Yi}, for 1 ≤ i ≤ T , denote

the corresponding superposed sequence. We define {Yi} as

Yi =

N∑

j=1

X
j
i . Fig. 3 shows sample individual and superposed

event sequences, for the case of N people, along with their

sample occurrence and inter-event times. For the superposed

sequence of events, we say that an event occurred at time i

if Yi 6= 0. In other words, an event occurs at time i if at

least one person crosses the LOS link at time i. Since multiple

events can occur at the same time, we have Yi ∈ {0, 1, ..., N}.

However, we do not distinguish the events based on the value

of Yi, as our proposed method does not rely on the exact values

of Yi and only depends on if it is zero or non-zero, which will

result in a more robust estimator to measurement errors.

Let fp(zp;N) denote the PMF of the inter-event times

of the superposed process due to N people. Let Zp(k) and

gp(zp; k) denote the backward recurrence time at k and its

corresponding PMF respectively.

Theorem 1. We have the following expression for the PMF

of the inter-event time: fp(zp;N) = c∆gp(zp; k), ∀ k ≥ zp,

where c is a normalizing constant that is not a function of N ,

and ∆ is the forward difference operator.

Proof. The backward recurrence time, Zp(k), for the super-

posed process can be written as

Zp(k) = min
{
Z1(k), Z2(k), . . . , ZN (k)

}
, (8)

where Zj(k), for 1 ≤ j ≤ N , is the backward recurrence

time for the j th event sequence, and min {.} denotes the

minimum of the arguments. Then, since people are walking

independently, we have,

P (Zp(k) ≥ zp) =

N∏

j=1

P (Zj(k) ≥ zp). (9)

Fig. 3: A sample realization of the event sequence (Y ) for the superposed
process, which corresponds to N people walking in the area of interest. An
event E here corresponds to any crossing of the LOS link. The events occur
at S1, S2, . . . , Sn+1. The inter-event times are denoted by T1, T2, . . . , Tn.
The processes corresponding to individual people are also shown (Xi s).

By substituting (7) in (9), we get,

P (Zp(k) ≥ zp) =

[
∞∑

m=zp

pcFc(m)

]N
, ∀ k ≥ zp, (10)

where Fc(.) is the CCDF of the inter-event times for the case

of N = 1, and pc is the probability of crossing for the case

of N = 1, as defined in Section III-A. From (10), we get the

corresponding PMF as follows:

gp(zp; k) = −∆P (Zp(k) ≥ zp), ∀ k ≥ zp. (11)

By following steps similar to (5), (6), and (7), we get the PMF

of the inter-event times for the superposed process as follows,

fp(zp;N) = c∆gp(zp; k) for k ≥ zp

= c∆

[(
∞∑

m=zp

pcFc(m)

)N

−

(
∞∑

m=zp+1

pcFc(m)

)N]
.

(12)

This proves the theorem.

It can be seen from (12) that the PMF of the inter-event

times is an implicit function of the number of people N . We

next use this PMF to derive an ML-based estimator for the

number of people N . Given the inter-event times, we can es-

timate the number of people by maximizing the log-likelihood

of the inter-event times. Specifically, assuming the inter-event

times are independent, the log-likelihood of the observed inter-

event times, T1, T2, . . . , Tn, can be characterized as a function

of the number of people M as follows:

LL(M) =

n∑

i=1

log(fp(Ti;M)). (13)

We can then estimate the number of people by maximizing

the log-likelihood function,

N̂renew = argmax
M

LL(M), (14)

where N̂renew is the estimate of the number of people based

on the underlying renewal-type process and the inter-event

times. We note that we derived (13) under the assumption

that Ti’s are independent. As we mentioned earlier, this is not

necessarily the case for our process. Thus, the ML estimator

of (14) is not the optimum, but can provide a good estimate



Fig. 4: (a) D-link WBR-1310 Router used as a WiFi Tx, (b) the WLAN card
used as a WiFi Rx, and (c) Raspberry Pi board that controls the measurement
operation and stores the WiFi RSSI measurements.

of the number of people, as we shall see in the next section,

while maintaining a low computational complexity.

In order to implement our derived estimator, one needs

to identify the inter-event times due to the LOS blocking.

Furthermore, an estimate of Fc(z), the CCDF of the inter-

event times when single person is walking, is needed. In the

next section, we show how the inter-event times and Fc(z)
can be estimated in practice.

IV. EXPERIMENTAL RESULTS

In this section, we validate our proposed framework through

extensive experiments. We start by explaining our experimen-

tal setup and then present the experimental results for five

different areas with up to and including 20 people.

A. Experiment Setup

As shown in Fig. 1, our experimental setup consists of a

pair of WiFi nodes for transmission and reception of wireless

signals. One of the WiFi nodes is configured as a Tx, which

constantly transmits wireless signals. The other WiFi node,

which acts as a Rx, measures the signals that are emitted from

the Tx node and records the corresponding signal strength.

We use a D-Link WBR-1310 WiFi router [25] as a Tx node,

which operates using 802.11g wireless standard. For the Rx

WiFi node, we use a TP-Link Wireless N150 WLAN card [26]

in 802.11g mode. This wireless card needs to be interfaced

with a computer in order to make WiFi measurements. In our

setup, we then use a Raspberry Pi (RPI) board [27] for this

purpose, i.e., to collect and store WiFi RSSI measurements.

Fig. 4 shows the WiFi router, the WLAN card, and the RPI

board used in our experiments. Omnidirectional antennas that

come along with the WiFi router/card are used for transmitting

and receiving the wireless signals. We use standard 2.4 GHz

frequency of WiFi in all our experiments.

Using the aforementioned experimental setup, we then run

several experiments when up to 20 people walk in the area

of interest. We next first discuss the processing of the exper-

imental data, which is followed by our experimental results.

B. Initial Data Processing

In Section III, we developed a framework to estimate the

number of people based on the PMF of the inter-event times,

where an event refers to an instant of time where l > 0 people

Fig. 5: (left) shows a sample RSSI power measurement when 9 people are
walking inside a building while (right) shows the RSSI power measurements
in the same environment and for the same number of people when people are
instructed not to cross the LOS link. The right figure thus mainly captures
the fluctuations due to multipath fading. By comparing the two figures, it can
be seen that the effect of LOS blocking is considerably more significant as
compared to the fluctuations due to multipath.

are crossing the LOS link. As discussed in Section II, the

RSSI measurements are significantly attenuated when people

cross the LOS link. Therefore, the RSSI measurements contain

information about the times at which a cross has occurred

and hence about the inter-event times. However, the received

measurements are not only affected by the LOS blockage

but also by the multipath fading that is caused by scattering

off of the people that are not necessarily on the direct LOS.

Therefore, we need to identify the times at which a LOS cross

has occurred in the presence of multipath.

Our analysis of several measurements has shown that the

fluctuations and dips caused by multipath are typically much

smaller than those caused by any LOS blockage. Fig. 5 (left),

for instance, shows the RSSI measurements of an experiment

with 9 people walking in an area, while Fig. 5 (right) shows

the corresponding RSSI measurements in the same area but

when the same number of people were instructed not to cross

the LOS link. More specifically, 4 people were instructed to

walk on one side of the LOS link, with the other 5 walking on

the other side, without any person crossing the LOS link. Since

there is no LOS blocking in this second case, the fluctuations

in the RSSI measurements are solely due to the multipath

effect. As can be seen, the measurements in Fig. 5 indicate

that the effect of LOS blocking is more significant compared to

the multipath effect. Specifically, the fluctuations in the RSSI

measurements due to multipath are concentrated around the

mean level of the RSSI signal, while blocking the LOS causes

a pronounced dip in the signal level. Based on several similar

observations, we then contribute any dip in the RSSI signal

level that is larger than a sufficiently-large threshold, TLOS, to

people blocking the LOS link.2 Furthermore, if TLOS is chosen

properly (not too large), then the chance of filtering a dip that

was due to the LOS blockage becomes low. Thus, we utilize

this approach in our experiments in order to identify the events

of people crossing the LOS and hence the inter-event times.

In terms of the choice of the threshold, we choose the

threshold TLOS of 5 dB in all our experiments, based on several

observations similar to Fig. 5. This means that any dip that is

larger than TLOS is labeled as a LOS blockage. We note that,

2Note that we are only interested in detecting the time instants where any
number of people block the LOS link, without the need to know the particular
number of people that are along the LOS.



Fig. 6: (a) The first area of interest (Area 1), a closed classroom on our campus with wall made of concrete, where
people are walking, (b) the Tx WiFi node located outside the classroom, behind one of the walls of the classroom as
marked, and (c) the Rx WiFi node, along with the Raspberry Pi board that is used to control the data collection, which
is located outside of the classroom behind the wall that is indicated.

Number

of

People

Estimated

Number

of People

1 1

3 3

5 4

7 7

9 9

TABLE I: A sample result for
counting through walls based
on our proposed approach, for
the classroom scenario of Fig.
6 on our campus (Area 1).

Fig. 7: The cumulative distribution function of counting estimation error based
on 5 sets of experiments in the classroom area of Fig. 6 on our campus (Area
1). In each set of experiment, we asked 1, 3, 5, 7, and 9 people to walk
in the classroom.

based on our observations, the choice of TLOS is not strongly

dependent on the area of interest, which allows us to set it

without the need to make prior measurements in a specific area

of interest. We thus use the same value of TLOS in all the five

areas of interest considered in the next section. Furthermore,

as we shall see in the sensitivity analysis of Section IV-E, the

threshold TLOS is not sensitive to the specifics of the scenario

such as the density of people and their walking speeds. Thus,

TLOS estimated with a specific number of people walking at

a specific speed can be used to estimate a different number

of people walking at other speeds, and more importantly in

other areas. Finally, Section IV-E explicitly shows that our

experimental results are not that sensitive to the assumed TLOS

and moderate errors in estimating TLOS are well tolerated.

C. Considering the Temporal Width of a Dip

In practice, when a person crosses the LOS, the drop in

the signal level is not an impulse drop. Rather, crossing the

LOS link takes a finite amount of time, which means that each

dip will have a small temporal duration. Let Tmin denote this

time. Therefore, a person crossing the LOS link blocks the

signal for a period of time Tmin. This then implies that we can

not identify inter-event times that are less than Tmin. In other

words, any two events of crossing the LOS with an inter-event

time smaller than Tmin are not identifiable. Therefore, given

that we can only identify inter-event times that are larger than

Tmin in practice, we modify our derived PMF of (12) to account

for this. Then, Ti, ∀ i ∈ 1, 2, . . . , n, is given as follows:

Ti|Ti ≥ Tmin ∼ fmod
p (m;N) ,

fp(m;N)
∞∑

r=Tmin

fp(r;N)
(15)

fp in (13) is then replaced with fmod
p to estimate the total

number of people.

The value of Tmin depends on the speed of people. In this

paper, we have assumed that people are walking casually.

Based on simple experimental tests of one person crossing

a link at a walking speed, we have chosen Tmin = 1 second

in our results of the next section. We note that we do not

need to measure this value in the particular experimental site

of interest, as it is not that dependent on a particular site, but

is rather more a function of the speed of people. Furthermore,

as we shall see in section IV-E, the experimental results are

not that sensitive to the exact value of the assumed speed (and

thus not that sensitive to the exact value of Tmin).

The PMF of inter-event times in (15) is a function of the

CCDF of a single person inter-event times, Fc(z), as shown in

(12). In this paper, we obtain Fc(z) using simulations. More

specifically, we simulate motion of 1 person using the motion

model of Section II-A. We then identify the times at which the

person crosses the LOS link and extract the inter-event times.

Fc(z) is then obtained using these simulated inter-event times

for a single person. We note that such a simulation is low in

computation time (e.g., 1 s), since it involves only one person.

D. Experimental Results and Discussion

To validate the proposed framework of Section III, we ran

several experiments using the aforementioned experimental

setup. We next present the results.

Fig. 6 shows the first experimental area (Area 1), which

is a closed classroom on our campus, bounded by concrete

walls on all four sides. We asked people to walk inside the

room while the WiFi nodes are located outside of the room,

as shown in Fig. 6. The walls are made of concrete bricks

which are highly attenuating. The thickness of each wall is

20 cm based on our assessment. The dimensions of inside

of the room, where people are walking, are L = 6.3 m and

B = 7.8 m, with the Tx and Rx positioned at B
2

(See Fig. 1).

We have conducted several experiments in Area 1 when

1, 3, 5, 7, and 9 people walked inside the room. In each



Fig. 8: (left) The second area of interest between two concrete walls (Area 2), and (right) an example where people
are walking in between these walls. The WiFi nodes are located outside of the area of interest, behind the walls, as
indicated in the left figure. Readers are referred to the color pdf for better visibility.

Number

of

People

Estimated

Number

of People

1 3

3 5

5 6

7 6

9 7

TABLE II: A sample result for
counting through walls based
on our proposed approach, for
the two-wall hallway scenario
of Fig. 8 on our campus (Area
2).

Fig. 9: (a) The third area of interest (Area 3), a closed classroom on our campus where people are walking. The room
is enclosed by concrete walls on all four sides, (b) the Rx WiFi node located outside the classroom, behind one of
the walls of the classroom as marked, and (c) the Tx WiFi node which is located outside of the classroom behind the
wall that is indicated.

Number

of

People

Estimated

Number

of People

3 3

5 4

7 6

9 7

TABLE III: A sample result for
counting through walls based
on our proposed approach, for
the classroom scenario of Fig.
9 on our campus (Area 3).

Fig. 10: Estimation of the total number of people as a function of time, for
the classroom of Fig. 6 (Area 1) and for the three cases where 1, 5 and 9

people are walking. It can be seen that the estimates converge to within one
person of their final values within the first 100 seconds.

experiment, the measurements are collected for 300 seconds

at 20 samples/sec. People are assumed to have a casual

walking speed, which we take it to be 1 m/s in our theoretical

modeling.3 Table I shows sample results for the estimation of

the number of people. It can be seen that our approach can esti-

mate the total number of people walking inside the classroom

with a high accuracy, by making WiFi measurements from

outside, behind the classroom walls. To further validate our

framework statistically, we have run a series of experiments on

different times/days to collect statistics of the estimation error.

More specifically, we have run experiments on 5 different

occasions in the classroom area of Fig. 6 (Area 1). In each

run, 1, 3, 5, 7, and 9 people are asked to walk in the classroom.

3Note that we do not ask people to walk with a specific speed or in a
specific pattern during the experiments. Instead, we simply ask them to walk
casually in the area of interest.

Fig. 7 shows the Cumulative Distribution Function (CDF) of

the estimation error based on these repeated measurements. It

can be seen from the CDF plot that the estimation error is 1
person or less 81% of the time and 2 people or less 100% of

the time, confirming a good statistical performance.

To further validate our approach, we next run experiments

in an outdoor area occluded by walls. Fig. 8 shows the outdoor

area of interest (Area 2). As can be seen, two parallel walls are

constructed with concrete bricks. The thickness of each wall

is 5 cm in this case. The dimensions of the area of interest

are L = 10 m and B = 7 m. People are then asked to walk

in the hallway created in between the walls, while a Tx and a

Rx node are mounted outside of each wall. Table II shows a

sample result obtained in Area 2. As can be seen, the number

of people is estimated with a good accuracy. Fig. 9 shows a

third area of interest (Area 3), which is another classroom on

our campus. The area is bounded by concrete walls on all four

sides. People walk in part of this room with the dimensions

of L = 7.8 m and B = 3.96 m as shown in Fig. 9. Note that

Area 3 has rich multipath due to the furniture in the room.

Table III shows a sample result obtained in Area 3. It can be

seen that the number of people are estimated accurately.

To further validate our framework with walls made of

different material than concrete, we ran experiments in a room

enclosed by wooden walls. Fig. 11 shows the fourth area of

interest (Area 4), which is a conference room on our campus.

The dimensions of the area of interest are L = 4.1 m and

B = 7.5 m. We then run experiments with up to and including

9 people in this area. Table IV shows the performance of our

framework in this case. It can be seen that our framework can

estimate the number of people with a high accuracy, which



Fig. 11: (a) The fourth area of interest (Area 4), a closed conference room on our campus where people are walking.
The room is enclosed by wooden walls on all four sides, (b) the Rx WiFi node located outside the room, behind one
of the walls of the room as marked, and (c) the Tx WiFi node which is located outside of the room behind the wooden
wall that is indicated.

Number

of

People

Estimated

Number of

People

1 2

2 2

3 5

4 4

5 6

6 6

7 8

8 8

9 11

TABLE IV: A sample result for
counting through walls based
on our proposed approach, for
the classroom scenario of Fig.
11 on our campus (Area 4).

Fig. 12: (a) The fifth area of interest (Area 5), a closed classroom on our campus where people are walking.
The room is enclosed on all four sides by walls that are made of a mixture of concrete and plaster, (b) the Rx
WiFi node located outside the classroom, behind one of the walls of the classroom as marked, and (c) the Tx
WiFi node which is located outside of the classroom behind the wall that is indicated. The performance of our
framework with 20 people walking in this area is also shown. It can be seen that our framework accurately
estimates the number of people.

Number

of

People

Estimated

Threshold

(dB)

1 4

3 4

5 4

9 5

TABLE V: Sensitivity of the estimated
threshold TLOS to the number of people
walking in the area. It can be seen
that the optimum threshold is not that
sensitive to the number of people in the
area.

shows the robustness of our approach to the wall material.

So far, we demonstrated experimental results with up to and

including 9 people in 4 different areas on our campus. To test

the scalability of our approach, we further run experiments

with 20 people walking inside a classroom. Fig. 12 shows

the fifth area of interest which is a classroom on our campus

enclosed on all four sides by walls that are made of a mixture

of concrete and plaster (Area 5). The dimensions of this area

are L = 7.9 m and B = 12.6 m. We then run experiments with

20 people walking inside this classroom as shown in Fig. 12.

Our framework estimates the number of people inside as 19
in this case, which shows the scalability of our framework to

the higher number of people with only one WiFi link.4 This

experiment further tests the proposed approach with a third

kind of wall material, a mixture of plaster and concrete, and

confirms its robustness. Overall, considering all five areas, our

framework can estimate up to and including 20 people with

an error of 2 people or less 100% of the time and with an

error of 1 person or less 75% of the time.

So far, we have demonstrated that the proposed framework

can estimate the total number of people walking inside an

occluded area of interest with a high accuracy. In all the

experimental results so far, we have used data collected for 300

4We note that as the size of the area and the number of people increases,
at some point we inevitably have to use more links. However, the fact that
20 people can be counted through walls with only one WiFi link in an area
of the size 100 m2 is promising for how this approach will scale to bigger
areas and more people.

seconds. Next, we show the time we need to wait before the

estimates converge to their final values. More specifically, Fig.

10 shows the estimates as a function of time for an experiment

with 1, 5, and 9 people for the classroom scenario of Fig. 6

(Area 1). It can be seen that the estimates converge to within

1 person of their final values within the first 100 seconds.

Overall, our experimental results confirm that the proposed

framework can estimate the number of people inside a room or

a building, or in general behind walls, solely from WiFi RSSI

measurements acquired from outside, with a good accuracy.

E. Sensitivity Analysis

In the experimental results of this section, we took TLOS as

5 dB and assume a walking speed of 1 m/s. We next show that

the our framework is not sensitive to the exact value of TLOS

and the speed of people and that moderate errors in both can

be well tolerated. Furthermore, we show that the estimation

of TLOS is not that sensitive to the specifics of the scenarios

such as the density of people and their walking speeds. This

then greatly reduces the calibration demand of our approach as

TLOS estimated with a specific number of people walking at a

specific speed in the calibration phase can be used to estimate

a different number of people walking at a different speed in the

estimation phase. We furthermore have only calibrated TLOS

in one area and have used it in the other 4 areas in all our

experiments, which indicates the generalizability of it across

different areas, further reducing the calibration burden, which

is important for behind-wall scenarios.



Fig. 13: Sensitivity of our crowd counting to the errors in the
assumed walking speed. The casual speed of people is assumed
to be 1 m/s. Other speeds were then assumed in our derivations
when estimating the number of people. It can be seen that our
framework is robust to moderate errors in the assumed speed.

Fig. 14: Sensitivity of our crowd counting to the
errors in the assumed threshold TLOS. It can be
seen that our framework is robust to moderate
errors in the assumed value of the threshold.

Speed of

People

Estimated

Threshold

(dB)

Standing

Still
4

Normal

Walking
5

Running 4

TABLE VI: Sensitivity of the
optimum threshold TLOS to the
speed of people walking in the
area. It can be seen that the
estimated optimum threshold is
not that sensitive to the speed of
people in the area.

1) Sensitivity to the Assumed Walking Speed: The results

of Section IV-D assumed that the people in the area of interest

are walking at an average speed of 1 m/s, based on the typical

walking speed of humans. However, the average walking speed

could vary slightly from this value depending on the person

or the environment, for instance due to the density of people

in the region. In this section, we consider the effect of errors

in the assumed walking speed (as compared to the true speed

of people) on the estimation of the number of people.

In order to analyze the effect of the assumed walking speed

and its deviation from the true speed of people during the

experiment, consider an experiment where people are told to

walk casually, which amounts to a speed of around 1 m/s. We

then assume that people are walking at a speed of v m/s in

our derivations and estimate the number of people based on

our framework. Fig. 13 shows the mean absolute estimation

error in the number of people as a function of the error in the

assumed walking speed. At each assumed speed, the estimates

with different number of people (N=1, 3, 5, 7, and 9) walking

in the classroom area of Fig. 6 are obtained over 5 repeated sets

of experiments. The mean of the absolute error is then shown

in Fig. 13. It can be seen that the estimation error is less than

2 people in most of the assumed speed range, showing the

robust nature of our framework to small errors in the assumed

walking speed of the people as compared to the true speed.

2) Sensitivity to the Assumed Threshold: As explained in

Section IV-B, a threshold TLOS is used to separate the dips of

the wireless measurements that are due to people blocking the

LOS path from the dips due to multipath. The time instants at

which these dips occur are then used to estimate the number

of people in the area as explained in Section III. As discussed

in Section IV-B, we have used TLOS = 5 dB in all our results.

However, the true optimal value of TLOS is hard to quantify. In

this section, we consider the impact of the choice of TLOS on

the estimates of the number of people. More specifically, we

consider a range of values for TLOS and estimate the number

of people. At each TLOS, the estimates with different number

of people (N=1, 3, 5, 7, and 9) walking in the classroom area

of Fig. 6 are obtained over 5 repeated sets of experiments. The

mean of the absolute error is then shown in Fig. 14. As can

be seen, the mean error is less than 2 people for a wide range

of TLOS, which shows the robust nature of our framework to

moderate errors in the estimated threshold TLOS.

3) Sensitivity of the Threshold to the Density and Speed of

People: As explained in Section IV-B, the threshold TLOS is

estimated by collecting wireless measurements when people

are walking without blocking the LOS link. This threshold is

then used to separate the LOS blockage from the multipath.

For instance, the estimate of TLOS = 5 dB used in all our

experiments is obtained in the calibration phase when 9 people

are walking on either side of the LOS link in one area. In

this section, we consider the effect of the number of people

walking in the area and their walking speed in estimating

TLOS. More specifically, we let different number of people

(N=1, 3, 5, and 9) walk on either side of the LOS link

without blocking the LOS link as explained in Section IV-B.

Furthermore, we let 9 people walk at three different speeds of

standing still, normal walking, and running. Table V and VI

show the estimated threshold as a function of the number of

people in the area and their walking speeds, respectively. It

can be seen that the estimated threshold is not that sensitive

to the number of people walking in the area or to their speeds,

which explains the good accuracy of our results with different

number of people and with an assumed speed of 1 m/s.

V. CONCLUSIONS

In this paper, we proposed a framework to count the total

number of people walking in an area that is occluded by walls,

using only the RSSI of WiFi transceivers that are installed

outside of the area. We proposed to use the inter-event times

corresponding to the signal dips for crowd counting through

walls as it is more robust to the attenuation of the walls. More

specifically, we showed how to model the impact of people

on the received power measurements using superposition of

Renewal-type processes. We then mathematically character-

ized the statistics of the inter-event times of the resulting

process and showed how it contains vital information on the

total number of people, which then became the base for our

ML estimation of the total number of people. To validate our

proposed framework, we ran extensive experiments in five

different areas on our campus, three classrooms, a conference

room, and a hallway, with walls made of different material

such as concrete, plaster, and wood, and with up to and includ-

ing 20 people, and showed that our approach can estimate the

total number of people through walls with a high accuracy.
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