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Abstract— Body weight, as an essential physiological trait,
is of considerable significance in many applications like body
management, rehabilitation, and drug dosing for patient-specific
treatments. Previous works on the body weight estimation task
are mainly vision-based, using 2D/3D, depth, or infrared images,
facing problems in illumination, occlusions, and especially pri-
vacy issues. The pressure mapping mattress is a non-invasive and
privacy-preserving tool to obtain the pressure distribution image
over the bed surface, which strongly correlates with the body
weight of the lying person. To extract the body weight from this
image, we propose a deep learning-based model, including a dual-
branch network to extract the deep features and pose features
respectively. A contrastive learning module is also combined to
the deep-feature branch to help mine the mutual factors across
different postures of every single subject. The two groups of
features are then concatenated for the body weight regression
task. To test the model’s performance over different hardware
and posture settings, we create a pressure image dataset of 10
subjects and 23 postures, using a self-made pressure-sensing
bedsheet. This dataset, which is made public together with this
paper, together with a public dataset, are used for the validation.
The results show that our model outperforms the state-of-the-art
algorithms over both 2 datasets. Our research constitutes an
important step toward fully automatic weight estimation in both
clinical and at-home practice. Our dataset is available for re-
search purposes at: https://github.com/USTCWzy/MassEstimation.

Index Terms—Pressure image, body weight estimation, con-
trastive learning

I. INTRODUCTION

Body weight, one of the most essential physiological traits,
is of considerable significance in many applications like body
management [4], rehabilitation [2], nutrition management [1],
and drug dosing [3] for patient-specific treatments. Consider-
ing the close relationship between human body weight and
physiological status, long-term and routine weight records
shall be important for not only personal health management
and medical care, but also for potential medical knowledge.

Traditional methods like spring scales, weight measuring
beds, anthropometric approximation, or direct observation
have their shortcomings like limited subject selection (not
suitable for disabled persons), cost, or inaccuracy. Vision-
based methods developed quickly in recent years and have
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been applied to estimate BMI. They however face privacy
issues, especially in hospitals.

Our work is motivated by the fact that the body weight is
always ”printed” on the surface the human contact. Especially,
the bed would be a good choice because everyone lies on it
every day and during the 8-hours sleep, the whole body weight
is on the bed. A pressure sensing matrix, built into a bedsheet
or mattress, could be a non-invasive and privacy-preserving
tool to collect such ”pressure images” (Typical pressure images
can be found in Fig. 1). Such film-based or textile-based
pressure mapping tools have already been developed and
applications like pose estimation [5], 3D shape estimation [26],
exercise quality evaluation [6] have been explored. Compared
to traditional commercial or clinical devices, a pressure-
sensing mattress can be deployed to existing environments
non-intrusively and provide a sensitive but stable approach
to monitor and analyze users’ long-term behavior informa-
tion (e.g. postures and activities), biomedical factors (e.g. body
shape) and physical conditions (e.g. skin conditions and sleep
quality) without disrupting their daily life. Extracting accurate
body weights from collected pressure images will effectively
serve users’ nutrition management and disease prevention.

While data acquisition technologies for acquiring pressure
images are there already, to the best of my knowledge, there
is yet no specially-developed algorithm for extracting body
weight from the pressure images. Although directly summing
up the weight distribution seems a solution, it performs poorly
in reality (we will show this in Section V-C), due to the non-
ideal sensor characteristics such as hysteresis, non-consistency
among sensors, and sensor deformation during long-term
usage. The closest work is Body Mass Index (BMI) extraction
from pressure images [24]. However, body weight gives a more
intuitive perspective on medical services. Converting BMI to
body weight requires the subject to hold a certain posture (usu-
ally straightening) to estimate the height, performing poorly
for the elderly and the disabled. The body weight is also of a
broader distribution (from 3 kg for the newborns to > 100kg
for the adults) than the BMI (from 18.5 to 24.9 kg/m2), all
for healthy people. The state-of-the-art deep learning-based
feature extractors don’t take pressure images’ attributes into
account and often need a large dataset for training, which is
another bottleneck for pressure images. Their performance in
the body weight extraction task is still unknown and doubtful.

To extract body weight from pressure images requires thus
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the answers to the following three questions:

1) How to customize the neural network, taking into con-
sideration the nature of pressure images?

2) Are the methods valid on different pressure image
datasets, corresponding to different hardware and/or
posture settings?

3) What is the best accuracy of the extracted weight, using
all feasible methods (viz. the proposed network, the
feature-based regression, and pre-trained classic neural
networks) and under different model settings?

For the above purpose, we propose a dual-branch deep
learning-based model to extract the body weight from a single
pressure image. Specifically, the model comprises a deep
feature extractor as the main branch and a multiple-layer
perception (MLP) as the auxiliary joint branch to extract
the deep features and joint features, respectively. A refined
supervised contrastive loss is exerted on these deep features
to learn the distributions of multiple posture images and
explore the posture-invariant and mass-related features after
projecting the features into high-level latent space. Finally,
both features are concatenated in the data fusion module to
estimate the body weight. We validate the proposed model
on two datasets, namely: SLP dataset [28] using a Tekscan
film pressure mat and a self-created dataset created using a
self-developed pressure mapping bedsheet.

The contributions can be summarized as follow:

1) We developed a dual-branch deep learning-based model
proposed for estimating human body weight from a
single pressure image. A refined supervised contrastive
loss is used to extract the mutual high-level features
across different postures of every single subject. To the
best of our knowledge, our work is the first attempt to
extract body weight directly from pressure images and
also the first work using contrastive learning techniques
to help estimate human biomedical factors.

2) We validate our model on two datasets, that differ from
each other in the sensor matrix and posture settings.
This includes a self-created dataset using a pure-textile
sensing matrix, containing 10 subjects (7M, 3F), 23
postures, and a total of 918 pressure images. The dataset
is made public, well annotated, and can be used also for
classification, joint estimation, and other tasks.

3) Our model outperforms the state-of-the-art models on
both datasets, with a minimal 4.59kg prediction error
on the SLP dataset and 1.5kg on our collected dataset.

The rest of the paper is organized as follows. Section II
introduces the related works. Section III introduces the sensing
matrices and the datasets. Section IV describes the details of
our proposed network, and Section V presents our model’s
performances on three datasets, compared with the results from
featured-based regression and other pre-trained classic neural
networks, followed by the detailed analyses with ablation
studies. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Body Weight Estimation

The most traditional way to measure the body weight,
viz. using a scale, is of low cost and accurate. However, it
requires the subject to stand onto the scale, unfriendly to
those who have difficulties in moving. Experienced physicians
can estimate the body weight just by observing the body
shape, which is a quick and cost-free method, however, has
been proven inaccurate [23]. Anthropometric approximation
obtains the body weight by measuring specific parameters like
body height, and waist and hip circumference then deducing
the body weight with a linear regression model. It is an
accurate method [16] but requires time to measure and is also
unfriendly to patients that can not move.

Vision-based machine learning approaches provide a fully-
automatic and contactless way to monitor human body weight
or BMI. A commonly used pipeline for vision-based weight
estimation approaches includes human segmentation from the
background, feature extraction, and weight regression. Wen
et al. [21] firstly estimated BMI with facial images. Nguyen
et al. [17] used RGB-D images to predict body weights by
training SVR with biomedical traits and extracted sideview
shape features. Jiang et al. [13] proposed a body weight
analysis framework to estimate the BMI value from a single
image. They employed a body contour and skeleton joints
detection module to obtain the human silhouette and calculate
its BMI with 5 curated anthropometric features. Huang et
al. [12] expanded another two anthropometric features and
proposed a 4-branch network for the BMI estimation task
by extracting 3D, deep, statistics, and anthropometric features
from a single image, respectively. Attention is also applied
for BMI estimation after removing irrelevant background
in [14]. However, all these works require human bodies
or faces facing the camera, which is unrealistic in many
situations. In that case, Altinigne et al. [7] proposed a multi-
task U-Net-based network to predict human attributes. This
method allows arbitrary poses but performs poorly, with a
9.8kg mean absolute loss. Other researchers also focus on
the possible occlusion issue. Alexander et al. [8] studied the
weight estimation of covered patients. They implemented a
3D U-Net to construct the 3D points clouds of the subject
under blankets, and then a 3D CNN was applied for the
weight regression. In summary, vision-based weight estimation
methods have proven efficient with 2D/3D body and facial
images. However, camera angles and occlusions will seriously
affect their performances. Besides, illumination and privacy
issues also restrict their application environment.

To sum up, purchasing or updating equipment (e.g. bed
scales) is one of the most precise weight acquisition methods
but needs users to weigh actively or passively, facing financial
and physical pressure and disturbance to daily life. Estimating
weight from anthropometric information is convenient but
leads to errors and is impossible for long-term monitoring.
Vision-based approaches provide fully-automatic workflows
but are confined by user postures, dressing, illumination, and



privacy issue. Pressure mattress has a strong potential in
human biomedical traits extraction, but little attention has been
paid to this area. We found only few previous works focusing
on body weight estimation with pressure images including [24]
with limited and onefold features for BMI calculation and [39]
with 128 sensing units and only 60 samples. Furthermore, a
customized and pressure images nature-based neural network
architecture is still missing. Thus, we propose the MassNet, a
dual-branch network to utilize the pressure image information
and joint features to predict accurate body weights.

B. Contrastive Learning

Contrastive learning is a self-supervised learning approach
using triple loss [20], contrastive loss [10], or InfoNCE
loss [18] to project features extracted into a latent space, in
which positive pairs are close to each other, whereas nega-
tive samples are far apart. Contrastive learning has achieved
noticeable performance in many downstream tasks such as
human activity recognition and biosignal process [11], [25].
For example, DELDARI et al. [9] proposed a cross-modality
contrastive learning (COCOA) framework by calculating the
cross-correlation between latent encodings of different modal-
ities of an individual sample and maximizing inter-modality
agreements. Shen et al. [19] assume that the neural activities
of the subjects are in a similar state when they receive the
same segment of emotional stimuli and use the InfoNCE loss
to solve the inter-subject variability of emotion-related EEG
signals issue. Zhang et al. [22] use an auxiliary contrastive
loss that digests the object-related embeddings to improve their
model’s generalization ability to unseen subjects. Inspired by
their work, we integrated contrastive loss into our network
to support extracting the pose-irrelevant and subject-specific
features related to the weight estimation task.

III. DATA DESCRIPTION

Before moving to the algorithm design, we first introduce
here the datasets and the sensing mat, which serve as the
foundation of the algorithm.

A. The Sensing Principle

Pressure distribution over a surface can be converted into
a pressure image with a pressure-sensitive mat. Such mat
is normally composed of hundreds or thousands of pressure
sensors, organized in a matrix format. A typical resistive
pressure mat is made of 3 layers: The upper and lower layers
contain multiple parallel conductive paths, put to 90 degrees
and separated by a middle resistance layer, whose resistance
changes under the physical stimulus. Each crosspoint of two
conductive paths constitutes a sensing unit, whose resistance
represents the local pressure. The matrix is driven by IOs
with specific voltage protocols on one side and the voltages
are read out on the other side, corresponding to the sensing
units’ resistance. The detailed driving architectures and the
resistance-voltage mapping scheme can be found in [37], [38]

When such a matrix is made into a bedsheet or mattress,
the pressure ”image” of the lying person can be obtained,

(a) SLP (b) Ours (c) HRL-ROS

Fig. 1. Example pressure images of the supine pose from 2 public datasets
and the self-created dataset

where the value of each sensing unit is defined as a ”pixel”.
Fig. 1 demonstrates the supine pose from 3 datasets. It can
be seen that although the human shape and the posture can
be easily recognized from all the 3 images, they differ from
each other in both the spatial pressure distribution and the data
dynamic range. For example, in Fig. 1(a), the highest pressure
is on the head and heals, and in Fig. 1(b) demonstrates a high
pressure also on the shoulder and the sacrococcygeal regions.
In Fig. 1(c) the whole back and buttocks region are completely
over-saturated. Fig. 1(a) owns the highest spatial resolution
but the pressure distribution’s spatial continuity is not assured.
These differences are a combined result from the sensor mat
characteristics (including both the sensing material and the
driving circuit), the environment (whether there are other
layers of hard or soft, thick or thin sheets or mattresses above
or below the sensing mat), and the test subject (postures and
weights). Noise might also appear due to the deformation of
the sensor mat (fold or other deformations randomly appearing
during usage). All these non-ideal phenomena in the data
create challenges in the weight estimation task.

B. Datasets

To train and evaluate the effectiveness of the proposed
body weight estimation network, we need a dataset. As an
emerging field, only few pressure image datasets are made
public. Luckily, the majority of these have focused on ly-
ing postures. They are: PMat dataset (2017) [29], HRL-
ROS (2018) [27], SLP dataset (2020) [28], and BodyPressure
Synthetic dataset (2020) [26].

For this study, we discard the PMat dataset for its large
number of duplicate data frames and HRL-ROS dataset for
duplicate frames and over-saturation phenomenon. We also put
the BodyPressure synthetic dataset [26] aside. Actually, we
have started with this dataset because it is a synthetic dataset
and contains the largest number of frames. But the networks
trained on this dataset perform badly on all the other datasets.
We later also discovered the networks trained on one dataset
perform on general badly on other datasets. We believe this is
mainly caused by the different sensor and environment settings
in different datasets. As the BodyPressure synthetic dataset is
a simulated dataset, whose sensor characteristics might match



(a) Experiment setup (b) The pressure sensitive fabric

(c) A subject in the supine pose (d) pressure image

Fig. 2. Experiment setup and a representing pressure image of our datasets

TABLE I
DATASETS OVERVIEW

Dataset weight range
(kg)

No. of
frames

No. of
pixels

type

SLP 44.55-105.1 4590 192 × 84 film
MassNet (static) 38.9-80.8 918 56 × 40 fabric

MassNet (dynamic) 38.9-80.8 368313 56 × 40 fabric

no real sensor matrix, and we are not considering domain
adaptation in this paper, we discard this dataset.

Thus only one public dataset (SLP) is used, where the
sensing mat is a film mat, which might be uncomfortable
for long-term monitoring due to its airtightness. To further
enhance the richness of the dataset, we created a dataset using
the textile pressure mat made in our lab. These datasets are
described below. Table I provides the overview of all datasets.

SLP Dataset: It includes two environment settings (the
laboratory setting and simulated hospital setting) with four
modalities, specifically, RGB, Long Wavelength Infra-Red,
depth, and pressure images (collected using a Tekscan
BRE5315-8 commercial film Body Pressure Measurement
System (BPMS), sensing area 1.95× 0.85cm2, with 192× 84
sensing units, viz. a pitch of 1cm× 1cm). Only the pressure
images in the laboratory environment are used in this paper for
adequate participants. 102 subjects (74 males and 28 females,
height: 1.48-1.84m, weight: 44.55-105.1kg) participated in the
experiment of lying on the mattress naturally in 45 different
poses. The dataset contains 4590 images for every modality.

All images are carefully calibrated with 2D keypoint annota-
tions, body weight, height, and other physiological factors.

MassNet Dataset (ours): We also created an own bedsheet
with a full-textile sensor matrix developed by our lab, which
is specially designed for long-term usage (e.g. using stainless
steel blended yarn instead of silver coated fiber for washability,
double-layered jacquard knitting structure for stretchability
and twistability). The experiment setup is shown in Fig. 2(a),
including a hospital bed, an Azure Kinect RGBD Camera, and
the pressure mapping bedsheet (1.96× 0.96m2, with 56× 40
sensing units and a pitch of 3.1cm × 2.4cm. Ten subjects
took part in the experiment (height: 1.52-1.73m, weight: 38.9-
80.8kg, age: 22-27), performed 23 different poses randomly
for 4 rounds to collect the static pose dataset and repeated 14
continuous poses 10 times to collect the dynamic dataset. All
poses specified are under three main categories of supine, left
or right side, and prone. The whole dataset contains 918 static
pose pressure images and 368313 dynamic pressure images.
The study was approved by the institutional review board
(IRB) of USTC.

IV. MASSNET: THE MODEL STRUCTURE

To fully integrate the nature of pressure images into the
network structure, we design a dual-branch deep neural net-
work to infer the body weights, which mainly includes 1) a
feature extraction module containing stacked 3-way parallel
convolution layers with different kernel sizes to understand
the pressure distribution mode in different perceptual scales,
2) a contrastive constraints module to digest the posture-
invariant and weight-related features, 3) a joint feature ex-
traction branch to supply auxiliary posture information and 4)
a feature mapping module to concatenate features and regress
the predictions. The model structure is presented in Fig. 3, and
the component details of the proposed are justified below.

A. Deep Feature Extraction

The deep body weight feature extraction module has a
multi-stage design by stacking multiple sensing layers, which
consists of 2 sensing blocks and a Convolutional Block
Attention Module (CBAM) [32] behind them to emphasize
meaningful features along the channel and spatial axes. The
sensing block uses a bottleneck architecture like ResNet [30],
which comprises two 1×1 convolutional layers to reduce the
parameters and one layer to extract features. Besides, consider-
ing that the data collected from the mattress are all centimeter-
scale pressure distribution images, the local pressure values
are not only correlated with their surroundings (e.g., thicker
limbs usually lead to larger contact areas and higher peaks)
but also with the global pressure distribution (e.g., the pressure
distribution is affected by weight, height, postures, limb length,
body proportion). Therefore, multi-scale perceptual fields are
needed to grasp better the connection between the local and
global pressure distribution. Inspired by the design principles
from Inception V1 [31], we use a 3-way parallel convolu-
tion layer with kernel sizes 1×1, 3×3, and 5×5 instead of
the commonly used single way 3×3 convolutional layers,



(a) The architecture of MassNet

(b) The architecture of sensing layers
Fig. 3. The structure of our proposed model MassNet

to give the network a wider reception field to learn the
pressure distribution mode. Each 3-way convolution layer in
the sensing block is followed by a batch normalization layer
(ReLU Layers are not applied for the conclusions raised by
MobilenetV2 [33]). Shortcut connections are also applied to
speed up convergence in the sensing blocks and layers.

Besides the stacked sensing layers, the deep feature ex-
traction module also has two Conv-BatchNorm-LeakyReLu
structures in the front of the module to extract low-level
feature maps from the original pressure images and a 3-way
convolution layer with an Average Pooling layer after the
sensing layers to generate the feature vectors for following
feature map and contrastive constraints module.

B. Contrastive Constraints Module

Body weight is an essential physiological fator and normally
remains nearly constant for a short time. Therefore, an intu-
ition here is that under the weight prediction task, the feature
vectors extracted from the pressure images of the same subject
should be close in the embedded high-level space. Inspired
by the SupCon [15], we introduce the supervised contrastive
loss as an auxiliary loss to help form a high-cohesion and
low-coupling embedding space. The deep features produced
by the main branch from the same subject in a minibatch are
considered as the positive pairs and meanwhile features from
different subjects as the negative pairs, encouraging the net-
work to learn the posture-invariant attributes. Within a multi-
viewed batch, let N be the batch size and i ∈ I ≡ {1...2N}

be the index of a random augmented sample. We can then
define the auxiliary contrastive loss as follows:

Lcon =
∑
i∈I

−1
|P (i)|

{
∑

p∈P (i)

log
exp(mi ·mp/τ)∑

a∈A(i) exp(mi ·ma/τ)
}

(1)
where mi is the embedding of sample i, τ ∈ R+ is a scalar

temperature factor, P (i) is the set of indices of all positive
pairs in the multi-viewed batch distinct from i, |P (i)| is its
cardinality, and A(i) ≡ I \ {i} is the indices set without the
anchor i.

Although the auxiliary contrastive loss could effectively
help learn the common attributes between various posture
images from the same subject, it does not work well in
improving prediction precision. The reason behind might be
that we should focus on the subject’s body weight instead of
the identity. Features from two subjects with closer weights
should also be adjacent in the high-dimension embedded
space. While the embedded features of two subjects whose
body weights are far from each other should also be far
apart. We noticed that the supervised contrastive loss ignores
the inter-class connections between different subjects. Thus a
penalty factor δ is introduced when calculating the similarities
between two features to represent the association between
different subjects’ physiological information. Two conditions
should be met in designing this penalty factor: 1) It should
reflect the body weight gap between two subjects, increase
and decrease according to the body weight difference. 2) It



should be 1 when two samples are from the same subject. We
thus define the penalty factor δij as:

δij = exp|Mi−Mj |/Mi (2)

Here, i, j ∈ I and Mi means the label (body weight) of the
sample i. The contrastive loss then becomes:

Lcon =
∑
i∈I

−1
|P (i)|

{
∑

p∈P (i)

log
exp(δip ·mi ·mp/τ)∑

a∈A(i) exp(δia ·mi ·ma/τ)
}

(3)
Projecting feature vectors into a latent space before applying

the contrastive loss has been widely adopted, whose efficacy
has been proved in SimCLR [35]. We adopt this approach and
use a 2-layer MLP as the projection head in the contrastive
constraints module, enabling us to measure the distances in
the projection space.

C. Joint Feature Extraction

The pressure image changes with the human posture. Differ-
ent postures may lead to different contact modes and pressure
distribution patterns. Though the contrastive learning module
could help digest the posture-invariant features, constraints
from the sample size and posture diversities restrict its learning
potential. To compensate for the limitation and improve the
generalizability for unseen subjects, we utilize the joint po-
sitions to supplement the posture information. To rephrase it,
assuming that postures can help provide a unique perspective
for body weight prediction tasks, we design the joint feature
extraction module as an auxiliary branch, which uses a 3-layer
multilayer perceptron (MLP) to encode the 2D joint position
matrix on a pressure image into a 128-d feature vector to
capture the posture information. Experiments in Section V-D2
verify that the collaboration between posture-invariant features
and joint features enhances the performance effectively.

Currently, the 2D/3D keypoint annotations of pressure im-
ages mainly rely on their corresponding RGB images and the
classical RGB-based pose estimation models (e.g. OpenPose):
RGB images as input, and the output joint locations are
projected into the pressure map coordinates. Nevertheless, in
many scenarios, privacy policy and adverse vision conditions
like occlusions will block the acquisition of RGB images
and hinder the pose estimation model’s precisions. On that
account, to improve the generalization of our method in
different circumstances, we also try to directly obtain the join
positions from the pressure image, using the HRNet [34],
which is a state-of-the-art model in the field of human pose
estimation and has shown superior performance in the pose
estimation task for pressure images in [28]. In Section V-D5
we demonstrate that this module will allow our model to fit
in more complicated scenarios with little precision loss.

To sum up, the whole pipeline of this branch is to take the
pressure images as input, generate the joint locations with the
HRnet, then extract the joint features with a 3-layer MLP for
the follow-up prediction module.

D. Feature Mapping

Body weight estimation can be defined as a regression
problem that maps the features extracted to the body weight.
In this work, We apply a 1-layer fully-connected layer to
train the regression function. The deep feature vector and the
joint feature vector are concatenated as the input and Mean
Absolute Error (MAE) loss is used as the loss function, noted
as LMAE , to measure the L1 distance between predictions and
the physical measured ground truth for back propagation.

E. Overall Loss

The overall loss is then a weighted sum of body weight
prediction MAE loss LMAE and the auxiliary contrastive loss
Lcon with a weight parameter λ:

Lall = LMAE + λLcon (4)

V. EXPERIMENTS AND RESULTS

Below we list the implementation details of our validation
experiment and present the results to demonstrate the effective-
ness of our proposed methods. We also report various ablation
studies to shed light on the effects of various design decisions.

A. Training details

We split the dataset based on its size and nature. The
SLP dataset consists of 102 subjects and 4590 static posture
pressure images, providing sufficient samples for training,
evaluation, and testing on unseen subjects. Thus we divide
the dataset into ten bins by weight range and randomly
select two subjects from each bin for the evaluation and test
dataset. Finally, the sample ratio of training, evaluating, and
testing sets is 84:10:8. For our static posture dataset containing
10 subjects, we adopted two splitting strategies with 5-fold
cross-validation, namely the random split and the Leave-One-
Subject-Out (LOSO) strategy, abbreviated as Ours(Random)
and Ours(LOSO), respectively.

Previous work [36] shows that image upsampling using
bilinear interpolation provides better representation. We thus
upsample every pressure image from our dataset by 3 and then
smooth it with a 5 × 5 Gaussian filter. Eventually, we pad all
images with zeros (zero-padding) until the final image size is
192× 192, the same as in the SLP dataset.

The experiments are all implemented in the PyTorch frame-
work, and run on a Linux server with four NVIDIA RTX3090
GPUs. We choose the Adam optimizer and set the initial
learning rate 3 × 10−4 for the SLP dataset, 5 × 10−4 for
Ours (LOSO), and 2×10−4 for Ours (Random) datasets, with
a decay rate of 0.25 after every 5 epochs. The warm-up trick
is also implemented to accelerate the training procedure. The
batch size is 16 for all three datasets. The weight parameter λ
is set to 0.25. Data augmentation including flip, rotation, and
shift is used for model training.



TABLE II
MASSNET’S PERFORMANCE COMPARED WITH THOSE OF THE STATE-OF-THE-ART METHODS

Method Parameters
SLP Ours (LOSO) Ours (Random)

MAE (kg) MAPE (%) MAE(kg) MAPE (%) MAE (kg) MAPE (%)
Linear fitting 2 10.45± 7.00 16.07± 10.91 11.13± 5.85 19.70± 9.91 9.13± 5.51 15.90± 9.29

Davoodnia et al. [24] 0.17M 14.10± 8.97 20.29± 12.49 12.46± 8.51 22.90± 16.59 10.66± 7.67 19.53± 14.80

ResNet18 11.17M 5.42± 3.64 8.12± 5.24 8.46± 6.40 15.56± 13.09 1.97± 2.28 3.46± 3.94

MobileNetV2 2.22M 6.36± 5.08 9.53± 7.42 8.32± 5.77 15.01± 10.63 2.40± 2.56 4.09± 4.22

MassNet 1.80M-3.47M 4.59 ± 3.81 6.59 ± 5.06 4.86 ± 3.82 8.48 ± 6.31 1.50 ± 1.34 2.67 ± 2.45

TABLE III
MASSNET’S PERFORMANCE WITH DIFFERENT NUMBERS OF BRANCHES

Branch
SLP Ours (LOSO) Ours (Random)

MAE (kg) MAPE (%) MAE (kg) MAPE (%) MAE (kg) MAPE (%)
Joint Branch (JT) only 14.83± 10.33 19.64± 11.85 10.40± 7.80 18.49± 13.64 2.41± 2.61 4.10± 4.27

Mass branch (Mass) only 5.42± 4.44 7.72± 5.49 5.03± 3.89 8.79± 6.48 1.32 ± 1.34 2.34 ± 2.44

JT+Mass 4.59 ± 3.81 6.59 ± 5.06 4.86 ± 3.82 8.48 ± 6.31 1.50± 1.34 2.67± 2.45

B. Evaluation Methodology

We compare our model with the following four baselines:
(1) Linear Fitting: Shall the pressure and sensor output have
a deterministic and linear correlation, and the overall pressure
exerted on the bedsheet be equal to the product of body weight
and gravity, a liner fitting would perfectly deduce weight from
the pressure image. We thus use the linear fitting to construct
the relationship between the value sum of each frame and its
label in the training set, then make predictions in the testing
set. (2) Feature Extraction: we extract the features proposed
by [24] and train datasets with the same DNN network. (3)
ResNet [30]: one of the most famed vision-based networks
that has shown excellence in many downstream tasks and
also proved productively on RGB-based weight estimation task
in [40]. We choose RestNet18 finally owing to our data size.
(4) MobileNetV2 [33]: a noted lightweight network that holds
high performance with less consumption. We adopt it for its
recognized capabilities and close number of parameters.

To compare the performance of the proposed method with
other baselines, two metrics are adopted: the mean absolute
error (MAE) and the mean absolute percentage error (MAPE).

C. Results

Table I exhibits the quantitative comparison of accuracy
and model complexity on different datasets. All results are
represented as mean± std.

Our proposed method (MassNet) achieves minimal errors
compared to all other baseline algorithms and reaches only
1.5kg MAE loss on Ours (Random), showing marked weight
prediction capacities. Meanwhile, MassNet outperforms the
state-of-the-art methods on SLP and Ours (LOSO) by a signif-
icant 15.31% and 42.55% decrease in MAE loss, respectively.
ResNet18 also performs well on the SLP dataset, showing
strong interpretability abilities with 11.17 million parameters,
and thus overfits and works under-performingly on small
datasets such as ours (LOSO) dataset. Moreover, all three
deep neural networks perform superiorly on Ours (Random),
with less than 2.5kg prediction errors and 5% relative er-

rors. Considering the sensor mat’s non-ideal characteristics
aforementioned in Section III-A and their limited spatial
resolutions, this result can be regarded as a surprise.

Also because of the non-ideal characteristics, the Linear
Fitting method shows limited prediction precision on both the
SLP and our datasets, just as expected. The method in [24]
also failed to precisely predict, probably because the onefold
14 statistical features are not enough to describe the correlation
between pressure distribution and body weights.

D. Ablation Study

To evaluate the effectiveness of MassNet’s individual com-
ponents, ablation studies are conducted.

1) Contributions of the two branches: To gain insight into
the roles of the two branches in MassNet with refined con-
trastive loss, we have conducted various ablation experiments
to analyze each branch’s performance on all datasets. All these
experiments were conducted on the same training and testing
sets. The results are shown in Table III. Despite joint positions
reflecting human pose information, the single joint branch
performs poorly on three environment setups. Deep features
extracted by the Mass branch bring nearly 50% promotion
compared to the single joint branch and reach the best result
on Ours (random), with only 1.32kg MAE loss. Furthermore,
MassNet with dual branches supplies incremental precision
improvement compared to the single branches, with the MAE
loss decreasing by 15.31% on the SLP dataset and 3.38%
on Ours (LOSO). However, the prediction results with dual-
branch architecture are worse than the single body weight
branch on Ours (Random). In future works, more care shall
be given to how to utilize the joint vectors.

2) Contributions of refined contrastive loss: We test Mass-
Net with and without contrastive loss (abbreviated as ConL),
which is a significant component of this study to learn the
posture-invariant representations. The supervised contrastive
loss [15] (abbr. SupCon) is also implemented as a comparison
parameter to evaluate our refined contrastive loss(abbr. Mass-
Con). The experiment is conducted only on the SLP dataset
because it contains the most subjects (102), providing enough
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training samples for contrastive learning. Fig. 4 shows that
MassCon archives the best performance both in the single-
branch and double-branch MassNet architectures by reducing
the overall MAE by 0.07kg and 0.52kg compared to the
network without ConL, while SupCon only brings 0.01kg and
0.28kg prediction errors decreases. This result demonstrates
that the auxiliary contrastive loss successfully helps extract
the subject-variant deep attributes, and the penalty factor in
MassCon guides the network to digest the weight-related
attributes. Moreover, the result demonstrates the bottleneck
that the contrastive module faces due to data size and posture
diversity and proves that the auxiliary posture information can
support the final regression module to interpret the posture-
invariant features and improve the prediction accuracy. We
plan to continue investigating this association in future works.

3) Contributions of sensing layers: Deeper networks bring
stronger inference and reasoning abilities, but more training
samples and resources are required. Hence, we conduct a scan
to find out the suitable number for the stacked sensing layers.
Fig. 5 presents the prediction errors of our MassNet with the
number of sensing layers increasing from 0 to 12. The MAE
drops rapidly at the outset and then levels off and rises due
to overfitting with the sensing layers up to 10 for both the
SLP dataset and Ours. Thus, to balance the precision and
consumption, stacked layer numbers are carefully picked for
each dataset and are set to 4 for SLP, 8 for Ours (LOSO), and
6 for Ours (random) as the optimal parameters.

4) Performance on different postures: Different postures
might assert different difficulties for weight predictions. We
discuss their influence below. Fig. 6(a) shows the three deep
network performances on three posture types in the SLP
dataset. Intuitively, models shall perform the best on the
pressure images of supine postures because the body contour
and pressure features could be fully displayed. The results
however suggest the exact opposite. The reason behind might
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(a) Supine I (b) Supine II (c) Supine III
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Fig. 7. MassNet predictions on a subject from SLP (48kg as Ground Truth)

be that the hand positions and body huddles confuse the
network, as demonstrated in Fig. 7. Putting the hands on
the chest decreases the contact area, resulting in a small
prediction, while body huddles may mislead the network in
a fatter body shape, resulting in a higher weight prediction.
Thus, we instructed subjects’ movements to avoid curled-up
or uncomfortable positions during our data collection, and
pressure images of supine positions achieve as expected the



TABLE IV
PERFORMANCE WITH ACCURATE OR COMPUTED JOINT POSITIONS

SLP Ours (LOSO) Ours (Random)

Joint Prediction Error(L1 Loss) 7.45 7.72 5.25

MAE: without joints (kg) 5.42 5.03 1.32

MAE: joints from HRNet (kg) 5.06 4.90 1.49

MAE: joints from ground truth (kg) 4.59 4.86 1.50

Performance loss −0.47 −0.04 −0.01

minimal MAE compared to the other postures (Fig. 6(b)).
5) The joint positions’ information source: As mentioned

in Section IV-C, pressure images’ precise 2D/3D joint location
annotations normally rely on vision-based pose estimation
networks applied onto their aligned RGB images, severely
restricting the application scenarios. While sleeping in bed
is normally linked with strict privacy and dark illumination,
the vision-based pose estimation would encounter troubles.
HRNet [34] is a state-of-the-art pose estimation method and
has been proven to be effective on pressure images in [28]. We
use the same training subset for MassNet to train the HRNet,
and get an average of 5 to 9 pixel errors on the test sets,
as shown in Table IV. The computed joint vectors and their
corresponding pressure images are then fed to MassNet for
the body weight estimation task. Table IV shows the maximal
precision loss on the SLP dataset is 0.47, about a 10% plus
compared to the results with precise joint positions, and the
precision change can nearly be ignored on the other datasets.
Furthermore, the outcomes outperform the model with the only
mass branch on all datasets except Ours (Random). This study
proves the possibility to apply our MassNet to illumination-
sensitive and privacy-concerning environments.

6) Performance on time series pressure data: To verify
MassNet’s stability and robustness in the long-term weight
monitoring task, we train it with the static posture images,
then apply it onto the whole dynamic dataset, which contains
more than 36000 frames. Given that the subject’s movements
can cause perturbations in the pressure values, a gradient-
based active frame selection method is implemented to split
the whole time-series dataset into static and active parts.
MassNet achieves a 4.70(±0.90)kg MAE in the static part
and 9.58(±3.82)kg in the active part. Fig. 8 gives a glimpse
of our method’s performance. When a subject was asked to
move the hands from the head to the ventral side, as shown
in Fig. 8(a), the predicted weight drops simultaneously as
the contact area decreases. The predicted body weight returns
quickly to a stable value after the action is finished.

VI. DISCUSSIONS AND CONCLUSIONS

We have proposed a dual-branch neural network, the Mass-
Net, that can extract body weight from a single pressure image.
This model outperforms the baseline models, namely the
linear fitting, feature extraction, and two state-of-the-art neural
networks, on both a public dataset with a film sensing mat and
a self-created dataset with a pure-textile mat. With ablation
studies, we proved the usefulness of the two branches and
the contrastive loss module, studied the influence of different
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postures and movements on the weight estimation task, and
proved that the MassNet can also work fully independently
without any support from the extra camera(s).

For future works, the MassNet could be further enhanced
at least by three methods:1) to give more concrete studies
about the network hyperparameters and setups like loss weight
λ, network channels, etc. and elaborate discussion on how
they are tuned in practice. (2) to create more branches. For
example, another branch of body shape parameters could
be added, where the body shape parameters can be again
deduced from the pressure image and enhanced by averaging
the results from multiple postures. (3) to take the time-series
data into consideration. As a person’s body weight remains
nearly constant in a short sleeping period, the predictions
from multiple postures during the whole sleeping period might
be merged (e.g. averaged with their confidence, which is
estimated by the postures) to achieve a more accurate result.

Lastly, the datasets used in this paper are all collected in the
laboratory configuration, dissimilar to in-wild environments.
Hence the next step would be to push the MassNet into real-
life conditions, e.g. considering disturbance and noises from
environmental objects like pillows and heavy blankets.
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