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Abstract—Mobile Augmented Reality (MAR) applications em-
ploy computationally demanding vision algorithms on resource-
limited devices. In parallel, communication networks are be-
coming more ubiquitous. Offloading to distant servers can thus
overcome the device limitations at the cost of network delays.
Multipath networking has been proposed to overcome network
limitations but it is not easily adaptable to edge computing
due to the server proximity and networking differences. In this
article, we extend the current mobile edge offloading models and
present a model for multi-server device-to-device, edge, and cloud
offloading. We then introduce a new task allocation algorithm
exploiting this model for MAR offloading. Finally, we evaluate
the allocation algorithm against naive multipath scheduling and
single path models through both a real-life experiment and
extensive simulations. In case of sub-optimal network conditions,
our model allows reducing the latency compared to single-path
offloading, and significantly decreases packet loss compared to
random task allocation. We also display the impact of the
variation of WiFi parameters on task completion. We finally
demonstrate the robustness of our system in case of network
instability. With only 70% WiFi availability, our system keeps
the excess latency below 9 ms. We finally evaluate the capabilities
of the upcoming 5G and 802.11ax.

I. INTRODUCTION

Mobile Augmented Reality (MAR) may be the most
computationally-intensive multimedia application, with strict
real-time constraints. A typical MAR application processes
large amounts of data, such as video flows, to display a virtual
layer on top of the physical world. These operations usually
run on mobile devices such as smartphones or smartglasses
that can only execute basic operations. The increase in the
performance and ubiquity of networks allows remote devices
and servers to execute larger portions of code. However, the
latency constraints of MAR applications (sometimes less than
20ms [1]) are such that both the available bandwidth and
computing power on a single link is not sufficient for in-
time processing. Furthermore, wireless links characteristics
vary extremely in mobility conditions and may cause severe
service degradation or interruptions [2].

To get more insights about current wireless networks’
situation, we perform a simple experiment. Table I presents the
round-trip times (RTT) measured between a smartphone (LG
Nexus 5X) and several potential offloading devices: another
smartphone, connected using WiFi Direct (1 m distance), an

TABLE I: Average network round-trip time measured for
different offloading mechanisms.

D2D Edge Edge Alibaba  Alibaba  Google = Google
WiFi D WiFi LTE WiFi LTE WiFi LTE
3.5ms 37ms  19.9ms 5.5ms 249ms 422ms 524 ms

Alibaba Cloud virtual machine through WiFi! via eduroam?

and LTE, a Google Cloud virtual machine through WiFi and
LTE, as well as the first reachable server on each link to
emulate an Edge server. We average our measurements over
100 ICMP packets. The latency increases dramatically with
the distance between the client and the server. D2D shows
RTTs as low as 3.5ms. The WiFi access point (AP) several
meters away adds 0.2ms, and the Alibaba cloud server 2 ms.
As the Google Cloud server is located about 1,000 km away
to emulate a more distant cloud provider, latency is multiplied
by eight compared to the local Alibaba server. LTE also adds
noticeable latency relatively to WiFi: 16 ms for an Edge server
and 10 to 19ms for a Cloud server.

In these conditions, maximizing in-time task completion in-
volves striking an intricate compromise between transmission-
related delays and computation time. To provide such perfor-
mance, MAR applications should not only dynamically offload
their computations in parallel over the set of available devices
but also exploit the multiple available links to minimize
transmission delays. For instance, a pair of smartglasses may
connect to a companion smartphone through WiFi Direct,
several Edge servers through WiFi and LTE, and even one or
several servers located in the cloud for heavier computations.

In this paper, we develop a scheduling algorithm for task
assignment over multiple links to an heterogeneous set of
servers composed of D2D companion devices, edge servers
and cloud servers connected through both WiFi and LTE. We
design a multipath, multiple server offloading mechanism to
provide more ressources for in-time MAR tasks completion.
Providing multiple resources in parallel also enables robust
fallback in case of link degradation or failure for uninter-
rupted MAR service. We develop a latency model taking
into consideration the various elements of the system and

Unless specified otherwise, WiFi refers to the 802.11ac standard.
Zhttps://www.eduroam.org/



perform optimizations to aggregate tasks based on their final
destination. We finally evaluate this algorithm through both
a real-life implementation and extensive simulations. After
comparing our solution to single-path and naive multi-path
task allocation, we analyze the impact of the access link and
the computing power of servers on the task distribution and the
in-time task completion. Finally, we evaluate the robustness
of our model to the instabilities, and expand our work to the
upcoming 5G and 802.11ax.

Our contributions can be summarized as follows:

1) A model of latency for multipath task offloading.

2) A scheduling algorithm to allocate tasks over multiple
wireless links to D2D, edge, and cloud servers.

3) A real-life implementation of a multipath, multi-server
mapping application that reduces latency by 10% com-
pared to the state-of-the-art.

4) An extensive set of simulations to characterize the sys-
tem. Our algorithm can withstand high bandwidth drops
and high latency variations without impacting tasks com-
pletion. In sub-optimal scenarios such as intermittent
connections, excess latences are kept below 9 ms.

II. RELATED WORKS

Computation offloading was one of the main motivation
for computer networks. In a memo considered as the first
documented evocation of computer networks (1963), J.C.R
Licklider justifies the need for device interconnection to enable
access to distant computing resources [3]. In recent years,
the explosion of the mobile device market shed new light
on these problems. Many cyber-foraging solutions for mobile
applications were developed, whether in the cloud [4], [5], the
edge of the network [6], or exploiting D2D communication [7].

Offloading frameworks enhance the capabilities of
hardware-limited mobile devices. These frameworks focus on
the data partitioning problem as well as its implementation in
mobile devices. MAUI [8] focuses on the energy consumption
of mobile devices to perform offloading. The authors
provide the data partitioning through a simple annotation
system. CloneCloud [9] modifies the application layer virtual
machine to automatically offload tasks to a remote server
with no intervention on the application. ThinkAir [10]
distributes offloaded functions in parallel among multiple
virtual machine images in the cloud. Cuckoo [11] is another
generic framework aiming at offloading computation with
minimal intervention from the application developer. Finally,
Breitbach et al. [12] decouple task scheduling from the data,
to accelerate edge computing. Several other studies were
directly focused on AR-specific offloading. Back in 2003,
Wagner et al proposed to offload AR tasks to a distant
machine [13]. In [14] Shi et al provide guidelines for MAR
applications on wearable devices. Finally, Overlay [15]
exploits cloud offloading for AR applications. However, these
works focus on pure cloud or edge computing, with eventual
distribution over several servers positioned at the same level
in the network. Moreover, they neglect LTE links due to
their high latency and variance. In this paper, we argue that
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offloading to servers located at different levels of the network
has a significant impact on task completion, and that LTE
can be used as a fallback link in certain conditions.

In parallel to these generic and AR-specific cloud offloading
frameworks, new applications were developed, exploiting ei-
ther D2D or edge computing. D2D communication is defined
as the direct communication between two mobile devices [16],
[17]. D2D communication has been used for offloading over
Bluetooth [18], WiFi Direct [19], or even NFC [20]. Mobile
edge computing is considered as an extension of the current
cloud model, in which the servers are brought as close as
possible to the access point to reduce network-induced latency
and avoid congestion in the core network. This new paradigm
attracted a lot of attention, not only from academia [21],
[22], [23], but also the industry [24], [25]. We integrate both
paradigms in our model in association with cloud computing,
as their distinct characteristics can prove essential for enhanc-
ing the experience of offloading applications.

More recently,studies started to focus on the networking
aspects of computation offloading, whether from an energy
perspective [26], to reduce data transmission [27], or opti-
mize mobility [28]. The networking challenges of AR have
been evoked in several articles. [29] proposes to combine
AR offloading and Information-Centric Networks to optimize
data transmission. [30] focuses on the application layer con-
straints, while [31] insists on transport layer optimizations.
EARVE considers the case of high mobility users such as
vehicules [32], [33]. Finally, Cicconetti et al. [34] propose
to distribute edge computing over multiple servers. However,
they only consider a single access link. In this paper, we
push forward these studies by analyzing multipath offloading
for MAR among servers located at various levels of the
network. We acknowledge the variety of access links and
server hardware to propose a new task allocation model.

III. MODELING AN AR APPLICATION

In this section, we decompose a typical AR application
(such as Vuforia [35]) into a set of tasks and propose the
deadlines and computational/networking costs for each one
of them. We use the application model proposed by Verbe-
len et al [36], to which we add a new component — the
Feature Extractor — to further enhance tasks parallelization.
Let us consider a context-aware AR web browser [37]. Such
an application analyzes the surroundings of the user and
combines geographic location and temporal information with
computation-heavy image processing algorithms to display
the websites of specific locations in AR. Image processing
is the most substantial computation task, not only due to
the necessary raw computing power but also because of
the frequency of the process. We design this application as
presented Figure 1. This process starts with a video source
(here, a camera) capturing pictures. These pictures then go
through a Feature Extractor that isolates the main points of
interest for future processing. These features are then fed
into three interdependent components: the Mapper creates a
dynamic map of the 3D world, the Object Recognizer performs



TABLE II: Tasks parameters.

Module | Renderer  Feature Tracker Mapper Object
extractor rec.
Task Tk Te T T Ts
Input Frame, Frame Feature FP, FP
Metadata points World
(FP) Model
Output Rendered  Feature Position World Object
Objects Points Model Prop.
Laata high variable medium medium medium
Lyes high variable low medium low
Deadline| 7d,min  variable 274, min 3Td,min ATq min
X low variable medium high high
Renderer
Source
Feature
extractor
‘ Tracker L:‘ Mapper Re?gg;ci;er
[ =

Fig. 1: Main components of a typical MAR application.

fine-grained analysis of the picture to locate specific objects,
and the Tracker tracks the objects in subsequent frames. The
result of these three modules is then fed with the camera
images into the Renderer which is in charge of combining
them to display the virtual layer on top of the real world.
We break down the control flow of the application as a set of
N tasks {T,,}. Each task T, (¢) can be characterized by its data
size Lqqtq,n, the computation results size L, ,, the number
of CPU cycles required to run the task X,,, and the deadline
Tdn, SO that the total execution time 7(7'(¢)) is inferior to
Ta,n- The task parameters for each component are presented
Table II. The Video Source gets the video frames from the
camera. This operation requires access to the hardware and
can only run on the device. Nowadays, most cameras operate
between 30 to 60 Frames per second; the minimum deadline
is thus: 7qmin = ﬁ. At the other extremity, the Renderer
aggregates the results from the computation modules and
overlays them on top of the video frames. This operation
has to be performed every frame and as such is generally
not offloaded to a distant machine. However, in the case of
restricted hardware or heavy rendering, offloading through a
low latency network may be the only solution to meet the
deadline. We consider a set of k objects to render in parallel,
with deadline < 74 yin. The Feature Extractor extracts feature
points from the camera frames. This component can have
different resolutions and deadlines, depending on the compo-
nent using the feature points as input. The Tracker requires
a lower resolution than the Mapper or the Object Recognizer
while having a shorter deadline. The Tracker tracks objects
on the frame. This module should process 15 to 20 FPS
for seamless operation, so the overall deadline for feature
extraction and position estimation should be no higher than

This is the Pre-Published Version

Fig. 3: Environment model: a pair of smartglasses is connected
to several computing units located at different extremities of
the network: device to device (Dy), edge (E}) and cloud (C}).

274,min [36]. The Mapper creates a model of the world out
of the feature points extracted by the Feature Extractor. It
identifies new feature points and estimates their position in
space. The Mapper requires a higher image resolution than the
Tracker. However, it is less delay-constrained and can be called
every few frames. We estimate a deadline between 27 4, and
474 m.n for feature extraction and world modeling. Finally, the
Object Recognizer identifies objects out of the feature points
and returns their position. Similarly to the Mapper, the object
recognizer does not require to be run in real-time and can be
called every 474 min 0 8Tq min.

We extract the dependency graph in Figure 2. All tasks
are interdependent; however, we can split the dependency
graph for parallel processing [36]. As the world model and
the object list do not require an update every frame, tasks
Te1+ Ty, Teo+ T, and T.3+ T, can be processed in parallel.
The only dependency is the combination of feature extraction
with another task. By keeping track of the previous instance’s
results, this model avoids passing on the excess latency.

IV. SYSTEM MODEL

We consider the scenario presented in Figure 3. A mobile
device (here smartglasses) executes a MAR application. Due
to the low processing power of smartglasses, computation
is offloaded to companion devices, edge servers and cloud
servers connected through WiFi Direct, WiFi and LTE.

A. Available resources

At a given time ¢, the client has a set of N tasks {7}, (¢)}
to run, as defined Section III. The client connects to the
servers through a set of access links {L;}. We consider that
at any time ¢, only a subset of size I is available to the
user, depending on the actual availability of networks. Those
links are characterized by their delay 7;(¢) and bandwidth
B(t), variable over time. We consider the mobile network



to be down when LTE is not available, as UMTS can not
provide the minimum throughput and latency requirements for
MAR. The smartglasses connect to a set of offloading devices
through these networks. The set of devices includes .J directly
connected companion devices {D;}, K edge servers {E}} at
the WiFi or LTE access point, and L cloud servers {C; }. They
are characterized by their computing power CPU{; 1. 13(1)- In
the case of cloud servers, we consider the connection to be
established through an aggregate link L4, ; composed of one
of the access links belonging to {L;} and a backbone network
with additional latency Tpqcrbone. We consider the access link
as the bottleneck of the network. The resulting link Lgggy,; is
characterized by its latency Taggr:i(t) = 7i(t) + Thackbone (t)
and bandwidth By, i(t) = B;(t).

B. Resource allocation

The execution time of task T} (¢) is a function of the original
transmission time 74,.(¢), the computation time on the server
Teomp(t) and 7., the transmission time of the result:

T(Tn (t)) = Ttr,n(t) + Teomp,n (t+7-tr) +T7*es,n(t+7-tr “"Tcomp)

()
with:
Laata,n
Ti(t) + —ora Edge or D2D
Ttr n(t) - Bz (t)
Ti (t) + Thackbone (Z) + gm(ﬁ;,)n Cloud
(2)
Xn
compnll) = 57—~ 3
Teomp,n (t) CPU, 1i(t) 3)
Lyesn
7i(t) + , Edge or D2D
Tres n(t) - Bl(t)
i (t) + Tback‘bone(i) + Bre(st; Cloud
4)

We consider that the smartglasses can estimate the channel
conditions, as well as the available resources available on the
servers at all times. Offloading {7, (¢)} to a server comes
down to assigning resources so that:

(T (t)) < Tam Vn (5)
(T (t)) (6)

C. Multipath Cloud Offloading

Cloud servers are positioned further in the network than
edge servers and companion devices. As a result, transmitting
over WiFi or LTE results in a lower difference in overall
latency.Considering a set of access links {L;} connected to
a backbone network to a cloud server, multipath transmission
reduces overall network latency when:

Z 7:(t) + B]j(it) < miin (Ti(t) + Bit)) @)

iel
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Here, k; represents the amount of data transmitted over link
L;. In the most common case, only two links are present: LTE
and WiFi. The system becomes:

L LK
Brre(t)

L-K

K
_ t _— 8
+ BWiFi(t)vTLTE( )+ BLTE(t)) ¥
K

with optimal K found when 7w,pi(t) + ————— =
K Bwiri(t)

Brre(t)

Twiri(t) + 1rrE(t)

+ N
Bwiri(t)

< min (TWiFi (t)

TrrE(t) +

L > - BwiriBrrE
Brre/) Brre — Bwiri

These principles can also be applied to edge servers, al-
though edge servers display such low latency that the inter-
connection between the two networks may introduce a larger
relative delay, reducing the impact of multipath transmission.

©))

K= (TWiFi — TLTE —

D. Mobility

Many MAR applications are used in mobility scenarios.
The user will thus experience regular disconnections and long
handovers due to his mobility. Tasks offloaded to the edge will
have to be transmitted through the backbone network to be
recovered through another link. We envision three scenarios:
(1) If completion prevails over latency, accept the additional
delay and transmit the results through the backbone network.
(2) In the case of latency-sensitive tasks, discard the task as
soon as the device leaves the access point (3) Flag critical tasks
at the application level to offload them to a reliable resource
(cloud server, companion device) in priority.

E. Data consistency

In distributed offloading, computation results may be trans-
mitted to the rest of the system for further computation. The
synchronization between a server 7 and the rest of the system
adds a delay 7,yn.,i, the time to propagate data to the system.

(10)

Tsync,i — mjaX (Ttr,i—>j)

F. Sequential processing

Several tasks may be assigned to the same link or the same
server. We process tasks sequentially: only one task can be
transmitted or processed at a given time on the same resource.
Sequential processing permits fine-grained resource allocation
as it allows prioritizing tasks according to their deadlines.
Moreover, assigning a task to a given resource does not modify
the status of already assigned tasks. Therefore:

Xn

Tcomp,n(t) = Tsched,n + m (11)
VELE
L ata,n
Ttr,n (t) = Twait,n + T (t) + ;72{) (12)

Tsched,n Deing the time to wait for the task to be scheduled on
the server, and T4, the delay before transmission on the



link. If the task T),(¢) has to be executed sequentially on the
server, transmission of the task can be delayed by an additional
Twait,n as long as t 4 7., <t + T7sched,n — 1.

G. Tasks Dependencies

The simplest task model is the data-partition model, in
which we only consider a pool of independent tasks at a given
time. However, most AR systems cannot be decomposed into
independent tasks, as most components require the output of
a previous component as an input, as shown Section III. We
consider three main tasks dependencies models. For a set of
N interdependent tasks, the dependencies can either be linear,
parallel or a combination of both. When a set of tasks are
linearly dependent, if we consider that each task result has to
be reported to the smartglasses before executing another, the
total execution time is:

V= 7(Tu(t)

neN

13)

In the case of parallel dependencies where the input of task
T'n depends on the output of parallel tasks 77 to T —1. The
execution time of N — 1 tasks dispatched over N,., servers
is therefore constrained by the following equation:

U < 7(T1(t) + N-2 max(7(T,(t))) + 7(Tn (1))

res

(14)

n€2,N—1]

Finally, tasks can show more intricate interdependencies.
We can resolve this kind of topology by aggregating parallel
or linearly dependent tasks in nested clusters, with an overall
latency of T.yster, until the full system turns into a linear or
parallel combination of clusters.

H. Optimizations

Interdependent tasks introduce new constraints in the sys-
tem, but also provide new opportunities for optimization. A set
of N linearly dependent tasks can be considered as a single
task of deadline Zne N Td,n» transmitted on the same link
and executed on the same server. The execution time of this
set can be reduced by transmitting all tasks sequentially and
executing them as soon as they are received and the previous
task completed. The overall delay for this set of tasks becomes:
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Algorithm 1 Scheduling algorithm.

Input: Network bandwidth {B;(t)}, latency {7;(¢)}, server
available capacity {CPU(t);}, set of tasks T),(t), set of
link/server combinations (L;, D;, Ey, C)

1: for task in T.sort(7y4) do

2 for link,server in combination do

3: compute Tlink,server

4:  end for

5:  allocate task T}, to link/server with lowest Tj;nk, server
6:

remove 7, from T
7: end for
Output: Task allocation

A. Independent tasks

We consider sequential task allocation as it allows greater
flexibility (see Section IV-F). We consider several metrics:

o {7n} the set of task completion times over all available

servers and links.
min(7)
Td

® (min =

We assume that the set of links and servers is small enough
to compute {7} for all tasks in a reasonable amount of time.
In our use case represented in Figure 3, the system features
three links, one companion device, two edges servers and
three cloud servers for a total of 9 possible combinations. We
propose a simple two-steps algorithm to solve the resource
allocation problem. While all tasks have not been assigned,
we select the task with the closest deadline 7;. We then
compute the set of {rlink,server} corresponding to all
possible link/server combination and allocate the task to the
combination with the lowest ajink,server. We summarize this
method in Algorithm 1. This conservative algorithm aims at
maximizing the number of tasks that can be processed in-time.
Therefore, tasks that can complete in the least amount of time
relative to their deadline are assigned first.

B. Interdependent tasks

In this section, we consider interdependent tasks. For more
general relationships, the dependency graph can be decom-
posed into several linear or parallel clusters.

1) Linear dependency: : A set of N linearly dependent tasks

Ldata,n
v =7(t)+ Z max ( Bi(t) aTcomp,n—1>+Tcomp7n+Tres7N can be considered a single task of deadline 74 = 74 n. The

n€[l,N]
(15)
Similarly, for parallel dependencies, all tasks may be transmit-
ted right after task 77, reducing the total time to:

N -2

U < 7(T1(t)+ my?LjJX(Tcompm)+mT?X(TT€s7n)+T(TN (1))
(16)

n € [2, N—1], assuming that 7y, , < 7(T1(¢)),Vn € [2, N—1]

Tes

V. SCHEDULING ALGORITHM

In this section, we propose a scheduling algorithm to
allocated tasks over the set of available links and servers. We
first introduce a system for independent tasks, then discuss the
implications of tasks with linear and parallel dependencies.

task execution time of the aggregate can be computed using
Equations 11 and 12. The aggregate is then assigned to a
single server. If the tasks have independent deadlines without
a constraint on the overall deadline or if we can estimate each
deadlineTgs a function of the overall deadline (for instance,
Tn = X—Zn,eN X)), we can assign the first task and

schedule the following tasks after it completes, recomputing
the deadlines according to the actual completion time.

2) Parallel Dependency: : The set of parallel tasks can be
considered as a cluster of independent tasks with deadline
74 = min({7q4,n}) and response time 7 = max(7,). Tasks
in this cluster can be allocated as independent tasks, using the
redefined deadline and completion time for task assignment.
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Fig. 4: System function flow

VI. EVALUATION

In this section, we implement and evaluate a real-life proof-
of-concept of our system. We develop a showcase application
that performs real-time localization offloading by offloading
Simultaneous Location And Mapping (SLAM) tasks to mul-
tiple edge servers simultaneously in real-time.

A. Implementation

On the Linux platform, we deploy a SLAM system with
ORB-SLAM?2 [38], one of the most popular real-time SLAM
libraries. We implement the client device on the Android plat-
form, following the flow in Figure 4. The client phone captures
images and sends the JPEG-encoded grayscaled frames at
30 FPS to edge servers either through the inbuilt scheduler or
through a naive random allocation algorithm in real-time. Each
edge server processes the received frame with ORB-SLAM?2
and sends the results back to the client phone via a result
buffer. The client phone pulls the results from the buffer and
displays them in AR, as shown in Figure 5. The client sends
compressed images at 30 FPS to the programs in the server(s)
via two sockets. The average compressed frame size is 64 Kb.
The server returns 12 Kb of data. Our implementation works
with the smartphone’s monocular camera (on Android phone)
but is also compatible with stereoscopic cameras. To emulate
a standard mobile user, we install the client-side application
on a Huawei Mate9 Pro smartphone, with a 2.4 (1.8) GHz
octa-core HiSilicon Kirin 960 CPU and 4GB of memory. We
deploy the edge servers on two MSI GS65 Stealth 8SG?, each
of which has a 6-core 17-8§750H CPU, 32GB of memory, and
an Nvidia RTX 2080 Max-Q GPU. The hardware of our edge
server is similar to a medium-priced commodity edge server.

B. Single Server vs Scheduling vs Random

To test the performance of the scheduler, we throttle
the uplink (client to server) bandwidth to 3,000 Kb/s using
wondershaper®. The value is low enough to eliminate the
impact of interferences (both at system and network level) that
may lead in throughput variation. Furthermore, it emulates a
low-connectivity scenario that is susceptible to happen with
user mobility. We split this bandwidth between edge server 1
and 2 according to the following ratios: 1/3, 1/4 and 1/5.

3https://www.msi.com/Laptop/GS65-Stealth-8SX/Specification
“https://github.com/magnificO/wondershaper

p L.

(c) Simulatneous mobile client offloading to two edge servers.
Both servers maintain a map of the environment (a and b).
The application combines both maps and displays it (c).

Fig. 5: Prototype system.
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Fig. 6: Latency vs time. Scheduling leads to lower average
latency compared to unmanaged multipath offloading. Our
algorithm also leads to significantly lower peak latency.
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Fig. 7: Result Comparison. Our scheduling algorithm leads
to lower latency than single path offloading with similar
bandwidth, at the cost of a slight raise in packet losses.

For each test, we sample 2000 frames. We plot the feedback
latency in Figure 6. Schedule and Random refer to the tests
in which the client sends requests via scheduler or randomly
to the two servers. We also carry out a Single edge server
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Fig. 8: Latency decomposition for bandwidth ratio 1/3. The

transmission latency is significantly lower with our scheduling
algorithm, even compared to single-path offloading.

TABLE III: Base Network parameters.

| D2D LTE WiFi Backbone
T 1.75ms 9.95ms 1.85ms 1.15ms-19.25ms
B | 50Mb/s  30Mb/s  100Mb/s XXX

experiment via a 3000 Kb/s uplink uplink. We decompose the
average latency for each system in Figure 8. As summarised
in Figure 7, multi-server with scheduling always outperforms
single-server and multi-server without scheduling considering
the combinatory performance of feedback latency and trans-
mission packet loss ratio. Interestingly, multi-server scheduling
noticeably decreases the transmission latency compared to
single-server offloading, while the aggregated total bandwidth
remains the same. Due to the limited bandwidth (only 3 Mb/s),
the transmission latency takes most of the time. With a
higher throughput, we could reach round-trip latencies as low
as 55ms with a 7ms round trip WiFi latency, and 26 ms
processing latency, which is enough to perform mapping one
frame out of two, similarly to the deadlines fixed in Section I'V.

VII. MODEL EVALUATION

To further validate the results of Section VI, we simulate
more complex scenarios over various network conditions’.

We use the AR application model presented Section III, with
the two following simplifications: (1) The Feature Extraction
step is performed on the same server than the dependent tasks,
and (2) All JPEG frames are 64Kb, similarly to Section VI. As
such, our model consists only of four tasks, Render object 7.,
Track Objects T3, Update world 7;,,, and Recognize objects
T,. We use the system in Figure 3 as our simulation setup.

At first, we consider fixed network bandwidth and latency.
Although such a model does not represent a realistic wireless
networks, it allows us to draw valuable insight into the effect
of the system’s intrinsic parameters on task repartition and in-
time completion. We use the measurements from Section I for
our typical values (see Table III). We assume that the access
network is the bottleneck, thus the backbone network’s band-
width is equal to the access link’s. To set up the task parame-
ters, we perform real-life measurements with the following as-
sumptions: (1) 25CPUgmartphone < S5CPUcqge < CPUciouds

5Code available at: https:/github.com/Braudt/mpath-simulator-percom

TABLE IV: AR application measurements.

| Tr Tt Tm, To
Tq 20 ms 60ms 90ms  120ms
Measured Lgqtq | 100Kb  64Kb  64Kb 64 Kb
Measured Lyes 100 Kb 4 Kb 12Kb 4 Kb
Converted X 2 10 26 15

B Nr of tasks over deadline
B Avg time over deadline
s Avg completion time

N
o

Tasks (x1000)
"
o

Excess latency (ms)

0
o’l«o & & ?})(g’l« [ ()3 A

Fig. 9: Single and multiple servers offloading. Using several
servers lead to reasonable excess latencies (<10 ms). 100% in-
time task completion by offloading to all resources in parallel

(2) CPUsmartph(me = 2007 and (3) Trendering,smartphone —
10ms. As such, for CPUgsmartphone = 200, CPU.q4. = 1000,
and CPUcqqe = 5000, we have X, = 2. We then set
up an Edge server (see configuration Section VI) running
OpenCV® for tracking, ORB-SLAM2 [38] for mapping, and
YOLO [39] for recognizing objects. We use 64Kb JPEG frames
as input (average frame size in Section VI) and measure the
average processing time and output size. We then convert these
measurement into the aforementioned metrics by using the
formula X = %ﬁddq’i’"e. As a result, for a 64Kb JPEG frame,
X; = 10, X,,, = 26, and X, = 15, and Ly.s; = 4 Kb,
Lyesm = 12Kb, and L,¢s, = 4 Kb. Finally, rendering the
object requires not only the JPEG frame, but also other data
(object location, world model), and thus we consider Lggq,, =
100 Kb. We summarize these measurements in Table IV. We
perform the following simplifications: (1) At all time t, the
client has a good estimation of all the main parameters of the
system: delays, bandwidth, and server capacity. (2) All the
parameters are constant for a given task from the moment it
is assigned. (3) All tasks are triggered by new frames.

We run all the simulations over 200s for a 30 FPS appli-
cation, with rendering performed for 3 objects every 30 ms,
tracking every 60ms, world modeling every 90 ms and object
recognition every 120 ms, for a total of 24,500 tasks.

A. Offloading to multiple servers

We first measure the impact of the following offloading
scenarios: D2D only, edge computing only (single and mul-
tipath), cloud only (1 to 3 servers), and a combination of
all the servers and links. We set the cloud latency to 7.5ms,
corresponding to a server in a nearby city. Figure 9 shows the
average completion times of tasks, the number of tasks that
could not meet their deadline, and the average excess latency.

Shttps://opencv.org/
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Fig. 10: Impact of WiFi latency and bandwidth on task
allocation and excess latency. For latencies > 5ms, in-time
completion rate drops to 50%. Minimum completion rate is
achieved for bandwidth > 25 Mb/s

The companion device is not powerful enough to offload the
full application, excess latencies accumulate exponentially,
over 250s. Similarly, due to the high latency of LTE links,
using LTE leads to a buildup of latencies, around 60s. Single
path edge computing with WiFi shows only 10% of tasks
completing late, and an average excess latency below 12 ms.
Cloud servers compensate the high network latency with high
computational power. However, excess latency remains high.
Finally, transmitting to both edge servers through LTE and
WiFi allow completing 100% of the tasks in-time with an
average completion time of 16.6 ms. Unsurprisingly, the com-
bination of all elements in the system leads to 100% on-time
completion with the lowest completion times (avg=14.5 ms).

B. Impact of network conditions

In the previous section, we consider network conditions
close to optimal with latencies and bandwidth fixed at values
measured on the campus of the Hong Kong University of
Science and Technology where both LTE and WiFi cover the
entire area with little interference between the APs. We now
analyze the case of degraded WiFi performance.

We first evaluate the effect of WiFi bandwidth and latency
on performance. Figure 10(a) presents the influence of the
WiFi latency on the in-time task completion, and Figure 10(b)
the task allocation. A slight increase in link latency causes
response times to exceed the deadlines. When the one way
delay reaches 17.5 ms, the number of late tasks and the average
excess latency stabilize and the allocation algorithm does
not consider the WiFi network anymore. Tasks are primarily
allocated through D2D and LTE. The mobile network is
never used when Tw;r; < 5ms. In between, tasks are
offloaded through both WiFi and LTE until 7yy;p; > 15ms.
On Figure 10(b) and 10(d), we represent the effect of WiFi
bandwidth variation on task completion and task allocation.
When the WiFi bandwidth is < 25 Mb/s, tasks start not to

Random = D1
70% WiFi El
Random e B2

Fixed Lo}
c2
Cc3

0 5 10 15 20
Nr of tasks (x1000)
Fig. 11: Task Allocation for Fixed channel, Random channel,
and Intermittent channel. WiFi instability causes more tasks
to be assigned through D2D and LTE (30%).

be completed in-time, although with minimal impact on the
excess latency. Under 2.5Mb/s, the WiFi network stops being
used. Although WiFi link latency is primordial for in-time
tasks completion, our system is much more tolerant to lower
bandwidths. Furthermore, even in sub-optimal conditions, we
keep the latency lower than 9 ms, thanks to the task realloca-
tion to the companion device and the LTE edge server.

After analyzing the impact of both latency and throughput,
we evaluate the effect of link instability. We represent the
delay and bandwidth as random Gaussian variables centered
around the values in Table III. To set the standard deviation,
we perform measurements on the university campus. The WiFi
measurements are performed on Eduroam, while the LTE mea-
surements are done on a commercial operator’s network. We
send 100 consecutive Echo Request packets to the university
server through each link. WiFi presents a standard deviation
of 65% due to the extremely low average latency (2.7 ms one
way). The latency varies between 1.7ms and 12.1ms LTE
latency displays a standard deviation of 13%, ranging from
7.2ms to 13.55ms. Regarding bandwidth, we compute the
standard deviation of 10 1 Mb transfers in Iperf. We find a
standard deviation around 50% for both WiFi and LTE.

We compare fixed channel and random channels using
the aforementioned parameters. Accessible WiFi networks are
not as ubiquitous as LTE. In our simulation, we reflect this
phenomenon by disconnecting the WiFi network randomly
20% of the time. For a random channel, the amount of tasks
exceeding their deadline remains < 4%, with excess times
around 4 ms. With random WiFi disconnections, it reaches
28%, with excess latency around 7 ms. In both cases, the task
repartition shown in Figure 11 is way more diverse than for
fixed network conditions. The WiFi edge server is less used,
while more tasks are allocated to the companion device as
well as the cloud servers through the LTE links. Random
WiFi disconnections increase the usage of cloud servers as
the higher computing power compensates the increased link
latencies. In both random channels and random channels with
disconnections, LTE and D2D are used for more than 30%
of the allocations. When WiFi is not available, tasks are
first offloaded to the companion device as LTE latency is
too high for in-time completion. We then simulate a single-
server system using either the WiFi or the LTE network.
We approximate all tasks to be sent as a single task using
Equations 15 and 16. In both cases, 100% of the tasks do not
finish on-time, and latency builds up to a system collapse.

As our LTE network is relatively stable, although rarely
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Fig. 12: Impact of WiFi latency and bandwidth standard
deviation on task allocation and excess latency. The system
can withstand up to 100% stdev for bandwidth and 25% stdev
for bandwidth until late tasks happen.

used in this experiment, evaluate the limits of WiFi instability
on task completion rates and times. We consider the LTE link
as fixed and vary the standard deviation of bandwidth from 0
to 100% (latency stdev=065%), and the standard deviation of
latency from 0% to 500% (bandwidth stdev=50%). We present
the results in Figure 12. Over 100% latency standard deviation,
tasks start not to be completed in-time. The number of late
tasks raises linearly with the standard deviation of latency. On
the other hand, bandwidth is much more sensitive to random
variations, and tasks can not complete in-time for a stardard
deviation over 25%. Moreover, excess latency remains below
5 ms forr both parameters, thanks to the task reallocation.

C. Future-proofing: 5G and 802.11ax

The model presented above considers the current network
technology. However, 5G is already being deployed in multiple
locations, and 802.11ax certification was started September
19, 2019. Both bring a considerable increase in bandwidth.
802.11ax increases data rates up to 600 Mb/s with 80 MHz
channels [40], while 5G users reported download speeds
between 600 Mb/s and 1.8 Gb/s [41]. We reflect on these
technologies in a final simulation. We consider a 802.11ax link
with a 600 Mb/s bandwidth (stdev=100 Mb/s), and a latency
similar to the previous WiFi settings. Regarding LTE, we esti-
mate a 1,000 Mb/s bandwidth (stdev=100 Mb/s), and a latency
of 1 ms [42] (stdev=0.13 ms, similar to the previous setting).
These parameters represent a moderately stable scenario for
these future technologies. We expect the system to withstand
our application with no late tasks. We simulate the same
application running at 60 FPS, with a deadline of 30ms for
mapping, tracking, and object recognition.

We show the task allocation on Figure 13. As expected,
the load is more balanced between the WiFi and the mobile
network. Interestingly, the cloud servers are still used to the
high computational cost. In the case of a 60 FPS application
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Fig. 13: Task Allocation for our model application in 5G and
the same application running at 60FPS. The load is more
balanced between the 5G link and the 802.11ax link as the
bandwidth and latencies are closer.

with all tasks performed for each frame, 30% of the tasks fail
to complete in-time, although the excess latency remains below
2ms. Indeed, computing power becomes the bottleneck and
more tasks get assigned to the cloud. This experiment shows
that although 5G may be a game-changer, some applications
may still not be fully offloaded due to the high computation
cost of some tasks and the amount of data to send.

VIII. CONCLUSION

In this paper, we modeled and analyzed the impact of mul-
tipath transmission on multi-server offloading. We modeled
a multiple-servers, multiple-links architecture for offloading
a typical MAR application to companion devices, edge, and
cloud, and designed an algorithm for tasks allocation. We
evaluated this algorithm through both real-life implementation
and extensive simulations. Our algorithm performs better
than random allocation and single-server offloading for an
equivalent aggregated bandwidth. Allocating tasks over a wide
range of networks and servers noticeably improve performance
over single path offloading. Even a very low power companion
device can distinctly increase the in-time completion rates. We
also shed light on the dependency of the system on latency
stability. The system was extremely resilient, and requires
extreme conditions to fail compared to its single-server coun-
terpart. Offloading over such a heterogeneous system provides
robust fall-back in case resources are not available. Over the
range of simulations, excess latency was kept below 9ms
in conditions where single-server systems would collapse.
Finally, we showed that despite 5G and 802.11ax being signif-
icant improvements, the most computation-heavy applications
may still not be fully offloaded for in-time completion.

In the future, we plan to further evaluate the system and
extend our real-life implementation. We will focus on opti-
mizations that can happen in the backbone network, such as
task aggregation and chaining. Besides, we will evaluate the
overhead of our solution, both in terms of network and server
capacity estimation, and in terms of practical network imple-
mentation, including connection establishment, discovery, and
handover. Finally, we will study in detail the impact of 5G
and WiFi 6 through real-life network measurements.

ACKNOWLEDGMENT

This research has been supported in part by project
16214817 from the Hong Kong Research Grants Council, the
5GEAR project and the FIT project from the Academy of
Finland.



[1]
[2]

[3]
[4]

[5]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[21]

REFERENCES

M. Abrash, “Latency — the sine qua non of ar and vr.” Accessed 23-02-
2017.

T. Braud, T. Kidmirdinen, M. Siekkinen, and P. Hui, “Multi-carrier
measurement study of mobile network latency: The tale of hong kong
and helsinki,” in /5th International Conference on Mobile Ad-hoc and
Sensor Networks, December 2019.
J. Licklider, “Memorandum for :
galactic computer network,” 1963.
K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mob. Netw. Appl., vol. 18, pp. 129-140,
Feb. 2013.

M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya, “A review on
distributed application processing frameworks in smart mobile devices
for mobile cloud computing,” IEEE Communications Surveys Tutorials,
vol. 15, pp. 1294-1313, Third 2013.

P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” CoRR, vol. abs/1702.05309, 2017.
S. Yu, R. Langar, and X. Wang, “A d2d-multicast based computation
offloading framework for interactive applications,” in 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1-6, Dec 2016.

E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys "10, (New York,
NY, USA), pp. 49-62, ACM, 2010.

B.-G. Chun, S. Thm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the Sixth Conference on Computer Systems, EuroSys "11, (New York,
NY, USA), pp. 301-314, ACM, 2011.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dy-
namic resource allocation and parallel execution in the cloud for mobile
code offloading,” in 2012 Proceedings IEEE INFOCOM, pp. 945-953,
March 2012.

R. Kemp, N. Palmer, T. Kielmann, and H. Bal, Cuckoo: A Computation
Offloading Framework for Smartphones, pp. 59-79. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012.

M. Breitbach, D. Schifer, J. Edinger, and C. Becker, “Context-aware
data and task placement in edge computing environments,” in 2019 IEEE
International Conference on Pervasive Computing and Communications
(PerCom, pp. 1-10, March 2019.

D. Wagner and D. Schmalstieg, First steps towards handheld augmented
reality. IEEE, 2003.

B. Shi, J. Yang, Z. Huang, and P. Hui, “Offloading guidelines for
augmented reality applications on wearable devices,” in Proceedings of
the 23rd ACM International Conference on Multimedia, MM ’15, (New
York, NY, USA), pp. 1271-1274, ACM, 2015.

P. Jain, J. Manweiler, and R. Roy Choudhury, “Overlay: Practical mobile
augmented reality,” in Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys
’15, (New York, NY, USA), pp. 331-344, ACM, 2015.

A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” IEEE Communications Surveys
Tutorials, vol. 16, pp. 1801-1819, Fourthquarter 2014.

A. Fahim, A. Mtibaa, and K. A. Harras, “Making the case for com-
putational offloading in mobile device clouds,” in Proceedings of the
19th Annual International Conference on Mobile Computing &#38;
Networking, MobiCom ’13, (New York, NY, USA), pp. 203-205, ACM,
2013.

B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe, J. Shao, and A. Srini-
vasan, “Mobile data offloading through opportunistic communications
and social participation,” IEEE Transactions on Mobile Computing,
vol. 11, pp. 821-834, May 2012.

D. Chatzopoulos, K. Sucipto, S. Kosta, and P. Hui, “Video compression
in the neighborhood: An opportunistic approach,” in 2016 IEEE Inter-
national Conference on Communications (ICC), pp. 1-6, May 2016.

Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, pp. 3590-3605,
Dec 2016.

Members and affiliates of the inter-

[20]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]

(31]

(32]

[33]

[34]

[35]
[36]

[37]

(38]

[39]

[40]
[41]

[42]

This is the Pre-Published Version

K. Sucipto, D. Chatzopoulos, S. Kosta, and P. Hui, “Keep your nice
friends close, but your rich friends closer — computation offloading using
nfc,” in 2017 Proceedings IEEE INFOCOM, 2017.

S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5g heterogeneous
networks,” IEEE Signal Processing Magazine, vol. 31, pp. 45-55, Nov
2014.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. &, pp. 14-23, Oct 2009.

“Mobile-edge computing-introductory technical white paper.” Accessed
29-07-2017.

Intel, “Real-world impact of mobile edge computing (mec).” Accessed
29-07-2017.

S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in JEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, pp. 1-9, April 2016.

Y. Li and W. Gao, “Code offload with least context migration in the
mobile cloud,” in 2015 IEEE Conference on Computer Communications
(INFOCOM), pp. 1876-1884, April 2015.

K. Wang, M. Shen, J. Cho, A. Banerjee, J. Van der Merwe, and K. Webb,
“Mobiscud: A fast moving personal cloud in the mobile network,” in
Proceedings of the 5th Workshop on All Things Cellular: Operations,
Applications and Challenges, AllThingsCellular 15, (New York, NY,
USA), pp. 19-24, ACM, 2015.

C. Westphal, “Challenges in networking to support augmented reality
and virtual reality,” 2016.

W. Zhang, B. Han, and P. Hui, “On the networking challenges of mobile
augmented reality,” 2017.

T. Braud, F. H. Bijarbooneh, D. Chatzopoulos, and P. Hui, “Future
networking challenges: The case of mobile augmented reality,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pp. 1796-1807, June 2017.

P. Zhou, W. Zhang, T. Braud, P. Hui, and J. Kangasharju, “Enhanced
augmented reality applications in vehicle-to-edge networks,” in 2079
22nd Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN), pp. 167-174, Feb 2019.

P. Zhou, W. Zhang, T. Braud, P. Hui, and J. Kangasharju, “Arve: Aug-
mented reality applications in vehicle to edge networks,” in Proceedings
of the 2018 Workshop on Mobile Edge Communications, MECOMM’ 18,
(New York, NY, USA), p. 25-30, Association for Computing Machinery,
2018.

C. Cicconetti, M. Conti, and A. Passarella, “Low-latency distributed
computation offloading for pervasive environments,” in 2019 [EEE
International Conference on Pervasive Computing and Communications
(PerCom, pp. 1-10, March 2019.

“Vuforia.” https://vuforia.com/. Accessed: 2017-07-30.

T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proceedings of the Third
ACM Workshop on Mobile Cloud Computing and Services, MCS 12,
(New York, NY, USA), pp. 29-36, ACM, 2012.

K. Y. Lam, L. Hang Lee, T. Braud, and P. Hui, “M2a: A framework for
visualizing information from mobile web to mobile augmented reality,”
in 2019 IEEE International Conference on Pervasive Computing and
Communications (PerCom, pp. 1-10, March 2019.

R. Mur-Artal and J. D. Tarddés, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, pp. 1255-1262, Oct 2017.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018.

M. Turner, “Wi-fi 6 explained: The next generation of wi-fi,” sep 2019.
I. Fogg, “Sg users now experience max download speeds over 1000
mbps in 4 countries,” sep 2019.

N. Alliance, “5g white paper,” Next generation mobile networks, white
paper, 2015.



