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AbstractÐIn this paper, we propose Anchor-agnostic Trans-
formers (AaTs) that can exploit the attention mechanism for
Received Signal Strength (RSS) based fingerprinting localization.
In real-world applications, the RSS modality is inherently well-
known for its extreme sensitivity to dynamic environments. Since
most machine learning algorithms applied to the RSS modality
do not possess any attention mechanism, they can only capture
superficial representations, yet subtle but distinct ones character-
izing specific locations, thereby leading to significant degradation
in the testing phase. In contrast, AaTs are enabled to focus
exclusively on relevant anchors at every Received Signal Strength
(RSS) sequence for these subtle but distinct representations. This
also facilitates the model to neglect redundant clues formed
by noisy ambient conditions, thus achieving better accuracy in
fingerprinting localization. Moreover, explicitly resolving collapse
problems at the feature level (i.e., none-informative or homoge-
neous features) can further invigorate the self-attention process,
by which subtle but distinct representations to specific locations
are radically captured with ease. To this end, we enhance our
proposed model with two sub-constraints, namely covariance and
variance losses that are mediated with the main task within
the representation learning stage towards a novel multi-task
learning manner. To evaluate our AaTs, we compare the models
with the state-of-the-art (SoTA) methods on three benchmark
indoor localization datasets. The experimental results confirm
our hypothesis and show that our proposed models could provide
much higher accuracy.

Index TermsÐTransformer, Self-Attention, CNNs, Indoor Lo-
calization, Indoor positioning, Deep Learning

I. INTRODUCTION

The ever-increasing worldwide demand for smart space

ecosystems (e.g, smart buildings, smart warehouses, and smart

hospitals) over the last decade has fueled indoor localiza-

tion systems profusely to become an indispensable enabler

for many context-aware services, including wayfinding, asset

tracking, and patient monitoring, to name but a few. For all

that, owing to the ubiquity of WiFi, and Bluetooth signals,
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Received-Signal-Strength (RSS) fingerprint-based indoor lo-

calization has been well-established as the most flourishing

stream where a massive number of off-the-shelf deep learning

architectures from vision and natural language processing

(NLP) tasks were altogether transferred. These methodologies

absolutely prevail over the traditional methods, namely mul-

tilateration techniques with Time and Angle of Arrival that

strictly require time-synchronization between radio emitters

and receivers. Basically, the fingerprinting approaches initially

require an offline phase for establishing a radio map (i.e.,

fingerprint database), in which sequences of RSS anchors*

(i.e, RSS fingerprints), and associated locations are manually

surveyed. In the online phase, users’ locations are determined

by matching fingerprint observations against the fingerprint

database.

Despite certain achievements in indoor localization using

simple methodologies for kNNs’ enhancements [1], [2], their

performance is inclined to show more degradation both under

sparse radio maps and dynamic environments (e.g., tempera-

ture, humidity, static and moving objects that all lead to reflec-

tion, scattering, absorption in radio propagation, and power-

constraint policies at emitters), not to mention a considerable

amount of look-up time required for inference. With the arrival

of CNN [3], [4]- and RNN [5]-based models, some of these

deteriorations are partially mitigated by dint of architectural

inductive biases that are directly beneficial to representation

learning. To inherit transferable knowledge from pretrained

CNN models on exploiting RSS sequences, prior works [3],

[6], [7] have reshaped these RSS sequences into expected input

sizes to the pretrained models. A proliferation of artifacts and

false correlations among anchors in RSS sequences is fabri-

cated and significantly intensified accordingly. This might help

the model yield good results in the training phase but worsens

it in the testing phase thereafter, due to the inconsistency of

exploited patterns in these phases. In response, RNNs [8] were

applied to involve temporal relationships among sequences of

anchors while the structure of the input sequence is kept intact.

Although the aforementioned methods successfully gain

leverage of CNN- and RNN-related inductive biases for

*An anchor implies a radio-emitting source (e.g., WiFi access points,
Bluetooth beacons.
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seeking consistent features in terms of spatial and temporal

domains respectively, the course of input transformation and

sequential computation causes more artifacts in the trans-

formed input and local exploration of superficial correlations

between sequence anchors and the considered locations. Such

detrimental effects are likely instead to guide the models to

irrelevant representations. In short, their inferior performance

in the testing phase largely lies in the following points: (1) RSS

fingerprint is a hard modality that is inconceivable to human

reasoning and very susceptible to environmental dynamics in

time. Such adverse factors produce a mass of inconsistent clues

to fingerprints. As a result, it is nontrivial to comprehensively

capture subtle but distinct representations for specific loca-

tions. (2) The transformed input with noisy additives could

not entirely benefit from the existing CNNs. That is, the

convolution kernel in CNNs is well-functioned based on the

assumption that adjacent elements must hold a true spatial

correlation. It has proved the point to the image property

where every pixel’s color is highly relevant to its neighbors.

(3) An original 1D fingerprint vector composed of independent

anchors that are associated with the corresponding RSS values

has very limited expressiveness of information between these

anchors for any specific location. Thus, extensive interventions

are desired to exactly discover latent correlations among these

anchors that characterize the corresponding location. However,

because of the reliance on sequential computation and local

convolution filters that merely provide a small receptive field

on local patterns, such vanilla RNN- and CNN-based models

respectively lost sight of the whole picture on the RSS

sequence, and thus failed to run their course to extract relevant

features for specific locations.

We assume that a given RSS fingerprint corresponding to

one location both holds inconsistent and consistent clues that

were hidden in its latent structure, whereas the inconsistent

ones are always all-pervasive. This is because of its vulnerabil-

ity to environmental conditions where measurements of RSS

fingerprints to a certain location are likely to be filled out

with a large portion of highly noisy information. Moreover,

excessive exposure to such inconsistent information in the

representation learning stage induces significant degradation in

localization performance, while being able to direct attention

to the only clues that are consistent with related locations can

bring benefits instead. For that point, there exists a high chance

that one model without any adequate attention scheme is easily

trapped with adverse information.

Heading for the adoption of the self-attention mechanism

to draw global dependencies between input and output in a

sentence, the Transformer [9] with the capability of parallel

computing, which totally eschews recurrent computations, can

faster reach the state of the art in many NLP tasks. In computer

vision (CV), the convolutional architectures remain firmly

established as state-of-the-art (SoTA) approaches over a wide

variety of vision tasks, e.g, object detection, image recognition,

and 3D reconstruction. In the past three years, the picture has

been very different as a large number of the transformer’s

variants [10]±[13] have massively come into play with roaring

success in a majority of fundamental vision challenges.

Motivated by the overwhelming superiority of transformers

in NLP and CV, we attempt to adapt the Transformer to

indoor localization by analogy between input sentences in

NLP and RSS fingerprints. Compared to familiar modalities,

such as audio, image, and text that have intrinsically proved to

be spatially and temporally correlated among inner elements,

fingerprints do not bear explicit correlations among inner

anchors. In addition, not only is such a modality far more

demanding for qualitative analysis than the familiar modalities

because of the inconceivability and uninterpretability, but

also extremely vulnerable to any levels of variations in the

environment over time, which results in a big gap between

training and testing phases. Nevertheless, the fingerprints at

one location could show a few close resemblances to text

sentences in several key respects. In particular, the context of

an excerpt is represented by the meaning of several sentences

inside, which goes the same for the indoor localization field

where the context of one location is supposedly represented

by a set of fingerprints. For that excerpt, the nuance of each

sentence inside is defined by some of its keywords. In the same

way, the expressiveness of each fingerprint to the location is

implicitly captured by selective inner anchors.

With that in mind, for the sake of conformity that the

standard Transformer was not designed to perform straight

on RSS fingerprints, we first accommodate an Anchor2Vec

layer to the fingerprints by linearly mapping these sequences

of anchors to informative token embeddings as input to the

Transformer. These token embeddings thereafter are treated

the same way as word token embeddings in NLP appli-

cations where a stack of multi-head self-attention layers is

fully applied. Going through these stacked attention layers

can help progressively reveal the latent correlations among

sequence anchors, which guides the model to subtle but

distinct representations that are supposed to carry hidden

information consistent with considered locations. Furthermore,

we also proposed an enhanced Transformer dubbed enhanced

Anchor-agnostic Transformer (eAaT) that is conducive to

the exploration of such latent correlations in the multi-head

self-attention layers. To clarify, eAaT can avoid feature-level

information collapse in an attempt to generate very infor-

mative token embeddings before the stacked attention layers,

thus encouraging considerable restraints on irrelevant features

while seeking subtle but distinct representations. This ability is

enabled by being synergistic between two extra sub-constraints

and the main task that are optimized together towards a novel

multi-task learning fashion where all contributions from such

constraints are equally adjusted.

Overall, our core contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose

a base transformer architecture adapted with a specialized

Anchor2Vec layer (bAaT) that could meaningfully inter-

pret an RSS fingerprint which is constituted by discrete

anchors for a specific location.

• Furthermore, we also deliver an enhanced transformer

(eAaT) that is furnished with two extra sub-constraints
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deemed as unsupervised tasks to address the information

collapse at the feature level, for which we again present a

novel multi-task learning scenario referred to as Adaptive

Random Loss Weighting (Adaptive RLW) to automati-

cally learn to balance contributions between the learning

tasks. This aims at easily and comprehensively utilizing

the learned common knowledge among the learning tasks

to improve performance on the main task of localization.

• We demonstrate our SoTA performances through ex-

tensive experiments and visual interpretation of public

indoor localization datasets. Besides, this paper expects

to provide fresh impetus for more transformer-based

approaches to fingerprint-based indoor localization tasks.

II. RELATED WORK

Within the last few years, many deep learning models have

been suggested and successfully integrated into indoor local-

ization, particularly fingerprint-based techniques. We briefly

review the most related literature in the following:

Fingerprint-based localization Approaches. In lieu of jump-

ing on the bandwagon for further advancements in vanilla

matching functions (e.g., kNN variants [1], [14], [15]) based

on distance metrics (e.g., Euclidean, Manhattan, and Cosine

metrics), some works adopt deep learning models to automat-

ically seek more pertinent features for fingerprint matching.

Specifically, CNN-based fingerprinting methods [4], [6] were

put forward with extra preprocessing steps to convert 1D-RSS

measurements into expected input shapes to CNNs. Utilizing

inductive biases inherent in such architectures to represent

RSS fingerprints, such methods yield decent localizing perfor-

mance over public indoor localization datasets. WiDeep [16]

integrates probabilistic stacked auto-encoders to handle the

noise and to capture complex relationships between the WiFi

anchors. To incorporate temporal correlations among RSS

sequences within a trajectory into the representation learning

stage, Hoang [8] et al. applies RNN-based architectures into

RSS input vectors without any input shape transformation

for the trajectory localizing, which provides sequential output

locations at a certain interval. By extension, other approaches

[17], [18] cast the fingerprinting problem as a domain adaption

problem, in which fingerprint collection time and device

are considered as independent domains. Accordingly, domain

adaption-based frameworks have been fully adopted to extract

domain-independent representations.

Moreover, prior works on transformer-based architectures

are worth mentioning. Since their inception 5 years ago [9],

many variants have been suggested and gained ground for

impressive successes in both NLP and vision tasks among

researchers who look for alternative powerful architectures

other than sluggish models.

Transformers. Transformers were for the first time pre-

sented by Vaswani et al. [9] for machine translation, and

have since ripened into the SoTA method in many NLP

tasks. Continuously, Devlin et al., [19] pretrained a stack of

bidirectional transformer-encoders (BERT) on self-supervised

pre-training tasks, e.g, Mask Language Modeling and Next

Sentence Prediction to inject bidirectionally attended repre-

sentation, and sentence-level understanding biases for non-

autoregressive tasks, while the GPT series [20]±[22] employ

language modeling as its pretraining task on transformer-

decoders to ameliorate autoregressive tasks.

Vision Transformers. Inspired by the achievements of Trans-

formers on NLP tasks [9], [19], [22], [23], Dosovitskiy et al.

[11] proposed vision Transformers (ViT) that can represent

fixed-size patches of an image with position-encoded em-

beddings for image recognition tasks via a Linear Projection

of Flattened Patches layer. Whereas ViT cannot outperform

state-of-the-art CNNs on the standard ImageNet benchmark,

it reaches excellent results when pretrained on the larger

JFT-300M dataset. DeiT [24] is devised with a knowledge

distilling-based learning to augment learned representations

from ViT, which bested ResNet [25] by a significant margin.

Some following works such as T2T-ViT [26], LocalViT [27]

and CrossViT [28] arrive with improvements in the architec-

ture design of ViT. Another line of research [29]±[31] attempts

to transfer the inductive bias of CNN into Transformers.

In addition, some endeavors [13], [32]±[35] are made to

accommodate ViT to other vision tasks.

To push the boundaries of the aforementioned drawbacks

in indoor localization, we directly elaborate a standard end-

to-end transformer encoder architecture with a few tokenizing

tweaks to fingerprinting problems. This adapted architecture is

then capable of extensively directing its multi-head attention to

global dependencies by taking into account the entire context

sequence at once when refining one token embedding. With

the support from parallel computation, this ability is further

deepened by a stack of attention layers, which encourages the

model to efficiently realize correlations and important clues

hidden in the sequence anchors. Furthermore, we propose

two embedding-level sub-constraints as auxiliary unsupervised

tasks, namely Covariance Jcov and Variance Jvar losses to

seize more control of the representation learning process. In

this way, the diversity between tokenized sequences in general,

and distinct attributes at every token in particular are more

guaranteed, thereby facilitating multi-head attention layers to

better disseminate their consideration to tokenized anchors

according to the considered locations. To this end, eAaT

jointly accomplishes these tasks by the proposed Adaptive

RLW learning, a novel multi-task learning manner, in which

the influence between subtasks and the main task on the

learned gradients should be dynamically balanced over batches

via the corresponding losses.

III. PROPOSED MODEL

A. Overview

We mainly follow the settings of BERT [19] in NLP where

the input is expected to be a sequence of words. Assume a

1D RSS fingerprint X = [x1, · · · ,xN ] ∈ R
1×N is defined by

a sequence of N raw anchors, each of which contains a given

RSS value obtained exclusively from one of N emitters. To

be fully modeled by the Transformer as a sequence of words,

the RSS fingerprint X needs extra refinements. As illustrated
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Anchor2Vec for Tokenizing seq of anchors
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Fig. 1: An overview of Anchor-agnostic Transformers (AaTs). The pure Transformer is not designed to handle sequences of discrete anchors
X, i.e so-called RSS fingerprints, which also cannot be adequately unique to be represented for any given location. To this end, we design
an Anchor2Vec Layer as anchor tokenization where these sequences are interpreted into sequences of meaningful token embeddings E in
high dimensions, such that every single element inside is capable of carrying more contextual attributes. For each sequence or an individual
fingerprint, the tokenized anchors were attached with [CLS] serving as a summarized representation of the entire sequence, which can be
used further for classification or regression. We also injected learnable positional embeddings Epos to include positional clues among the
tokenized anchors. The resulting sequence of vectors E is then ready for the basic Transformer of L encoders (bAaT).

in Fig.1, owing to our designed tokenizing process at the An-

chor2Vec layer, which is detailed in Subsec.III-C, a given 1D

RSS fingerprint X is interpreted into more meaningful token

embeddings E = [e0, · · · , ek]
T
∈ R

(k+1)×d, which each bet-

ter manifests important information under d distinct attributes

as word token embeddings did in NLP. To be more specific,

X is first linearly mapped to an intermediate embedding of k-

dimensions, which serves as a fixed-size buffer that is flexible

to the various number of anchors, suggesting an adaptive effect

on representation refinement. In particular, the effect expects

to give rise to either feature consolidation for sparse RSS

fingerprints in high-dimension or feature interpretation for

dense RSS ones with lower dimension. Subsequently, every

element inside the intermediate embedding is enriched with

information-expressibility in dimension by further expansion

to a vector of d dimensions. In the meanwhile, the expansion is

closely supervised by Jcov&var both in dimension and batch

for effective and faithful enrichment. That can significantly

diminish information collapse in the tokenizing process.

By analogy with BERT’s [CLS] token, we do prepend a

learnable embedding [CLS] of d dimensions to the sequence

of token embeddings. Its output from the Transformer encoder

z
0
L serves as a summarized representation of the entire se-

quence that can be used both for regression and classification

down the line. Note that spatial information-awareness among

the tokens in the sequence, at the same time, was also raised

with the addition of a learnable 1D positional embedding

Epos ∈ R
1×(k+1)·d for the ultimate token embeddings E that

is ready for use of the Transformer thereafter.

B. Attention Mechanism of Transformer

As mentioned earlier, the Transformer has established its

powerful performance in many vision and language tasks

for its multi-head self-attention and parallel computational

capabilities. In this regard, the Transformer computes and

uses attention A from three types of inputs, Q (query), K
(key), and V (value), which are linearly projected from token

embeddings. Its computation for A is given by

A (Q,K, V ) = softmax(
QKT

√
d

)V, (1)

where Q, K, and V are all collections of projected features,

each of which is represented by a d-dimensional vector. To be

specific, Q = [q0, · · · , qk]
T
∈ R

(k+1)×d is a collection of k+1
features corresponding to the number of tokenized anchors in

a sequence. Similarly, K and V are each a collection of k+1
features, i.e., K,V ∈ R

(k+1)×d. In Eq.1, V is attended with

the weights computed from the similarity between Q and K.

The above computation is usually multiplexed in the way

called multi-head attention. It enables the model to manip-

ulate multiple attention distributions in parallel on different

representation subspaces, aiming to increase representational

power. The outputs of H ’heads’ are concatenated, followed

by linear transformation with learnable weights WO ∈ R
d×d

as
A

k (Q,K, V ) = [head1, · · · , headH ]WO
, (2)

Where each head is expressed as follows:

headh = A

(

QW
Q
h ,KW

K
h , V W

V
h

)

, h = 1, · · · , H, (3)

where WQ
h ,WK

h ,WV
h ∈ R

d×dH each are learnable weights

inducing a linear projection from the feature space of d-

dimensions to a lower space of dH (= d/H)-dimensions. With

the reduced dimension of each head by the number of heads,

the total computational cost for multi-head attention remains

similar to that of single-head attention with full dimensional-

ity. Overall, one attentional block A
k (Q,K, V ) includes the

following learnable weights:
(

W
Q
1 ,W

K
1 ,W

V
1

)

, · · · ,
(

W
Q
H ,W

K
H ,W

V
H

)

and W
O
. (4)

Self-attention is the main component of transformers, which

enables the model to make use of contextual information from

neighbor anchors for predicting the current token.
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C. Anchor2Vec Layer
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Fig. 2: Anchor2Vec Layer. The layer is to disentangle B sequences
of N discrete anchors into B sequences of k + 1 dimensional

embeddings E ∈ R
(k+1)×d, each possessing d different attributes,

including positional correlations among sequence tokens by means
of learnable positional embeddings Epos. For clarification, a vector
of N anchors are initially linear-projected to a k-dimensional vector
∈ R

k for the adaptive effect (e.g, compression to large N >> k
or interpretation to minor N < k). After that, the vector is further
interpreted to another higher dimension, in which each element inside
is expanded to d attributes. This suggests that the whole vector E

′

should hold totally (k+ 1) · d different attributes for the considered
location, including [class] token of d dimensions before being
reshaped into the token embeddings E. To eschew feature-level
information collapse, two sub-constraints are imposed in eAaT for
strictly forcing the model to produce unique sequences together with
informative tokens inside that carry distinct attributes.

As presented in Fig.2, the Anchor2Vec layer is intended

for transforming sequences of raw anchors to sequences of

tokenized anchors, i.e, sequences of token embeddings. To be

more specific, the sequence of raw anchors X is transformed

into a 1D intermediate embedding of k dimensions to mainly

gain the adaptive effect. With the help of this effect, the over-

heads of computations and the footprint of learning parameters

are considerably shrunk for sparse fingerprint datasets with

over hundreds of anchors whereas triggering slight growth in

computation for dense ones with a few anchors. Afterward,

such a 1D embedding is further enriched to the one with higher

dimensions of k ·d to better express salient information among

tokenized anchors. Furthermore, [CLS] token responsible

for synthesizing the representation of all tokenized anchors

involved in the sequence is placed at the first place x0 of the

sequence. Also, the sequence of token embeddings is element-

wise fused to the learnable position embeddings Epos for

retaining positional information, which helps the model not

perceive the sequence as ºa bag of wordsº. The resulting

sequence of token embeddings E thereafter serves as input

to the encoders. As regards the eAaT, there is an extra step

needed, in which the token embeddings E are batch- and

dimension-wise regulated by the following sub-constraints that

play roles as two unsupervised tasks. The imposition of such

subtasks to satisfy the main task of localization is achieved in

a multi-task learning fashion.

Covariance Constraint. The constraint JCov is proposed to

ensure high information diversity for all attributes of each

tokenized anchors {ei}
k
i=0 ∀ ei ∈ R

d in a sequence E by

decorrelating the entire attributes of the sequence token em-

bedding over a batch of B examples. Therefore, the informa-

tional collapse where the attributes of different tokens in the

same sequence would vary together or be highly correlated is

significantly diminished. As shown in Fig.2, instead of locally

allowing such diversity in one single token embedding of

E, where only every d attributes is independently taken into

consideration, we simultaneously dispense it comprehensively

to all token embeddings via the sequence E
′ ∈ R

d·(k+1), a

sequence of unraveled token embeddings before E, which

strictly encourages globally distinct attributes in the entire

sequence. To this end, relations among element attributes over

a batch should be modeled with a covariance matrix:

Cov
(

E′
)

=
1

B− 1

B
∑

i=1

(

E′
i − Ē′

) (

E′
i − Ē′

)T
(5)

where

Ē′ =
1

B

B
∑

i=1

E′

i

With Eq.5, the constraint is deduced and then satisfied by

minimizing the following expression:

JCov =
1

(k + 1) · d
∑

i ̸=j

[

Cov
(

E′
)]2

i,j
(6)

The Eq.6 aims to minimize all off-diagonal values, each of

which indicates the level of correlation between two different

attributes. At the optimal point, one sequence is expected to

hold informative and distinct attributes across its tokens.

Variance Constraint. In a similar way, this constraint remains

implemented on E
′ for the comprehensive effect. Given a

batch of B sequences, a hinge loss is employed to maintain the

variation among sequences of the unraveled token embeddings

above a given threshold. This term generally forces sequences

of the token embeddings within a batch to be different, which

implies that each sequence would bear its own attributes.

Thus, the collapse as a result of the shrinkage of the token

embeddings towards zero, i.e., different locations in one batch

represented by the same sequence of token embeddings is

explicitly prevented. In the following, the variance loss is

instead computed on a standard deviation of E
′ over B

sequences to rule out the cases that the gradient with respect

to E′

i becomes close to zero as E′

i comes close to Ē′.

Std (E, ρ) =

√

√

√

√

√

B
∑

i=0

(

E′
i − Ē′

)2

B− 1
+ ρ (7)

Based on Eq.7, we define the variance constraint via a hinge

loss function:

JV ar =
1

(k + 1) · d

(k+1)·d
∑

j=1

max (0, γ − Std (E, ρ)) (8)

where γ is the desired average standard deviation, and ρ is a

very small scaler to keep Eq.7 valid at all times.
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With the benefit of Eq.6, and Eq.8, the Anchor2Vec layer

can meaningfully represent sequences of raw anchors with

sequences of token embeddings that not only acquire indepen-

dent details in cross-sequence but also have distinct attributes

in intra-sequence. That accordingly facilitates the multi-head

self-attention process to efficiently realize subtle but distinct

representations.

D. Adaptive Random Loss Weighting in Multi-task Learning

To mediate disputes between learning tasks to effectively

learn relevant representation for the main task, the sub-

constraints should be preserved in harmony with the main

goal in a multi-task learning (MTL) fashion. Since all the

predefined tasks, including two unsupervised tasks and the

main one, are not closely related, it thus is nontrivial to

training an MTL model than training each of them separately.

The discrepancies between the learning tasks might cause the

implications of conflicting gradients among these tasks or

dominating gradients at a given task to the others [36], thus

leading to unsatisfactory performance for other tasks. Such

phenomena are related to the task-balancing problem [37] in

MTL, where balancing the influences between sub-tasks and

the main task remains very challenging. Rather than directly

intervening in learned gradients of considered tasks, the work

[38] presents a Random Loss Weighting (RLW) scheme to

indirectly balance influences among these tasks. Inspired by

this opinion, we propose an advanced weighting approach

coined Adaptive Random Loss Weighting manner (Adaptive

RLW) in which contribution balance between different tasks

through weighting factors λ̄ =
[

λ̄1, λ̄2, λ̄3

]

in Eq.9 is utterly

learnable. The previous research on RLW has been almost

entirely restricted to the random draw for weight factors λ̄
from only one of the following distributions, e.g., Normal,

Dirichlet, Bernoulli, Uniform, and Random Normal which is

initialized with a random mean and random standard deviation,

yet without any feedback from the model. This works on the

assumption that randomly introducing such weighting factors

from one of the predefined distributions is regarded as another

stochastic stream that enables the model to automatically align

its consideration of computed gradients with involved tasks.

The concept has already been proved for the first stochastic

stream of randomized separate batches of input data from

the whole dataset, in which the model has no control of

randomization, but is still capable of directing its learning

ability to the whole dataset.

Joverall = λ̄0JMAE/Cat + λ̄1JCov + λ̄2JV ar (9)

More flexibility and relaxation in the multi-task balance of

RLW could greatly relieve the anxiety of gradient conflict

or domination at one task over others. This suggests that

each batch needs weighting factors of disparate magnitudes

for different distributions to properly regulate gradients of

involved tasks. However, the predecessor only gains one

constant advantage of the same distribution for all batches

without any interoperation from the model. In light of this, the

Adaptive RLW was designed to responsively capture feedback

from the model while being wholly able to simultaneously reap

Algorithm 1: Adaptive Random Loss Weighting

Input: number of tasks T , number of weight distributions P ,
learning rate α, dataset D, model parameters θ, weight

distribution {ρi(λ̃)}P−1
i=0

Output: task-specific weights {λ̄t}T−1
t=0 , task-specific losses

{Jt}T−1
t=0

1 Initialization: λdis ∈ R
T×P , λ̄ = [λ̄0, · · · , λ̄T−1], λ ∈ R

T

2 for t = 1 to T − 1 do
3 Compute loss Jt(D, θ)
4 end for

5 Extracting the unraveled token embeddings E
′

6 /* Performing enhancements on E
′ by taking all

the involved sequences within a batch into

account */

7 Sseqs = softmax(E′E′T )

8 Eehc = SseqsE′

9 /* Computing distribution weights Wdis ∈ R
P

among P distributions for a batch of B

sequences */

10 Wdis = softmax

(

1
B

B−1
∑

j=0

Pooling
(

Eehc
j

)

)

11 // Sampling weights from P distributions

12 for i = 0 to P − 1 do

13 λdis[: T, i] ∼ ρi(λ̃)
14 end for
15 for t = 0 to T − 1 do

16 λ[t] =
P−1
∑

p=0

λdis[t, p] ·Wdis[p]

17 end for

18 λ̄ = softmax(λ) // Computing task-specific weights

19 return {λ̄t}T−1
t=0 , {Jt}T−1

t=0

multiple gains from all five different distributions to better

balance influences among predefined tasks on the model’s

learning ability. To be more specific, the feedback is achieved

by directly appraising the model’s state via an analysis on the

enhanced feature map Eehc to learn intermediate weights Wdis

corresponding to five different random distributions, succinctly

interpreted in Algo.1. As a result, those weighting factors from

relevant distributions are significantly enhanced whereas those

from unnecessary distributions are highly suppressed, which

indirectly allows for more effective adjustments to computed

gradients from each task jointly, thereby significantly alleviat-

ing dominant gradients at a certain task.

IV. EXPERIMENT

A. Implementation Details

Dataset. Three public indoor databases, namely UJIIndoor-

Loc, UTSIndoorLoc, and TampereIndoorLoc for position es-

timation and floor classification, are adopted to strictly assess

the proposed framework. Those are sparse databases with

hundreds of anchors measured in multi-storey buildings. For

UJIIndoorLoc, only around 232 out of 520 anchors in each

fingerprint really work for each floor. Likewise, 557, and 779

out of 589, and 992 anchors are actually active in UTSIn-

doorLoc, and TampereIndoorLoc respectively. Such missing

anchors were filled with 100 dB for all these databases.

Evaluation metrics. To have a fair comparison, we adopt two

kinds of metrics to evaluate localization performance. Firstly,

the meter errors are defined by the Euclidean distance between

estimated locations and their corresponding ground truth for a

fine-grained localization evaluation. For further examination in

the stability brought about by involved methods, two additional

sub-metrics, 75th, and 95th Percentiles are in turn introduced.

With less rigorous assessments, floor classification accuracy is

also considered as the coarse-grained localization evaluation.
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Parameter setting. In our experiments, we inter-

pret/consolidate an arbitrary sequence of raw anchors into a

sequence of k = 64 tokens constituted by d = 128 distinct

attributes each for stabilities. Through optimizing embedding-

level sub-constraints in Eq.6, and Eq.8 with ρ in sub-Eq.7 set

1e−4 as a small scalar preventing numerical instabilities, each

token sequence in one batch, therefore, is encouraged to not

only remain diverse among other sequences by γ of 1, but also

among its d · (k + 1) attributes per se. Moreover, the number

of transformer encoder blocks L is empirically determined

3, and 4 for fine- and coarse-grained scenarios respectively.

Our architectures implemented in Tensorflow 2.9 were trained

in batches of 256 each on a single GPU NVIDIA A100

40GB for 400 epochs with the learning rate of 1e − 4 using

Adam optimization. In addition, the process of adjustment to

weighting factors of the involved tasks {λi}
2
i=0 is jointly self-

learned for each batch during the training stage.
B. Model Ablation

This subsection exhibits the specific contribution of each

proposed part by decomposing the whole model into three

separate configurations:

(i): An upgraded model with the inclusion of the proposed

sub-constraints JCov&JV ar but the impacts between con-

sidered tasks are manually balanced by a traditional Fixed

Loss Weighting (Fixed LW) manner where weighting factors

were determined by a grid-search. The duration of the search

process can be considerably mitigated with prior knowledge.

Specifically, the searching range of weighting factors is re-

stricted to [1, 10] by the stride of 1, given that the λ0&λ2

should be similar and always few times greater than λ1, not

only because we more emphasize the main task and diversities

among examples to avoid information collapse in within-

batch examples, but also because the variation in attributes is

inherently much more sensitive to model performance than that

in within-batch examples. Thus, the λ1 of 1 is kept unchanged

throughout the adjustment of other factors. We carried out a

thorough search on the UJIndoorLoc, which requires roughly

2 days to complete. The discovered weighting factors then are

directly applied to the remaining datasets.

(ii): An end-to-end learning model (eAaT) that still keeps

utilizing the same advantages of ongoing constraints as (i), yet

radically exerts these by an Adaptive Random Loss Weighting

(Adaptive RLW), which is iteratively optimized in the training

process with few light operations. This process is completed

in one training round of 5 hours, in which the model is learned

how to resolve, and balance learning tasks at the same time.

(iii): A base model (bAaT) with all proposed tasks re-

moved from Anchor2Vec layer that is trained singly with the

main task JMAE/Cat. In this configuration, the model could

solely employ the bare adaptive effect of Anchor2Vec without

embedding-level enhancements, where the input sequence of

raw anchors is simply interpreted/condensed depending on the

input size to k + 1.

Advantage of Constraints JCov&JV ar . In Tab.I, the models

(i), (ii), which all incorporate sub-constraints JCov&JV ar into

representation learning process of tokens, mostly show explicit

improvements over the base model (iii) both in coarse- and

fine-grained scenarios on three indoor datasets. For example,

compared to the base model (iii) on UJIIndoorLoc, 0.24%
and 0.59% MAE improvements are achieved by models (i),

and (ii) respectively in the fine-grained scenario while only

0%, and 0.29% accuracy differences are shown in the coarse-

grained one. This is because such a coarse-grained scenario,

i.e., floor classification requires learning more relaxed repre-

sentations that can carry more coarse and general information

for the specific floors, however, the straight adoption of such

constraints instead comes with counterproductive effects of

imposing more restrictions on fine and meticulous cues in

representation learning, thus curbing relaxation of seeking for

expected representations. This restriction is no longer the case

or at least mitigated when applied with Adaptive RLW at

model (ii). Still, the degradation in performance is still wit-

nessed in model (i), typically a marginal decline of 0.29% in

MAE on UTSIndoorLoc and 1.05% accuracy drop in Tampere

compared to bAaT (iii). The sparsity of those datasets can be

explained as an important determinant associated with such

deterioration. To clarify, fingerprints for the corresponding

locations/floors in UTSIndoorLoc and Tampere each comprise

589 and 992 anchors respectively but are almost contaminated

with a large portion of missing anchors whose measurements

filled out with default values of 100 dB. Accordingly, the

fixed weighting-based constraints without any flexibility in

optimization are not always able to effectively work out,

or even worsen when forcing the model to synthesize such

inherently sparse, and noisy fingerprints that retain merely a

bit of useful information into tokens of distinct attributes.

Advantage of Adaptive Random Loss Weighting. Consid-

ering models (i), (ii), not only is its effectiveness expressed by

performance boost both in MAE and Accuracy, but also the

exploration costs regarding time- and computing- resources are

considered. The observations from Tab.I suggest that Adaptive

RLW in multi-task balancing could bring more convincing

benefits to model performance with comparable, even better

results at no further costs in exploration, optimization, and

later inference. As above-mentioned, it is worth noting that

Fixed LW needs a calibration interval for seeking hyper-

parameters, namely weighting factors λ̄, which were dimin-

ished to roughly 2 days with our prior knowledge. That is

completely changed to one single training round of 5 hours

for Adaptive RLW, yet with even more excellent outcomes.

Equally important, in most sparse datasets where the applica-

tions of Fixed RLW show slight reductions in accuracy (1.05%
on Tampere) or insignificantly deteriorated performance in

UJIIndoorLoc and UTSIndoorLoc though, the use of Adaptive

RLW constantly raises performance over the base model

(iii) by notable margins of 0.12%, 0.72%, and 0.0.59% on

Tampere, UTSIndoorLoc, and UJIIndoorLoc, respectively.
C. Fine-grained Localization

From the results in Tab.II, it can be seen that the proposed

models completely surpass SoTA methods, which proves their

competence in looking for detailed clues representing specific

locations compared to others. More specifically with detailed
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TABLE I: Ablation Study on AaTs

Dataset Model Fixed LW Adaptive RLW JCov + JV ar JMAE/Cat MAE (m) Accuracy (%)

UJIIndoor
(i) ✓ ✓ ✓ 8.43 (↑ 0.24%) 94.42
(ii) ✓ ✓ ✓ 8.40 (↑ 0.59%) 94.69 (↑ 0.29%)

(iii) ✓ 8.45 94.42

UTS
(i) ✓ ✓ ✓ 6.93 (↓ 0.29%) 95.88
(ii) ✓ ✓ ✓ 6.86 (↑ 0.72%) 96.39 (↑ 0.53%)
(iii) ✓ 6.91 95.88

Tampere
(i) ✓ ✓ ✓ 8.55 (↓ 0.23%) 92.29 (↓ 1.05%)
(ii) ✓ ✓ ✓ 8.52 (↑ 0.12%) 93.45 (↑ 0.19%)
(iii) ✓ 8.53 93.27

TABLE II: Fine-grained localization analyses on three public datasets.

Dataset Method Mean Absolute Error (m) 75th Percentile (m) 95th Percentile (m)

UJIIndoorLoc

CNNLoc [4] 11.78 / 259.65† 299.24† 380.98†

BayesCNN [7] 41.79 49.28 75.25
Weighted-KNN [39] 9.33 11.19 26.86

DNN [40] 133.40 170.85 213.10
RADAR [1] 9.21 11.05 25.88

bAaT 8.45 10.64 20.41
eAaT 8.40 10.66 20.33

UTS

CNNLoc [4] 7.60 / 14.53† 21.12† 28.64†

BayesCNN [7] 16.38 23.15 34.75
Weighted-KNN [39] 9.34 11.87 22.26

DNN [40] 17.80 26.18 33.91
RADAR [1] 9.26 11.76 22.26

bAaT 6.91 8.96 15.08
eAaT 6.86 8.73 14.78

Tampere

CNNLoc [4] 10.88 / - - -
BayesCNN [7] 14.70 19.30 39.57

Weighted-KNN [39] 10.45 12.56 32.06
DNN [40] 32.83 44.80 62.57

RADAR [1] 10.98 13.41 33.46
bAaT 8.53 10.17 24.35
eAaT 8.52 10.03 24.04

†: Tested with publicly available weights on the author’s GitHub [41].

Fig. 3: Empirical Cumulative Distribution Function of SoTA methods on three public indoor localization datasets.

quantitative results, the performance of BayesCNN dramat-

ically plunges in all sparse datasets, particularly to 41.79m

in UJIIndoorLoc, which is even worse than conventional

methods, such as RADAR, and Weighted-KNN with MAE of

9.21m and 9.33m respectively. Unlike these methods, our AaT

variants show its generalization at the 1st place, for example,

roughly 2.4m MAE with 3.03m in 75th Percentile, and 7.48m

in 95th Percentile lower than that of Radar. For the qualitative

assessment, our consistency in performance is also clearly

illustrated in Fig.3 which contrasts the eAaT with the others

via the accumulated errors. Throughout these plots of the fine-

grained competitions for consistency and stability verification,

the eAaT still triumphed over its counterparts by convincing

margins. This superiority over its rivals is attributed to the

advantages of the proposed components in the Anchor2Vec

for thoroughly representing sequences of raw anchors with

sequences of more meaningful tokens. Moreover, the intensive,

and extensive attention ability of the proposed model via its

multiple heads in multiple stages to relevant tokens for subtle

but distinct representations to the specific locations comes

into effect. This is in contrast with the other competitors

that were not equipped with any attention mechanism to

such representations, thus being easily trapped by irrelevant

information that is only useful in the training phase.
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TABLE III: Coarse-grained localization analyses for Floor hitting rate
(%) on three public datasets.

Datasets CNNLoc BayesCNN DNN bAaT eAaT

UJIIndoorLoc 96.03 90.64 41.58 94.42 94.69

UTS 94.57 84.28 5.41 95.88 96.39

Tampere 94.22 91.24 32.01 93.27 93.45

TABLE IV: Overall inference time comparison for SoTA methods on
UTS dataset.

Method Time (ms)

CNNLoc 6.9

BayesCNN 4.1

DNN 1.2

bAaT 2.5

eAaT 4.2

D. Coarse-grained Localization

In lieu of scrutinizing detailed clues as in the fine-grained

task, the coarse-grained task requires more relaxation in seek-

ing coarse-grained patterns for different floors. As shown in

Tab.III, CNNLoc inheriting certain compressive impacts from

the used vanilla auto-encoder, and architectural inductive bi-

ases can obtain good accuracy on sparse datasets. Considering

BayesCNN has no compressing ability, but inductive biases, it

still achieves comparable performance in some sparse datasets.

This adversity is mainly due to its input construction scheme

inducing more noisy information instead. Compared to CNNs,

simple DNN having no powerful inductive biases to exploit

typical patterns severely suffers from the worst performance.

For all that, the AaT variants, especially eAaT can perform

very well over sparse datasets. Our inferiority could largely lie

in one of the model’s inductive biases, namely the locality for

which the model can pay attention to details through a stack

of multi-head attention layers. Owing to this ability, its vision

to general and coarse clues that are necessary for the floor

classification task is partly limited despite some alleviation

efforts having been made by the proposed sub-constraints

using Adaptive FLW, which could be recognized by explicit

differences between eAaT and its variant in Tab.I, and Tab.III.

E. Inference Time

Tab.IV shows our flexibility to the rivals when having two

variants of bAaT and eAaT with small amounts of inference

time of 2.5 ms and 4.2 ms respectively. Through scenarios in

Subsec.IV-C, and Subsec.IV-D, although DNN can reach only

1.2 ms per sample, its uncertainty to the prediction is varied

to a great extent. However, our architectures which are much

more complicated than CNNLoc can achieve superior results

within a mere 2.5 ms for bAaT and an extra 1.7 ms for eAaT.

V. VISUALIZATION

In this section, the general effectiveness of the involved

models can be visually observed in 3D Top View MAE

heatmaps on the 1st floor of the Tampere Map as presented

in Fig.4. We adopt the 1st floor of the map for the qualitative

evaluations since Tampere is the only dataset that provides the

large number of testing points which is 5.6× greater than the

total number of training points (3951 points vs 697 points).

This domination not only encourages and expresses the model

generalization to unseen locations but also is more plausible to

display the heatmaps while efforts to interpolate an excessive

Fig. 4: 3D Top-view MAE Heat Maps performed by four typical
methods, namely eAaT, DNN, BayesCNN, and Weighted-KNN on
the 1st Floor of Tampere Map. Please zoom in to check the details.
Best viewed in color.

number of missing points are completely superfluous. More

specifically, we compute the MAEs at 1236 testing locations

on the 1st floor map and then segment those into seven areas

for four typical methods, namely eAaT, DNN, BayesCNN, and

Weighted-KNN. For each area, the resolution is correctly en-

hanced by linearly interpolating missing points with computed

internal MAEs points. These high-resolution areas thereafter

are put back together into the floor map.

It can be simply noticed that DNN poorly performs in outer

areas on the map, as indicated by the extremely warm color.

Marked differences from this method could be observed in

the Weighted-KNN and BayesCNN with clearer inner and

outer areas in relatively cold tones both. Compared to the

learning ability of BayesCNN which has yellow edge areas,

the interpolation property that requires no learning process is

deemed to be partly beneficial to the Weighted-KNN. This is

implied by some sudden warm-colored areas, which suggests

that the extrapolation or generalization to ones that are out of

the training data cannot be guaranteed. In contrast to those,

the eAaT can deliver stable and reliable performance, where

any errors from DNN, Weighted-KNN, and even BayesCNN

are then significantly mitigated on the eAaT side in cold tones.

VI. CONCLUSION

In this paper, we arrive at a novel view that learning one lo-

cation from its fingerprints is rather analogous to capturing the

context of an excerpt from its inner sentences in NLP. To this

end, we propose for the first time the variants of the Anchor-

agnostic Transformers, namely bAaT, and eAaT that have

been meticulously elaborated to effectively work on indoor

fingerprint datasets. Ultimately, we successfully demonstrate

that interpreting fingerprints into word sentences to represent

a specific location can significantly address insurmountable

problems of inconsistency in indoor localization.
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