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Abstract—The growing demand for intelligent environments
unleashes an extraordinary cycle of privacy-aware applications
that makes individuals’ life more comfortable and safe. Examples
of these applications include pedestrian tracking systems in
large areas. Although the ubiquity of camera-based systems,
they are not a preferable solution due to the vulnerability of
leaking the privacy of pedestrians. In this paper, we introduce
a novel privacy-preserving system for pedestrian tracking in
smart environments using multiple distributed LiDARs of non-
overlapping views. The system is designed to leverage LiDAR
devices to track pedestrians in partially covered areas due to
practical constraints, e.g., occlusion or cost. Therefore, the system
uses the point cloud captured by different LiDARs to extract
discriminative features that are used to train a metric learning
model for pedestrian matching purposes. To boost the system’s
robustness, we leverage a probabilistic approach to model and
adapt the dynamic mobility patterns of individuals and thus
connect their sub-trajectories. We deployed the system in a large-
scale testbed with 70 colorless LiDARs and conducted three
different experiments. The evaluation result at the entrance hall
confirms the system’s ability to accurately track the pedestrians
with a 0.98 F-measure even with zero-covered areas. This
result highlights the promise of the proposed system as the
next generation of privacy-preserving tracking means in smart
environments.

Index Terms—Point cloud-based recognition, LiDAR, Privacy-
preserving, Re-ID, Pedestrian tracking

I. INTRODUCTION

Many systems have been proposed to detect and track
people in large areas, especially using RGB cameras (the
nowadays commodity devices for such a purpose). Those
camera-based tracking systems usually use multiple RGB
cameras to track people (referred to as Multi-Camera Tracking
(MCT)) [1]. Since person Re-ID (re-identification) among
multiple cameras is the primary issue in MCT, recent MCT
approaches rely on the power of deep learning techniques to
get features from RGB cameras. These features are used to
identify each person who appears in different camera scenes
to enable tracking of the target person. However, these features
are often bio-metric features of the bystander, e.g., face, skin

color, gender, age, and body shape. Deep neural networks can
encode the image features into latent space, which is safer
(i.e. unable to recover the original data) as the structure of
the networks becomes complicated. Nevertheless, there have
been many attacks that attempt to leak the privacy of users
(along with their images) involved in such systems methods
like membership inference attacks [2] and model inversion
attacks [3].

Recently, 3D Light Detection and Ranging sensors (3D
LiDARs, or simply LiDARs) have attracted more attention in
terms of the balance between the privacy-preserving features
and the capability of spatial sensing. LiDARs only acquire
distances to the nearest objects in each 3D direction in FoV
(Field of View), and the distance error is usually in the range
of 10−2 ∼ 10−1 meters with a coverage range of up to 100
meters. LiDARs generate colorless 3D point clouds, which
is more privacy-reserving compared to camera-based systems.
Moreover, 3D LiDARs enjoy accurate ranging characteristics
making their pedestrian tracking accuracy generally higher
than the camera-based counterparts [4], [5].

This gives rise to the development of large-scale pedestrian
tracking systems with Multi-LiDARs (MLT) distributed over
the target area. However, full coverage of large areas with
LiDARs (or even cameras) may not always be possible due
to the associated cost, the lack of power supplies, and/or oc-
clusion (LoS constraints)1. Therefore, pedestrian tracking with
multi-LiDARs in partially covered areas is a more challenging
problem. In other words, the problem is to track pedestrian(s)
captured with one LiDAR and re-identify them with a colorless
point cloud of other LiDARs given a non-overlapping field of
views (FoVs) and a non-covered area in-between.

In this paper, we propose a privacy-preserving pedes-
trian tracking system using distributed 3D LiDARs of non-
overlapping views. Specifically, the proposed system attempts

1one common issue in indoor tracking using cameras/LiDARs is how to
obtain clear views to track pedestrians with a lot of obstacles like ad signs,
plants, etc.

ar
X

iv
:2

30
3.

09
91

5v
3 

 [
cs

.C
V

] 
 2

2 
M

ar
 2

02
3



to find the correspondence between multiple pedestrians’ sub-
trajectories obtained by each LiDAR to estimate the whole
trajectory of each person in the target area. Towards this
end, the proposed system identifies pedestrians and recognizes
their sub-trajectories based on two criteria: the similarity of
the point cloud signature of each pedestrian and the Spatio-
temporal characteristics of the pedestrian sub-trajectories. The
former is achieved by employing the Fisher Vector approach
[6] to extract discriminative fixed-size features representing the
shape and behavior of each person given her point cloud. The
system then trains a deep-metric learning model to learn the
dissimilarity between the features of different persons. The
second criterion leverages sub-trajectory start/end points to
learn possible point transitions of pedestrians. This is done
by defining the probability distribution of traveling time and
mobility patterns and updating these distributions using the
Bayesian approach.

To demonstrate the usefulness of the proposed approach, we
deployed the system in a large testbed of six floors building
equipped with 70 LiDARs and conducted three different exper-
iments. The evaluation results of the system on 32 pedestrians
confirm its efficacy in achieving a consistently high matching
accuracy of the pedestrian trajectories with 0.98 F-measure.
This result is achieved with only colorless sparse 3D LiDARs
that ensure the privacy of pedestrians.

To summarize, our contributions are three-fold. (i) Unique-
ness of the problem. We tackle a new problem to obtain
complete pedestrian trajectories from sub-trajectories which
are captured by distributed 3D LiDARs. As far as we in-
vestigate, no other research has been done for this problem.
(ii) Novelty of the approach. Unlike multi-camera multi-object
tracking, the LiDAR-based sub-trajectories are more accurate,
but we have less clue to connect those segmented ones in
terms of person re-identification. To address the issue, we
design a unique algorithm to find the most likely matching
among them taking point cloud-specific features as input. The
probability distribution functions are updated based on the
Bayesian updating system. (iii) Evaluation using the real data.
We conducted several experiments using the real LiDAR data
obtained in our large-scale testbed. The testbed consists of 70
LiDARs installed over 6 floors of the 7-story building in our
university campus. The performance of the method has been
validated through the dataset.

II. RELATED WORK

Multi-Object Tracking (MOT) has extensively studied to
track persons or vehicles [1]. Solution for this problem can
be, in general, categorized into single camera approaches and
multiple camera approaches.

A. Multi-Object Tracking (MOT) with Single Camera / LiDAR

Tracking a person or vehicle using a single camera has
been well investigated due to the availability of several public
datasets, e.g., MOT Challenge [7] and KITTI dataset [8].
The MOT Challenge dataset consists of videos captured by
surveillance cameras enabling tracking methods in various

scenarios, such as tracking in congested areas. The KITTI
dataset includes 3D point cloud data of pedestrians acquired
using LiDARs on top of passing vehicles. DeepSORT [9] is a
typical MOT system that uses the Yolo object detection method
to detect target objects in a given frame. Then, it leverages
Kalman filter to track the moving objects in consecutive
frames. 3D vehicle detection and tracking from monocular
videos has been proposed in [10]. It can estimate 3D bounding
boxes surrounding each object in a sequence of 2D images,
using a Deep Neural Network (DNN).

On the other hand, a lot of efforts have been dedicated
to 3D tracking using 3D cameras or LiDARs. RGB images
and 3D point clouds have been leveraged together for track-
ing pedestrians in [11]–[13], while 3D point clouds have
been adopted alone in [14]–[18]. An advantage of using
3D point clouds alone is the resilience to varying colors
and brightness, which usually affect cameras. Additionally,
the privacy concerns associated with surveillance cameras do
not apply to LiDARs. However, leveraging LiDARs makes
MOT challenging as colors are the most critical signature to
detect/identify persons. To cope with the issue, self-designed
features are often incorporated to perform 3D MOT using 3D
point clouds [19], [20]. We have also used our own tracking
system using a single 3D LiDAR.

Different from these apporaches, the proposed system is de-
signed to achieve accurate pedestrian tracking using multiple,
distributed 3D LiDARs.

B. Multi-Camera Multi-Object Tracking with Person Re-
Identification

Multi-Camera Multi-Object Tracking (Multi-Camera MOT)
refers multiple object tacking with multiple distributed cam-
eras which has been investigated for specific cases in [21],
[22], [23]. While identifying a person detected by one camera
and using a different camera at a different location and timing
(called person re-identification in multi-camera MOT) has
been proposed [24]. In [25], the similarity between pedestrians
is calculated using the clothes’ colors in RGB images and
the traveling time and distance between the different cameras.
Then, the matching is carried out using the Hungarian method
[26], [27]. Additionally, different types of camera are fused
for person re-identification [28], [29]. The system in [28]
combines a RGB-D camera with a temperature sensor, while
RGB and infrared cameras are used in [29]. In [28], RGB-
D camera with depth data have been utilized to extract the
pedestrians’ skeletal information. Also, recent studies, e.g.,
[30], [31], tends to enhance the capability of RGB-D based
recognition and person re-identification. On the other hand,
the system in [32] estimates joints of human bodies from a
3D point cloud. However, this work cannot be directly adopted
for person re-identification as the human pose does not contain
enough information to distinguish persons. Although the pres-
ence of datasets for camera-based person re-identification, e.g.,
Market-1501 [33] and Motion Analysis and Re-identification
Set (MARS) [34], no similar datasets are available using
multiple distributed 3D LiDARs.



To the best of our knowledge, this is the first work that
leverages the privacy-preserving 3D point clouds captured
by multiple distributed LiDARs for person re-identification.
Additionally, the proposed system handle the challenges as-
sociated with processing 3D point cloud, such as unordered,
unstructured, and varying size point clouds.

C. Trajectory Prediction

Trajectory prediction [35], [36] has been studied to ex-
tract patterns from moving trajectories. The method in [35]
proposes a trajectory prediction model for traffic networks
based on past movement patterns. By dividing trajectories
into clusters and discovering frequently occurring trajectory
patterns, future movement trajectories can be predicted with
high accuracy. The authors of [36] also investigate trajectory
prediction, but they use sparse coding [37] to represent each
trajectory as a combination of predefined trajectory patterns,
which enables the prediction of subsequent trajectories for
each new trajectory. They also propose a similarity-based
model fusion algorithm that allows agents to update their
knowledge by communicating the data they have learned with
each other.

On the contrary, this paper focuses on the problem of
finding pedestrians trajectories from a given set of their sub-
trajectories, the context of our work is entirely different.

III. MOTIVATION FOR USING LIDARS

In this section, we motivate the adoption of LiDARs as the
core technology for the proposed system. LiDAR is emerging
as a powerful enabler of the next generation of smart and safe
environments [38], [39]. LiDARs can provide long-range, real-
time, centimeter-level distance measurements of surrounding
objects in all lighting conditions.

Privacy: LiDAR provides a key advantage over camera-
based systems – privacy protection. With increased concerns
that facial recognition technology can be used for general
surveillance, the U.S. Congress discusses legislation that seeks
to ban the use of camera-based human identification and other
biometric surveillance technology by federal law enforcement
agencies. Thus, nowadays, industry has seen leading tech
vendors stepping away from their own camera-based facial
recognition technologies, as reported in Forbes [40]2. In the
U.S. Congress, there is legislation that seeks to ban the
use of camera-based facial recognition and other biometric
surveillance technology by federal law enforcement agencies.
On the other hand, a lot of effort has been devoted to pre-
venting/reducing camera’s capabilities from obtaining detailed
visual data (private information) by equipping cameras with
additional hardware/software [41], [42]. In contrast, LiDAR,
by definition, captures only point cloud representation of the
scene, from which humans’ biometric features, such as facial

2IBM plans to leave the facial recognition business, Amazon is placing a
one-year hold on police departments using its facial recognition technology,
and Microsoft is waiting on federal legislation before the company starts
selling its comparable technology to law enforcement.

characteristics, hair and skin color, or even clothes, cannot be
identified.

Cost: One strength commonly associated with cameras
when compared to LiDARs is cost. However, when the system
design necessitates optimal levels of privacy, coverage, and
varying lighting conditions, the assumed advantage of camera-
centric approaches diminishes greatly. A single LiDAR sensor
can typically cover roughly four times the area of one camera,
significantly decreasing the costs and logistics of installation.
Moreover, nowadays, LiDARs are becoming as cheap as only
80$ [43] and reliable in different applications [44]–[48].

Setup: A LiDAR-based solution has setup efficiency and
simplicity benefits over camera-based approaches. Using high-
quality LiDAR, which generates dense point clouds at longer
ranges, enables reliable tracking at scale with fewer devices.
Additionally, LiDAR data is much faster and simpler to
process, requiring less computing power within a system
compared to cameras.

IV. SYSTEM ARCHITECTURE AND PROBLEM DEFINITION

A. Obtaining Sub-Trajectories by Each LiDAR

Each LiDAR can capture a part of the target 3D space, and
in each frame (i.e. one scan of the space) from the data stream
from the LiDAR, a 3D point cloud (or simply point cloud) is
obtained. The 3D space where the point clouds are generated
by LiDAR i is called scan space of LiDAR i and denoted
as S3i . Then a background subtraction method is applied to
that point cloud to extract moving objects. The extracted point
cloud is called the foreground point cloud, and segmentation is
applied to find each person in the foreground point cloud. We
use the Voxel Grid Filter [49] and apply downsampling to the
foreground point cloud to convert each voxel grid cell into a
single virtual point. Then, a clustering algorithm is applied to
the foreground point cloud to segment it into human segments.
We remove the Z-axis when the clustering is applied to reduce
processing overhead and employ a DBSCAN-based clustering
to obtain human segments.

A sub-trajectory refers to a two-dimensional trajectory
obtained as a temporal sequence of the (x, y)-coordinates of
human segments, which corresponds to one person’s walking
trajectory in a LiDAR’s scan space S3i (Fig. 1). We note that the
prefix “sub-” indicates that the sub-trajectory represents only
a part of the whole trajectory of one person. For simplicity,
the 2D area where sub-trajectories can be obtained by LiDAR
i is called trajectory area of LiDAR i and denoted as S2i .
Generally, S2i is the projection of S3i onto the XY-plane.

We let TR[t,t′]
i and Ht

i denote the set of sub-trajectories
obtained in a time window [t, t′] and the set of human
segments at time t by LiDAR i, respectively. We also let
tr

[ta,tb]
i,j denote a sub-trajectory j obtained by LiDAR i, which

starts at time ta and ends at tb. We note that for any sub-
trajectory tr[ta,tb]i,j ∈ TR[t,t′]

i , t ≤ ta ≤ tb ≤ t′ holds. tr[ta,tb]i,j

is contained in S2i and their start and end points are on the
boundary of S2i .
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Fig. 1. Sub-trajectories by Distributed LiDARs

At time t, we obtain from LiDAR i the set Ht
i of hu-

man segments. We assume that the set TR[t−k,t−1]
i of sub-

trajectories for k− 1 time window (k > 1) has been obtained.
Then we find the correspondence between a sub-trajectory
tr ∈ TR

[t−k,t−1]
i , and a human segment h ∈ Ht−1

i . We
can easily find this correspondence by applying our Kalman-
filter-based tracking method [50], and we obtain an updated
TR

[t−k,t]
i . Finally, we define a temporal relation of two sub-

trajectories, tr[ta,tb]i,u and tr[tc,td]j,v . We denote tr[ta,tb]i,u < tr
[tc,td]
j,v

if and only if tb < tc holds.

B. Problem Definition

We consider a time window, say [ts, te]. We assume that a
set L of LiDARs, their scan spaces and trajectory areas, and
the map of the target area where those LiDARs are installed
are given. We also assume that a sub-trajectory set TR =⋃
i∈L TR

[ts,te]
i is obtained.

The trajectory estimation problem in this paper is formu-
lated as a problem to find a partition of TR, where each
partition can form a sub-trajectory sequence. A sub-trajectory
sequence is a temporal sequence of sub-trajectories satisfying
the total order relation based on the temporal relation <. For
example, a partition that contains sub-trajectories tr1 = tr

[1,3]
i,u ,

tr2 = tr
[4,6]
j,v and tr3 = tr

[10,12]
j,r , satisfies tr1 < tr2 < tr3, and

can form the sub-trajectory sequence tr1; tr2; tr3.
Once a set of partitions is found, for each partition and

the map, we may estimate the path between the subsequent
sub-trajectories using the corridors or pathways information
contained in the map. However, due to space limitations, this
is not in the scope of this paper.

C. Algorithm for Trajectory Estimation

For a given TR =
⋃
i∈L TR

[ts,te]
i , our algorithm works as

follows.
We prepare two sets V1 and V2 of sub-trajectories and a set

E of sub-trajectory pairs, and all are initially empty. V1 and V2
correspond to the sets of those sub-trajectories whose end and
start points are the connecting points, respectively. Then for
every pair of sub-trajectories tru, trv ∈ TR, if tru < trv , we
add tru, trv and (tru, trv) to V1, V2 and E, respectively. We
also calculate the affinity value (∈ [0, 1]) of the pair, which
is defined and explained in Section V, and make an weight
function W : E → [0, 1].

Finally, we obtain a weighted bipartite graph G = (V1 ∪
V2, E,W ). since |V1| = |V2| holds according to the way to
build V1 and V2, the problem is induced to find the optimal

one-to-one matching of V1 and V2 over E. This is equivalent
to finding the subset E′ of E, which maximizes the total sum
of the affinity values, as indicated in Eq. (1).

E′ = arg max
E′⊆E

Σe∈E′W (e) (1)

For this problem, we can employ the Hungarian algorithm with
O(N3) to find the optimal matching [26].

It should be noted that the number of matching candidates,
V1 and V2, can naturally be smaller if ts − te of TR is
smaller. This leads to the design of an online version of the
matching algorithm. Specifically, we keep monitoring the sub-
trajectories and updating V1 and V2, and once |V1| (= V2)
reaches a sufficient number, we can calculate the optimal
matching and continue the procedure. The choice of time
window size depends on the target applications and services.

V. SUB-TRAJECTORY AFFINITY CALCULATION

In this section, we define an affinity value for each pair
(tru, trv) of sub-trajectories. To do so, we exploit the fol-
lowing three features, (i) similarity of two human segments
(point clouds) from tru and trv , respectively, (ii) statistical
spatial feature (frequency of transitions) from the end point
of tru to the start point of trv , and (iii) statistical temporal
feature (traveling time) from the end point of tru to the start
point of trv . The corresponding probabilities (likelihoods) are
represented as P1, P2, and P3, respectively, all of which range
within [0, 1]. The affinity value, denoted as A(tr1, tr2), is a
multiplication of the above probabilities.

A(tru, trv) = P1 · P2 · P3 (2)

In Sections V-A, V-B and V-C, we explain how P1, P2 and
P3 are calculated, respectively. Besides, we will incorporate
the Bayesian system to update the likelihood distributions
of P2 and P3 as they are based on statistics, i.e., the prior
distributions. We explain the update in Section V-D.

A. Similarity of Human Segments

We define the similarity of the two segments and calculate it
to judge whether a pair of human segments (human point cloud
segments) is from the same person or not. Straightforward
adoption of any learning-based similarity scheme is generally
inadequate since the point cloud data is usually unordered and
unstructured, and the number of points in a segment differs.
Accordingly, we design Fisher Vector-based feature extraction
and deep metric learning-based similarity calculation to tackle
the problem.

1) Feature Extraction: We employ the Fisher Vector (FV)
method to extract fixed-size representations of the input human
segments. Specifically, FV computes the deviation of a 3D
point cloud from the Gaussian Mixture Model (GMM). The
intuition behind using FV for feature extraction is its ability to
capture the spatial formation of 3D points in space, yielding
discriminative signatures of human segments. This can be done
by calculating the gradients of the sample’s log-likelihood with
respect to the GMM model parameters (i.e., Gaussian weight,
mean, and covariance). The extracted feature representation



of FV has a fixed-size independent of the number of points
in a human segment. This advantage makes it easier to
process variable-size human segments using a learning-based
similarity technique.

Formally speaking, let Xi = {pt ∈ R3, t = 1, ..., T} be
the set of 3D points of a human segment i, where T denotes
the number of points in a segment that dramatically varies
depending on different factors, e.g., the LiDAR resolution and
range, the scene and the distance. Let us assume that each
point comes from one of C different groups, representing
body parts such as the head, arms, and legs, and the groups
are the Gaussian distributions in a mixture (GMM). Then
the set λ of parameters of C component GMM is defined
as λ = {(wc, µc,Σc) , c = 1, . . . C}, where wc, µc,Σc are
the weight in mixture, mean, and covariance matrix of cth

distribution, respectively. Different Gaussians are pre-defined
and positioned on 3D grids with equal weights and standard
deviations. The likelihood of a single 3D point belonging to
the cth Gaussian is:

uc(p) =
1

(2π)D/2 |Σc|1/2
exp

{
−1

2
(p− µc)′Σ−1c (p− µc)

}
(3)

The likelihood of a point belonging to the GMM density is
defined as:

uλ(p) =

C∑
c=1

wcuc(p) (4)

Given a specific GMM, and under the common independence
assumption [51], the Fisher vector, GXλ , can be written as the
sum of normalized gradient statistics, computed here for each
point pt:

GXλ =

T∑
t=1

Lλ∇λ log uλ (pt) (5)

where Lλ is the square root of the inverse Fisher Information
Matrix [51]. We change the variables, from wc to αc, ensuring
that uλ(x) is a valid distribution and simplifying the gradient
calculation:

wc =
exp (αc)∑C
j=1 exp (αj)

(6)

Therefore, the normalized gradients can be written as:

GXαc =
1
√
wc

T∑
t=1

(γt(c)− wc) (7)

GXµc =
1
√
wc

T∑
t=1

γt(c)

(
pt − µc
σc

)
(8)

GXσc =
1√
2wc

T∑
t=1

γt(c)

[
(pt − µc)

2

σ2
c

− 1

]
(9)

The Fisher vector is formed by concatenating all of these
components:

GXFVλ =
(
GXα1

, . . . ,GXαc ,G
X′

µ1
, . . . ,GX

′

µc ,G
X′

σ1
, . . . ,GX

′

σc

)
(10)
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Fig. 2. Similarity Calculation of Two Human Segments

To avoid the variation in the number of 3D points in each
segment, the resulting FV is normalized by the sample size T:

GXFVλ ←
1

T
GXFVλ (11)

Additionally, FV ensures that the extracted features are
invariant to input permutation by leveraging symmetric func-
tions. More specifically, FV calculates the summation of the
gradients, which is a symmetric function. We extend the basic
FV by computing additional symmetric functions including
minimum and maximum, as inspired by the max-pooling
in [52]. This yields a more descriptive and permutation-
invariant representation. As a result, each human segment is
mapped into a 20×54 feature matrix, where 54 is the number
of Gaussians and 20 is the number of features as:

FV Xλ =


∑T
t=1 Lλ∇λ log uλ (pt)

∣∣∣
λ=α,µ,σ

maxt

(
Lλ∇λ log uλ (pt)|λ=α,µ,σ

mint (Lλ∇λ log uλ (pt))|λ=µ,σ

 (12)

2) Similarity Calculation: In order to classify the extracted
features based on the similarity between human segments,
we use deep metric learning to learn a transformation neural
network to the embedding space. As a deep-metric learning
method, we use Triplet loss [53]. Triplet loss increases the
distance between samples of different classes and decreases it
between those of the same class. Cosine similarity is used as
the metric function for Triplet loss.

The overall flow is shown in Figure 2, where we use two
human segments (input point clouds) to compute Fisher Vec-
tors. The results are then fed into the trained neural network to
obtain the “coordinates” in the embedding space. The output
is the cosine similarity cos(x, y) of the obtained coordinates x
and y. Cosine similarity usually ranges in [−1, 1], but we want
to use it in the range of [0.1] for consistency with the other
features explained later. Therefore, P1 is defined as follows,

P1 = similarity(hi, hj) =
cos(hi, hj) + 1

2
(13)

where h1 and h2 are human segments in two sub-trajectories
of interest, respectively.



B. Spatial Feature

The spatial feature of two sub-trajectories represents how
frequently similar transitions occurred in the past. For this pur-
pose, we focus on the boundary of each LiDAR i’s trajectory
area, S2i .

Leveraging the target area map, for each LiDAR i, we may
find the parts of the boundary of S2i where pedestrians are
likely to enter and leave, which are called virtual gates. A
virtual gate may be a door, the boundary of S2i on hallways,
and so on, and for each sub-trajectory, its start point (or
end point) should belong to a virtual gate. Then we build
a transition matrix Q where each element is a transition
probability from one virtual gate to another.

Given a destination virtual gate, say g2, to which the starting
point of trv belongs, we define the spatial feature probability
P2 of sub-trajectories tru and trv as the ratio of the visit from
the virtual gate, say g1, to which the end point of tru belongs
over the sum of all the probabilities from the other gates to
g2. This is defined as follows:

P2 =
Q(g1, g2)∑
kQ(gk, g2)

(14)

C. Temporal Feature

Similarly, the temporal feature of two sub-trajectories is
defined to represent the likelihood of the traveling time from
one virtual gate to another. Let tr[ta,tb]i,u and tr

[tc,td]
j,v denote

the two sub-trajectories. The traveling time is obtained as
∆t = tc− tb if tr[ta,tb]i,u < tr

[tc,td]
j,v . Assuming prior probability

density function ptime(x), we can obtain the probability by

P3 = ptime(∆t) (15)

D. Spatial and Temporal Feature Distributions Update

Finally, we describe how to update the transition matrix
Q (spatial feature) and probability density function ptime(x)
(temporal feature). The former is done by a histogram, and
the latter is based on the Bayesian system.

These functions should be updated with high confidence
during the operation, and one good phenomenon is to believe
the case with only one pedestrian traveling from one end point
to another starting point and no other pedestrian is observed.
This phenomenon may happen in less crowded scenes (e.g.,
early morning). The transition matrix can easily be updated
by the recorded histogram of the past transitions with high
confidence. For Bayesian updating of travel time probability
distribution, the likelihood of travel time P (E|H) in such a
case with high confidence is similar to a normal distribution.
Therefore, the prior distribution is updated using a Bayesian
formula shown in Formula (16).

P (H|E) =
P (E|H) · P (H)

P (E)
(16)

Here, the prior distribution of travel time P (H) and the
posterior distribution P (H|E) created are both calculated as
inverse gamma distributions.

TABLE I
3D LIDAR SPECIFICATIONS

Livox Avia Hokuyo
YVT-35LX

Maximum number of points (point/frame) 240,000 2,664
Frame rates (frame/s) 10 10
Maximum detection distance (m) 460 35
Horizontal field of view angle (°) 70.4 210
Vertical field of view angle (°) 77.2 40
Distance precision (1σ at 20m) (cm) ± 2.0 ± 0.1
Angular precision (1σ) (°) ± 0.05 ± 2.0

TABLE II
DATASET STATISTICS

Experiment-1 Experiment-2 Experiment-3
# of observed persons 32 (max) 2,356 15,101
# of sub-trajectories 319 (max) 4,062 19,356
# of switches 287 (max) 1,706 4,255

VI. EVALUATION

In this section, we evaluate the proposed system using our
testbed. We have installed 70 LiDARs in our university’s
new campus building, covering from the 1st floor (= ground
floor) to the 6th floor. It took almost two years for design,
implementation, and installation, and we have just started
collecting human trajectory data.

A. System Specification, Environment and Dataset

The specifications of LiDARs are summarized in Table 1.
In this paper, we conducted the following experiments at

three on the campus to evaluate (i) basic performance under
intended controlled scenarios (at the mid-size indoor square
on 2F, Experiment-1), (ii) in-situ performance evaluation with
high-density, narrow FoV LiDARs (similar to RGB camera)
at the mid-size entrance hall on 1F for comparison with the
RGB camera-based method, Experiment-2), and (iii) in-situ
performance evaluation with wide FoV and relatively low-
density LiDAR in a long corridor with a lot of lecture rooms
(5F, Experiment-3). These experimental environments are
shown in Fig. 3 and 4.

Comprehensive investigations in Experiment-1 include the
accuracy variation according to congestion (number of per-
sons) (Scenario 1-(a)), performance improvements with the
proposed update method (Scenario 1-(b)), component-by-
component performance measurements (Scenario 1-(c)).

B. Data Collection

The statistics of dataset obtained is described in Table. II
In Experiment-1, we recruited 32 general subjects with

different distributions of genders and ages (20’s–50’s). Each
subject was asked to walk on a designated route among
the four turning points. The rectangle by those points is
4m × 7m as shown in Fig. 3(a), 4(a). For each subject,
we collected approximately 1000 frames of 3D point clouds.
In this experiment, the LiDAR beams are not occluded by
other subjects. This means that the sub-trajectories are clearly
obtained, and we can evaluate the pure matching performance
with complete sub-trajectories.

In Experiment-2, we observed residents and visitors of
the building at the entrance hall using 4 LiDARs (Livox
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Avia). The trajectories, eliminated space (the red rectangle)
and trajectory areas are shown in Fig. 3(b), 4(b). In total,
2,356 complete trajectories (i.e.2,356 pedestrians) were ob-
served from September 10 to September 13, 2022 (4 days).
Most importantly, the comparison with the RGB camera-based
method was conducted in Experiment-2.

In Experiment-3, similar to Experiment-2, we observed the
residents and visitors of the building on the 5th floor with one
corridor with a lot of rooms (Fig. 3(c), 4(c)). However, the
different LiDARs (Hokuyo YVT-35LX) are installed on 5F as
we need a more horizontal view (wide range). We have used
7 Hokuyo LiDARs to track pedestrians. The key signatures
of this experiment are different mobility (longer trajectories),
different LiDARs (lower point cloud density compared with
the former experiments), and the wider area.

Although almost the entire floor in each experiment is
captured by the installed LiDARs, we intentionally eliminate
the point cloud in the center area represented by the red
rectangle in Fig. 3, and evaluated our method using these
area as LiDAR-blank regions. More detailed configurations
are explained in the following subsections.

C. Experiment-1: Scenarios and Results

The recruited 32 subjects walked independently, following
the same route. Then we synthesized the point clouds of
multiple subjects to generate multiple scenarios with the
different numbers of subjects with different timings.

1) Scenarios: In Scenario 1-(a), we synthesized, we gener-
ated different numbers (2, 4, 8, 16, and 32) of subjects, where

we delayed for 10 seconds the start time of the following
subjects to make intervals between subsequent subjects. In
Scenario 1-(b), we changed the delay time (0, 5, 10, 15, and
20 seconds). This scenario mainly aims to assess the effect of
travel time distribution. That is, the shorter the delay time is,
the harder it is to distinguish travel time. In Scenario 1-(c),
to evaluate the contributions of each features (P1, P2 and P3),
the matching is performed only with one of the three features.

In all the scenarios, the matching performance is compared
before and after the spatial and temporal features (transition
matrix Q and travel time probability distribution ptime(x))
is updated. As their initial values, all the probabilities in
Q and ptime(x) are uniform (we assumed a certain range
for ptime(()x)) and the observations obtained through all the
scenarios are used to update the both.

2) Result in Scenario 1-(a): We show F-measure for each
number of subjects in Figure 5(a), where before and after the
updates of the transition matrix and travel time distribution
are shown. As the initial distribution is fully uniform (zero
knowledge), the accuracy with 32 subjects (this is an extreme
(highly-crowded) case where 32 people in 28m2 [54])) is
around 0.6, but after the update, it becomes much better. With
the normal walking speed, 4-8 subjects generate appropriate
densities. By looking at the values, the F-measure after the
update is 0.8-0.9, which is sufficiently high. Based on the
observation above, we chose the four-subject case for Scenario
1-(b).

3) Result in Scenario 1-(b): We also show F-measure for
each interval time in Fig. 5(b). With a longer interval, we
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TABLE III
CONTRIBUTIONS OF FEATURES TO ACCURACY (# SUBJECTS=4 AND

INTERVAL=10SEC.)

Feature F-measure (Post-update)
Point Cloud Feature (P1) 0.74

Spatial Feature (P2) 0.71
Temporal Feature (P3) 0.80

Combination (P1 · P2 · P3) 0.89

achieved higher accuracy till 10 sec., which is very natural. We
also see a decrease with longer intervals, and this means that
a 10-second interval was optimal for making distinguishable
features in travel time and patterns. This entirely depends on
the scenarios.

4) Result in Scenario 1-(c): We evaluated F-measure of the
cases with only one feature of P1, P2 and P3, and the result
is shown in Table III. In all the one-feature cases, F-measure
values are between 0.7 to 0.8, and with the three features, it
is 0.89, which showed the effectiveness of the combination of
the features.

5) Effect of Distributions Update: Table IV shows the
accuracy before and after updates. The updated F-measure
has improved to 0.89. The distribution of affinities for the
matched pairs is shown in Fig. 6. Before the update, negative
pairs exist in a wide range, converging to lower affinity cases
after the update. The distribution of affinities for the pairs
with high confidence is shown in Fig. 7(a). We can clearly see
high affinities have few negative pairs. Finally, Fig. 7(b) shows
how the distribution is updated in traveling from the right top
corner to the left top corner in Fig. 3(a). The prior distribution
is an orange curve with high variance and the likelihood is the
purple curve with the distribution calculated from the travel
with high confidence. The posterior distribution is the blue
curve, which is the result of the Bayesian update.

6) Deep Metric Learning Performance: We investigated the
basic performance of deep metric learning over 32 subjects.
We trained the model on 90% of the randomly selected data
and tested it on the remaining 10%. The average cosine
similarity value of two human segments contained in the test
data was calculated, and the result is shown as the matrix in
Fig. 8(a) where red cells mean higher similarity values. We can
see red cells are seen along the diagonal line from top-left to
bottom-right (this means similarity tread is correct), but there
are also red cells in different cells. To quantify the result, the

TABLE IV
ACCURACY (PRE- AND POST-UPDATES) (# SUBJECTS=4 AND

INTERVAL=10SEC.)

Precision Recall F-measure
Pre-update 0.85 0.84 0.84
Post-update 0.89 0.88 0.89
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Fig. 6. Affinity Distribution

means and standard deviations of the similarity between the
same and different persons on the diagonal are shown in Table
V. From the result, we can clearly see the larger deviation with
different subjects. The ROC curve is also shown in Fig. 8(b)
where AUC (Area Under the Curve) was 0.71. Generally, AUC
above 0.7 means pretty high accuracy.

D. Experiment-2: Comparison with RGB Camera

In Experiment-2, which involved four days of tracking
pedestrians in in-situ environment, the accuracy with the
proposed method was fairly high (F-measure=0.98) due to
fewer crowds as shown in Table. II.

We compared our method with a well-known person re-
identification system using RGB cameras [55], using this
dataset since the tracking situation in Experiment-2 is similar
to when using distributed RGB cameras. LiDARs on the 1st
floor are installed in the same position and orientation as
the surveillance camera, taking into account the design of
the building. Also, the installed LiDAR (Livox Avia) has a
relatively similar FoV as the camera. Since it is not possible to
implement the same system, we have used the re-id function
in [55], which is much more accurate, instead of our point
cloud-based re-identification. On the other hand, if we use the
camera system, it is usually possible to obtain the transition
pattern as the tracking in a single camera is less accurate than
single LiDAR-based tracking. Consequently, our method can
leverage point cloud features (P1), transition (P2) and travel
time (P3), while the camera-based method can use color-based
features (P+

1 ) and travel time (P3). The result is shown in
Table VI. The proposed method achieved sufficient accuracy
with the help of reasonable P1 and original P2, while RGB can
achieve higher with the power of image-based features. Our
method achieved a very good trade-off between privacy and
accuracy compared with the well-known camera-based re-id
method.

E. Experiment-3: Long Corridor

In Experiment-3, we used Hokuyo LiDARs, which gen-
erates 3D point clouds with fewer densities. Therefore, our
proposed FV-based re-id is not adequate. Instead, we have
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used a simpler feature as an alternate of P1, i.e., the heights
of pedestrians. As shown in Fig. 3(c), 4(c), 7 Hokuyo LiDARs
are installed. Since the scan areas of neighboring LiDARs are
overlapped, similarly with Experiments-1/-2, we eliminated
some areas (the three areas by blue rectangles) for this
experiment.

We have collected the data from 11 am, Jan. 20th, 2022 till
1 pm, Jan. 24th, 2022. The total number of trajectories was
15,101, and break down is, Jan 20th (Thu.): 3,691, Jan 21st
(Fri.): 3,901, Jan 22nd (Sat.): 437, Jan 23rd (Sun.): 5,864, and
Jan 24th (Mon.):1,208.

We have measured the matching accuracy with hourly
updates of distributions. The change of F-measure is shown in
Fig. VI-E. The accuracy on the 3rd day (i.e., estimated with
the previous two days’ distributions) was high, and that in the
4th day (i.e.,, estimated with unusual trajectories on Saturday)
decreased. Except for those cases, the accuracy increased with
updated distributions; on the 5th day, it was 0.80.

VII. CONCLUSION

This paper proposed a privacy-preserving pedestrian track-
ing system using multiple distributed LiDARs of non-
overlapping views. We deployed the system in a large-scale
testbed with 70 colorless LiDARs and conducted three dif-
ferent experiments. The evaluation result on 32 participants
confirms the system’s ability to accurately track the pedestrians
with a 0.98 F-measure even with zero-covered areas.
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