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Abstract—Explainability is crucial for complex systems like
pervasive smart environments, as they collect and analyze
data from various sensors, follow multiple rules, and control
different devices resulting in behavior that is not trivial and,
thus, should be explained to the users. The current approaches,
however, offer flat, static, and algorithm-focused explanations.
User-centric explanations, on the other hand, consider the
recipient and context, providing personalized and context-aware
explanations. To address this gap, we propose an approach to
incorporate user-centric explanations into smart environments.
We introduce a conceptual model and a reference architecture
for characterizing and generating such explanations. Our work
is the first technical solution for generating context-aware and
granular explanations in smart environments. Our architecture
implementation demonstrates the feasibility of our approach
through various scenarios.

I. INTRODUCTION

Explainability has become a vital research topic due to the
recent progress in machine learning, autonomous systems, com-
plex decision-making, and smart cyber-physical systems [[1]],
(201, 130, (4], [5], [6], [7]. Users can lose trust in a system if they
feel they have no control and if the system’s behavior does not
meet their expectations, leading to misuse or rejection [8f], [9].
Many studies indicate that providing explanations is a viable
solution because it enables users to develop a more accurate
mental model of the system, allowing them to anticipate and
interpret its behavior more effectively [5], [10], [11]], [12].

The advancements of smart devices, cloud computing, mobile
networks, and pervasive computing have resulted in highly com-
plex ecosystems [13]]. These ecosystems gather extensive data
on the environment and users’ actions, goals, and preferences,
facilitating context-aware decision-making and autonomous
activities. The ultimate goal of this pervasive intelligence is
to enhance user satisfaction and comfort. Nevertheless, the
autonomous and automated nature of these systems can often
lead to confusion and frustration among users [5]]. Subsequently,
there is a need to provide explanations for users at runtime to
clarify the cause, purpose, and benefit of the system’s actions.

We’ve identified issues with current explanation approaches
in the smart environments domain. Firstly, many of them
focus solely on algorithmic explanations [14f], [15], [16],
which describe system behavior in terms of algorithms and
processes [[15]], [17], [18], [19]. These explanations often
unravel the planning or a causal chain of events, that are
challenging for end-users to comprehend [20f, [21], [22].
Furthermore, algorithmic explanations neglect the user’s con-
text. They provide uniform explanations, overlooking other
explanation desiderata besides describing the inner workings
of a system, such as persuasion, learning, or assignment of

blame [23]], [24]. The algorithmic explanation constitutes an
objective explanation, that only considers the problem to
be explained. However, the other desiderata require a more
subjective explanation, that considers the context in addition
to the problem. Hence, the user-centric explanation should
encompass contextual elements, reasoning, and information
beyond cause-effect relations. [16]], [20]. Finally, existing
approaches for explanation generation in smart environments
often suffer from a lack of personalization. Bunt et al’s
empirical study [25]] shows differing perceptions of explanation
attributes like completeness, soundness, and complexity. This
suggests that a one-fits-all explanation is insufficient, and
there is a need for personalized and granular explanations that
consider individual differences. Despite wide agreement on the
importance and essential attributes of user-centric explanations,
we lack approaches for developing smart environment systems
that can generate them.

To address the aforementioned shortcomings, we propose
building an explanation layer on top of a smart environment
system that constructs user-centric explanations by leveraging
the capabilities inherent in such systems (e.g., physical sensors
and devices, data collection and processing components, and
knowledge extraction mechanisms). Our approach offers the
following contributions:

o We define a model for user-centric explanations in smart

environments.

o We present a reference architecture for a user-centric
explanation generation engine, identifying event causes
within a rule-based system and enhancing explanations
with pertinent context to deliver personalized, context-
aware explanations in natural language.

o To assess the feasibility of our solution, we have imple-
mented the proposed reference architecture.

II. RELATED WORK

Ambient smart environments proactively support people
in their daily lives [26]. According to Huang et al. [27], a
mismatch between a user’s mental model and a system’s logical
interpretation can result in program failure and reduced per-
ceived ease of use. Using explanations effectively addresses the
issue by enhancing system transparency, improving user mental
models, and ultimately boosting trust and usability [5[], [[10],
[12]. Many studies emphasize the significance of experiential,
explorative, contextual, and timely explanations to improve
user interpretability; adding a human touch can increase social
presence [[16], [28], [29], [30]]. Miller [20], Hoffman et al. [31],
[I32], Klein [[33]], and Mittelstadt et al. [34] in their studies
have overviewed decades of works on social sciences for



explanation attribution. According to their finding, effective
explanations must be user-centric, i.e., cater to users’ epistemic
states, offering both “everyday” and scientific explanations.
Paes [35]] discusses that explanations need to convey both a
pragmatic and naturalistic account of understanding, and Gregor
and Benbasat [36] reason that explanations for end-users must
be context-based.

Moving to Software Engineering for Explainable Smart Envi-
ronments, we can refer to some related works. FORTNIoT [37]
is a smart home framework that offers a self-sustaining pre-
diction model and simulations for forecasting rule occurrences
in smart homes. Additionally, it provides explanations for
future entity changes, helping users identify triggering rules and
their reasons. Unlike our research, FORTNIoT mainly focuses
on forecasting events and provides limited explanations that
show cause-effect relations among rules, lacking contextual
and personalization aspects. Houz’e et al. [38]] developed an
explainable smart home framework, comprising explanatory
components for specific types of sensors and smart devices.
Like our approach, they see smart home dynamics as predicates
and trace events to pinpoint which predicates support the
questioned proposition, constituting the explanation. However,
their architecture solely deals with simple rule-based systems
where individual objects have their rules (e.g., a thermostat
turning off if the temperature exceeds a threshold) and don’t
delve into complex rules involving group devices, predicates,
and events. Moreover, objects must adhere to standard inter-
faces to integrate into their framework, which limits their
effectiveness due to the wide diversity of smart devices.
Authors in a set of works [39], [40] focused on developing
a loosely coupled mechanism for generating explanations.
They introduced a description language for smart devices
and a mediator acting as middleware to handle the diversity
of sensors and smart objects. Their unique contribution lies
in incorporating information about device functions into the
description, enabling smart devices to provide self-explanations.
In contrast to our approach, their work primarily aims at
offering tutorials to help users better operate devices. In our
work, our primary focus is on enabling intelligent systems
to self-explain automated actions and decisions to enhance
human-computer interactions and engagement for end-users. In
a related vein, there is a substantial body of research pursuing
a similar objective in a broader application domain, like cyber-
physical systems. Blumreiter et al. [41] introduced MAB-EX
(Monitor, Analyze, Build, Explain), a reference architecture for
generating explanations based on the MAPE-K framework for
self-adaptive systems [42]. In their system, an explanation takes
the form of a behavioral model of the system, capturing causal
relationships between events and system responses. The leaves
in their cause tree are linked to static explanations that can
ultimately be presented to the user. While the authors discussed
the potential for automated explanation creation, their initial
demonstration relied on manual explanation generation.

To conclude this section, we can observe that the focus in
explainability domains has mainly revolved around algorithmic
explanations. These explanations mainly hinge on causal
relations, presented as diagrams, charts, or stats, which can
be challenging for end-users. Hence, there is a growing

imperative to shift towards user-centric [43]], [44]. In our
work, we start with causal explanation generation but then
extend it with contextual elements by utilizing the inherent
capabilities of a smart environment. Indeed, smart environments,
comprising interconnected sensors, devices, and mechanisms,
offer valuable resources for user-centric explanations. Despite
the potential of context-awareness in enhancing various aspects
of ambient environment systems, such as personalization,
location-based services, and activity recognition [45]], [46], [47],
[48]], explainability in smart environments is often overlooked,
as highlighted in related works [38]], [39]. Our research aims to
bridge this gap by offering a practical framework for creating
user-centric explainable systems.

III. USER-CENTRIC EXPLANATIONS CONCEPTUALIZATION
A. Motivating Scenario

We devised a scenario inspired by a collection of situations
that need to be explained in an interactive smart environment
proposed in [49]. The scenario involves three users—Alice,
Bob, and Dana—interacting in an office building equipped
with smart devices and Smart Office Manager (SOM) software,
controlling various intelligent functionalities. Bob has set up a
rule to mute the TV automatically whenever a meeting occurs
in rooms located near the kitchen. Sometime later, Alice tries to
play music during lunch, but the TV mutes itself, leading to her
frustration. Despite her attempts to unmute it, the TV keeps
muting itself. Alice needs an explanation for this behavior.
Bob sees Alice struggling with the TV but does not realize
he set a rule to mute it during nearby meetings, especially
since he is unaware of the meeting in Room 1. Now, he needs
an explanation too. On another occasion, Dana, a visitor, is
waiting in the kitchen for her host Chuck, and experiences the
TV suddenly going silent. Despite not actively watching the
TV, the abrupt change in the TV audio left Dana confused,
particularly because she is alone in the kitchen and has not
interacted with any system. As a result, she feels the need for
an explanation.

In this scenario, three individuals find themselves in a
perplexing situation. However, as we will elaborate in the
upcoming section, each individual requires a personalized
explanation distinct from the others. Moreover, the explanation
must be easily accessible to them through the same smart
infrastructure they use for managing the intelligent environment.
This pervasive provision of explanation is crucial for facilitating
user interaction.

B. Explanation Conception

Before presenting our explanation formalization in Defini-
tion |1} we provide a brief overview of the notations used
throughout this work. The term Smart Environment System S
defines modern smart homes, offices, and buildings, as having
interconnected sensors and intelligent devices communicating
with each other and users. They typically possess autonomous
perception, reasoning, and action capabilities in their environ-
ment. Additionally, the term Explanandum ¢ refers to the
state or behavior of a system S that an Explainee requests an
explanation for. An Explainee, in our study, is a human who
interacts with the system S. Building on the causal explanation
framework introduced in [50]], we broaden its application to



TABLE I
EXAMPLE OF ALGORITHMIC AND SEMANTIC CONSTRUCTS IN OUR MODEL

Explanation Construct Example

Algorithmic Explanation Constructs
(for causal explanation)

(xr: Ruley is fired) — (xs: TV is Mute)
(xp : Meeting M1 is going on in Room 1) A (xq: TV is On) — (x: Ruley, is fired)

Contextual Explanation Constructs (x: : Bob has set rule Ruleg)A
(for context-based explanation) (x;j : Ruley, states that if TV is on while a meeting is taking place in rooms 1, 2, or 3, then mute TV)

encompass user-specific and contextual factors overlooked in
the generic approach. The original formulation proposes a
causal explanation of a phenomenon P through a conjunction
of primitive Events. This method offers the advantage of a
simple and generic structure for composing explanations by
identifying a sequence or combination of events that led to
the occurrence of P. However, the main drawback is that it
lacks consideration for the user and contexts resulting in a
mechanistic explanation that may not address the user’s needs.
Therefore, our objective is twofold. Firstly, we aim to apply
the concept of the generic causal explanation formalization
presented in the existing literature to the context of smart
environments. Secondly, we intend to extend this concept by
integrating contextual aspects. To facilitate this, we introduce
the notion of Explanation Constructs denoted as X.

In our model, the Explanation Constructs encompass a set
of specifications, facts, propositions, and events related to
both the internal elements S and the external world which
includes the user’s states and external systems, such as a
list of smart objects managed by S, a general description
of such devices, their current and past states, sequences of
actions and events, a set of rules and specifications, a set
of contextual variables (e.g., user’s roles) and their current
values. Explanation Constructs hence are among the data that
are commonly accessible and processable in modern smart
environments through APIs, documentation, and logs of events
provided either by S itself or external systems. Finally, to
proceed with the Explanation definition, we can broadly classify
Explanation Constructs into two categories as shown in Table [I}

The first category is Algorithmic Explanation Constructs
(AEC), which consists of facts, propositions, specifications,
or events that describe the logic or mechanism behind an
action/output of a machine/program. The second category is
Contextual Explanation Constructs (CEC), which includes
facts, propositions, or specifications that provide information
related to an action/output of a machine /program or an AEC.
By incorporating both AECs and CECs in an explanation, we
can create personalized and context-aware explanations. It goes
beyond the traditional causal explanations that only describe
the underlying mechanism of an explanandum. We define the
notion of Explanation in the domain of an smart environments
in Definition [T}

Definition 1 (Explanation ¥ ). For a given ¢, there is a ¥
that is a conjunction of some explanation constructs:

U= (x1€X)A...AN(xx € X) where X = {AECUCEC}

Hence, given the nature of X and Deﬁnitionm an explanation
is interpreted as a piece of causal and contextual information
that describes the algorithmic and contextual reasons behind

an explanandum. Therefore, it is aligned with the user-centric
explanation characteristics remarked earlier. More concretely,
an explanation is partly constructed by a causal explanation
for the system’s behavior captured through AEC. As shown
in Table [} for the motivating scenario given in Section [[TI-A]
where the explanandum is : [¢: why is the TV muted?], the
higher level AEC can be framed as: [the TV is muted as a direct
result of firing Ruley]. If one desires to explore the causation
path in more dept then AEC can also include: [because a
meeting in a nearby room is going on (X, in Table [I) and
TV is on (X, in Table )] since such proposition implies that
Ruley, (x, in Table[) fires: [x, A xq — Xxr]. Furthermore, the
complementary part of the explanation in our model is the
CEC that provides further meta-information. In our example,
this includes the rule description itself and a rationale as to
why such rules exist (see x; and x; in Table m)

Our explanation model includes two further essential ele-
ments: Views and an Inference Function. Together, these ele-
ments enhance the personalization and context-awareness of an
explanation going beyond a one-fits-all approach. By different
Views, we can tailor an explanation to specific user needs and
contexts. The Inference Function determines how the system
selects a particular View to be shown to a particular user based
on relevant contextual information. Transformation Function
ensures that the explanation is understandably presented to the
end-user by transforming the formal model of the explanation
to a natural language representation.

Definition 2 (Views of W). Let ¥ be the explanation for ¢.
There are n different Views = {V1,Va,...,V,} of ¥, which
are combinations of AEC, CEC C ¥ representing different
partial explanations for ¢. Note that the most detailed and
comprehensive view (Vy,;) includes all AEC, CEC C ¥,
which essentially means Vi, = .

Definition 3 (Inference Function). There exist some mecha-
nisms (e.g., mapping, inference, or rule engines) that operate by
considering a specific explanandum and all pertinent contexts
to deduce the most suitable V; € Views for presentation to a
particular explainee within a specific situation.

Definition 4 (Transformation Function). A function that
translates a view V; € Views (and its contained AEC and
CEC) into a natural language representation.

In our toy example, we say that U = {x, A xq A X» A
Xs A Xi A xj} (see Table . Given the epistemic state of
Bob, who has set the rule Ry, a relevant explanation is
Inference (explainee, Contexts, ¥) = Vi, where Vi = {xpAXq}
(see Table [). That is because Bob is aware of the existence

IThe explanandum may also be: [¢: why has this rule been fired?)
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of Ruley. Thus by X, and x4, he can infer that the rule has
been triggered. This representation is ultimately presented to
Bob as Transform (V) = {Because Meeting M1 in Room RI
is going on and TV is turned on}. However, to personalize
the same W for Alice, as a colleague of Bob, there is
a need to additionally explain the rule. Therefore, given
Inference (explainee, Contexts, V), a relevant explanation
could be Vo = {xp A x4 A X;}. Similarly, for Dana, who is a
guest visitor and Bob prefers to avoid revealing the underlying
details for her, yet another representation Va={xs A x; A X+ }
must be synthesized to customize the original explanation. It
is then offered to Dana as Transform(V3) = {TV is muted
because Bob has set a rule which has been just fired.}.

IV. A USER-CENTRIC EXPLANATION ENGINE

Figure [I] shows the reference architecture for the Smart
Explanation Engine (SmartEx), a RESTful service to extend
typical smart environment systems to an explainable ecosystem.
It decouples the explanation generation process from the core
intelligent system, which includes components like the smart
environment management system and home automation hub,
as well as intelligent device services and applications.

To create user-centric explanations, the Context-Aware Expla-
nation Generator component needs to have the current usage
contexts supplied by the Context Manager and the algorithmic
explanation which is the output of the Algorithmic Explanation
Generator component. The Context Manager collects and
preprocesses contextual elements. Some, like the Time context,
can be obtained directly on request, while others, such as
relatively stable user details (e.g., name, age), are stored locally
for future access. Additionally, it can utilize external context
providers (e.g., smart environment APIs, social networks) for
more complex and dynamic contexts. The supplied contextual
elements will then be used by the Inference Function. It is
responsible for mapping the current values of the relevant
contexts to a particular View (see Definitions 2] and [3) among the
set of Views known by the system. Such a view will ultimately
be translated into natural language, which is understandable
for a human interacting with the system.

The implementation of the Algorithmic Explanation Gen-
erator and the set of Views, depends on intelligent methods
deployed in the systems, such as various decision models (e.g.,
rule-based, hidden Markov model, decision tree), recommen-
dation systems (collaborative and content-based filtering), path
planning, or ML systems. In this work, we are targeting the
Rule-based systems (see Section M}), which are among the
most popular approaches for building smart environments and
context-aware systems [S1], [52]]. However, new plug-ins of
explanation generations tailored for other intelligent methods
can be integrated into the system in future works.

A. Explanations for Rule-based Systems

Each smart object in a typical rule-based system in the smart
environments has Actions, which are operations performed by
the object, and Properties that describe the internal states of
the object. A business Rule in its most generic form can be
defined as an expression: If Precondition, then Action. In smart
environment systems, rules serve as proxies to trigger specific
Actions for smart objects when certain preconditions (e.g.,
specific property values or contextual factors) are fulfilled.

We can conceptualize a rule-based smart environment
system S as a knowledge graph, where each node represents
a conceptual or physical element, such as a smart object, its
actions and properties, rules, and environmental contexts within
the system S. Starting from an Action node in this graph,
multiple paths unfold, representing plausible causes for the
execution of that specific action. For instance, in our motivating
scenario, the “mute TV” action may be issued due to a fired
rule (from a set of rules Ry, ..., R,), a direct command via an
API, or due to remote control signals. Each of these possibilities
forms a path in the graph, with the root node being “mute
TV”. Each rule (Ry,..., R,) involves distinct preconditions,
combining various smart object properties, user actions, and
environmental context. In reality, among all these paths, only
one path exists that represents the real cause of an action.
E]This unique path represents the cause-and-effect chain. In
our example, this path comprises preconditions (TV is on and
there is a meeting nearby), leading to the fired rule (say, R1),
resulting in the “mute TV” action.

Our framework has information about the rules of a system
including their preconditions and actions. By comparing
the rule descriptions with observed events extracted from
system logs, we can construct a cause-and-effect chain for an
action. To achieve this, our system utilizes a mechanism (see
Section to determine the causal path behind a system
behavior. After constructing the causal explanation component,
SmartEx further refines the explanation considering relevant
contextual factors (see Section [V-A2).

1) Algorithmic Explanation: Algorithm [I| shows how we
identify the cause-and-effect path discussed above. It takes
two inputs. The first is the Action to be explained (i.e., the
explanandum). The second is a set of Explanation Constructs
X, which include a list of smart objects managed by S, a
general description of such devices, their current and past
states, sequences of actions, and events, i.e., the log of S’ from
m minutes ago until the time the explanation was requested.

2We assume no duplicate rules and no rule conflicts.



The output of the algorithm is either the unique path that results
in the explanandum or Null if no such path exists.

In essence, the path corresponds to the rule that has been
triggered, resulting in the execution of the explanandum
(FiredRule in Alg. [I), along with all preconditions and actions
associated with that rule. To ascertain the output, the algorithm
initiates by extracting and removing R from the set X. R
represents the collection of rules established by users. The
remaining constructs in X are then sorted in order from 77,
(when the request for generating an explanation is made) back
until T},,. The variable m is configurable and determines the
extent to which the algorithm examines past events.

Algorithm 1 Find the cause path

1: procedure FIND THE CAUSE PATH P

2: input: X: Set of all explanation constructs observed by the system (i.e., rules, actions,
preconditions, logs of events, etc.), explanandum: the explanandum

3: output path: P

4: P+ 90

5 FiredRule < 0

6: R < Set of rules extracted from X

7 X+~ X-R

8: sort x € X in reverse chronological order from £,y to €,

9 CandidateRules < r where {r € R A explanandum € r.actions}
10: FiredRule < find r € CandidateRules where {

11: (Ya € r.actions : (a € X Atime(a) = time(explanandum))) A

12: (Vp € r.preconditions : (p € X A time(p) < time(explanandum))) A
13: (eval(r.preconditions, X, time(explanandum)) = true)}

14: if FiredRule # () then

15: P < FiredRule N\ FiredRule.preconds N\ FiredRule.actions

16: return P

Subsequently, the algorithm searches through the rules to
identify a subset of R, which is referred to as CandidateRules.
This subset includes rules that contain the explanandum as an
action(r.actions in Alg. [1} line 9). Next, the algorithm assesses
each element of the CandidateRules by traveling back through
the log of events in X. The aim is to locate the specific rule
r that satisfies two conditions(lines 10-13): i) all of the other
actions linked to » must also have been triggered simultaneously
with the explanandum and ii), all of the preconditions associated
with » must have been satisfied before the explanandum. To
evaluate these conditions, it is sufficient to check the existence
of the required preconditions and actions in X and their timing
order through a function that returns the timestamp of X.

Please note that a rule may have multiple actions, which
are all executed when the rule’s required preconditions are
met. The actions of rule » are grouped using the AND operator,
meaning that all of r’s actions must have been triggered. Unlike
actions, preconditions of a rule can be combined using both
the AND and OR operators. To determine the overall truth
value of the rule’s preconditions, the eval function evaluates
the logical expression formed by the logical operators of the
preconditions. It takes preconditions of r, along with X and
all timestamps, and outputs a Boolean value of True if all
necessary preconditions are met or False otherwise. In short, it
evaluates the innermost groups of preconditions first, assigning
a truth value to them based on their operator. It then computes
the truth value of the outer groups until the entire expression
is resolved to a single truth value.

2) User-centric Explanation: Given Definition [I| a user-
centric explanation necessitates the incorporation of AECs
coming from Algorithmic Explanation Generator, and CECs.
It generates a comprehensive explanation, which can be

~ )
Context Manager Context-Aware Exp. Generator

| User Name |
“Li_ {Name, Bob}

Inference
Function

‘

User Pro'lle

“User

Context
UserSlate
COH‘EXK ]
\Lanacy UsevRole |
-

Temporal
Context Ocourrence |

)i {Technicality Tech)

Most suitable
view:

{State, Break}

+—>Fact Exp

{Role, Owner}

{Occur, First}

Fig. 2. Context model (left) and its usage at runtime. The Context Manager
provides the Inference Function with the current values of relevant contexts.
In this example, the Inference Function infers that the most appropriate view
to present to the user is the Fact Explanation View.

decomposed into multiple views to provide granular and
personalized explanations (see Definition [2] Furthermore, the
inclusion of a context-aware mechanism becomes imperative
to determine the appropriate view for a given user in a specific
situation (see Definition [3 and Algorithm [2).

In particular, we are introducing four different views for a
user-centric explanation ¥ in a rule-based system. The first view
is Full Explanation View, corresponds to the complete ¥ that is
composed of both AEC (i.e., the path P) and CEC (i.e., the rule
definitions and the creators of rules). The subsequent views then
offer partial representations of ¥ by adjusting its granularity
and length to cater to different user needs. In particular, the
Rule Explanation View only denotes the rule r; € R, whose
action needs explanation (i.e., the root of the path P). The Fact
Explanation View displays the set of events that fulfill the
preconditions of r; € R, resulting in the rule’s activation. It
provides a representation of the instances of the preconditions
in the real world, thereby explaining why the rule has been
activated. On the other hand, the Simplified Explanation View
offers a high-level explanation for an explanandum by simply
stating that the event occurred due to a rule (without revealing
the rule itself) set by a specific user u,.

The final procedure to provide a context-aware and per-
sonalized explanation is to map a relevant set of contextual
elements to the most suitable view. In our work, contexts are
modeled as tuples of (attributeName, attributeValue) pairs. We
incorporate only relevant contexts for an explanation tailoring,
meaning alterations in their value may impact the explanation’s
length and granularity. Thus, our context model is composed
of a non-exhaustive set of contexts that we have found to be
pertinent for preferring one explanation over another. More
specifically, our system currently relies on some specification
of three main general contexts (User, Privacy, and Temporal
Context) as shown in Figure

In our context model, User Profile captures static user
attributes such as User Name and Technicality Level.
The dynamic attributes of the user are modeled using the User
State, which provides valuable insight into the user’s current
situation. For instance, if the User State is Working, it
indicates that the user is busy and thus may require a shorter
explanation. The frequency of exposure to a certain confusing
situation, referred to as the Occurrence of the explanandum
in our model, is another significant factor affecting the level
of detail required in an explanation. For example, if a user
encounters a new explanandum for the first time, they will



TABLE II
CONTEXT-VIEW MAPPINGS.

P1: User State |

Expr Context |
Pr ] View [ ML __ Bk

P2: Occurrence |

Wk | Ft St M |
1 Full Exp. View X v X v X X
2 | Fact Exp. View X v v v v X
3 Rule Exp. View v v v X v X
4 | Simplified Exp. View v v v X X v

[ P3: Technicality P4: Role |

[ Tch Med Nich | Ow  Cw Gst |
1 Full Exp. View v v X X v X
2 | Fact Exp. View v X X v v X
3 | Rule Exp. View v v X v v X
4 | Simplified Exp. View v X v v v v

Expr: Expressiveness, Mt: Meeting, Bk: Break, Wk: Working, Ft: First Time,
St: Second Time, M: More, Tch: Technical, Med: Medium Technical, Ntch:
Not Technical, Ow: Owner, Cw: Co-Worker Gst: Guest. The v'symbols: the view
fits for the context variable. An x symbol: the view is not suitable that context.

naturally require a complete explanation compared to a situation
where they have previously received an explanation for the
same explanandum. Finally, the User Role context accounts
for the system’s privacy settings, influencing the scope and
type of information that can be disclosed in an explanation.

The Context Manager is responsible for monitoring and
retrieving current contextual element values from various
sources.It supplies the Context-Aware Explanation Genera-
tor with two types of data. Firstly, the relevant contextual
information to build ¥ (i.e., CEC) and secondly, the relevant
contexts to infer the best-suited explanation view for the given
situation. As illustrated in Figure 2} the current values of
contextual elements are provided to the Inference Function
by the Context Manager during the explanation generation
process. The Inference Function uses this information to infer
the appropriate explanation view to generate. This is done via
Algorithm 2} utilizing contextual elements as input to determine
the most suitable View for the situation.

Specifically, we have implemented a set of mapping policies
using rules in a rule engine. Table [II| shows a simplified
representation of them. The priorities (P1 to P4) for each
context determine the evaluation order. The table shows what
the suitable views are for each possible value of a given
context (denoted by v symbol). The table also represents the
expressiveness order of views where the Full Explanation is the
most expressive one followed by, Fact, Rule, and Simplified.

Algorithm [2] shows the process by which the Inference
Function selects the appropriate view. Using the Context-View
mappings and the expressiveness order of views, it calculates a
view from the set of Views that is suitable for the given situation.
At the outset of the process, the Inference Function initializes
the set of available Views to include all possible types of views
(line 4). It then sorts the policy rules in order of priority,
starting with the highest (line 7). The function then begins
executing each policy by evaluating the conditions specified in
the rules, that is, by assessing the actual values of the relevant
contexts at that time. The result of each policy execution is a
set of so-called SuitableView (line 9). For instance, suppose
a user, denoted as Ul, is on a break, then the corresponding
suitable views are [Full, Fact, Rule, and Simplified]. Then,
the algorithm computes the intersection between the set of all
views and the set of SuitableView for Ul. If the intersection

is non-empty, the algorithm replaces the Views set with the
resulting set (lines 10-11).

Algorithm 2 Inference Function

1: procedure FIND MOST SUITABLE VIEW FOR GIVEN CONTEXTS

2: input: Set of Context_View mappings, Expressiveness order of View, Current values
of contextual elements

3: output: suitable view € Views

4: Views < {FullEzp, FactExp, RuleExp, Stmplified Exp}

5: Policy < Set of all the Context_View mappings > see Table
6: Context_Knowledge + {(C1, Valuey), ..., (C;, Value;)}

7: sort P € Policy from highest priority to lowest

8: forEach P € Policy do

9: Suitable_View < apply(Policy, Context_Knowledge)

10: if Views N Suitable_View # & then

11: Views < Views N Suitable_View

12: sort view € Views based on expressiveness

13: return most expressive view € Views

Afterward, the algorithm repeats the same process for poli-
cies with the next priority, which in this case is the Occurrence
context. Assume that Ul is requesting an explanation for a
particular explanandum for the second time. Based on the policy
for the Occurrence context in Table[MD} the set of suitable views
will exclude the Full and Simplified Explanation. The decision-
making heuristic applied here is based on the fact that the Full
Explanation view is deemed too detailed and is best suited
for first-time explanations, while the Simplified Explanation
view is too abstract and is better suited for situations where a
user has faced the explanandum more than twice in the last
three months. Consequently, the set of Views at this stage is
restricted to Rule and Fact Explanation. The procedure then
continues by examining the rules for the remaining contexts.
As shown in Table [l our implemented SmartEx adheres to
the context model presented in Section and includes
User Technicality and User Role in addition to User State and
Occurrence discussed earlier. In brief, for the Technicality and
User Role contexts, the Context-View mappings assign the
simplest and most abstract explanation’s view to Non-technical
and Guest users.

The last step is the sorting of the Views set based on
their expressiveness by the Inference Function. The most
expressive view is then returned as the final output. Note
that the check at line 10 ensures that Views set will never be
empty. The Explanation Presentation Component is responsible
for translating this output to natural language through the
Transformation Function, which could be implemented via
different approaches, such as a template-based text generation
or Prompt-Based Text Generation via Large Language Models.

V. IMPLEMENTATION AND FEASIBILITY CHECK

We created a prototype implementation as a proof of concept
and tested it extensively in various scenarios in our own smart
environments lab. Due to space constraints, we report results for
only one scenario in this paper. The prototype is a valuable basis
for conducting user studies that we plan for future research.

We have developed SmartE as a RESTful web service
implemented in Java, using MongoDB as a database. This
web service can be integrated into existing non-explainable
systems to create an explainability layer on top of them. In
our lab, we have an array of sensors, actuators, smart lights,

3https://github.com/ExmartLab/SmartEx-Engine
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TABLE III
EXPLANATIONS OF THE SAME explanandum (TV IS MUTED) FOR THREE DIFFERENT USERS (BOB, ALICE, DANA)

User Context (CEC) View Explanation
Bob {State: Break, Occurrence: 1st time,  Fact Expl. Hi Bob, tv_mute is active because currently a meeting in room 1 is going on and the TV is
Technicality: Tch, Role: Ow} playing.
Alice  {State: Break, Occurrence: 1st time,  Full Expl. Hi Alice, tv_mute is active because Bob has set up a rule: “Rule_2: mutes the TV if the TV is
Technicality: Tch, Role: Cw} playing while a meeting is going on” and currently a meeting in room 1 is going on and the
TV is playing, so the rule has been fired.
Dana {State: Break, Occurrence: st time, Simpl. Expl.  Hi Dana, Bob has set up a rule and at this moment, the rule has been fired.

Technicality: Tch, Role: Gst}

plugs, and appliances working on WiFi, Zigbee, and Bluetooth.

Home Assistant (HA serves as our software hub, enabling
task automation via its rule-based mechanism. HA offers a
RESTful API with endpoints for fetching data, including user
information, automation rules, device states, and a log of past
activities and states. The Context Manager in SmartEx fetches
this runtime data continuously from HA, while more static
data, such as the user profiles, is directly stored in the SmartEx
database. Collecting more contextual information about the
user’s state (e.g., meeting) must be provided by additional
services, which are not part of SmartEx. Additionally, the
Context Manager stores situations that have already been
explained to a user in the last three months. This information
is then used by the Context-Aware Explanation Generator to
tailor the explanation accordingly (based on the Occurrence
context). The Inference Function, which determines a suitable
view of the explanation based on the current context, has
been implemented using the Easy-RuleE] Java rule engine.
Accordingly, the View-Context mappings policies (see Table
are defined as rules processable by the rule engine. Lastly,
the determined view is sent to the Explanation Presentation
component, which utilizes a Transformation Function to
generate natural language, using a template-based approach for
English text generation.

The workflow in Figure [3] displays how users can seek
explanations for unexpected behavior using voice commands
(e.g., "What just happened?’), NFC tag scans, or a custom
HA dashboard. The first option offers a general explanation
of the latest system action, while the latter enables users to
specify a particular device’s action. Explanations are delivered
via audio and visual media, read aloud by the voice controller,
and displayed on client applications such as mobile apps
(Android/iOS) and web browsers

Exemplary Scenario: TV suddenly mutes. To demonstrate
our prototype, we pick the motivating scenario described in
Section [[TI-A] where the kitchen TV is muted during meetings
in nearby rooms to prevent disruption, involving three users:
Alice, Bob, and Dana.

4https://www.home-assistant.io/
Shttps://github.com/j-easy/easy-rules

To generate explanations, SmartEx collects AEC (see Sec-
tion and CEC (see Section [[V-A2). The AECs are
context and user-independent. The algorithm identifies that the
reason for muting the TV is that a specific rule, called Rule_2,
was fired. SmartEx then uses the collected CECs to generate
a context-aware explanation. Table [[TI] shows the explanations
generated by SmartEx for the same explanandum (i.e., TV is
muted) for the three individual users displayed on their devices.

To generate a context-aware and personalized explanation
for the three users, the Context-Aware Explanation Generator
must determine the best-suited View based on the CECs and
the rules specified in Table [l The Context-Aware Explanation
Generator determines the Fact Exp. for Bob, the Full Exp. for
Alice, and the Simplified Exp. for Dana.

VI. CONCLUSION

Despite theoretical foundations and empirical findings,
there’s a notable lack of effective software engineering methods
and technical solutions for generating user-centric explanations
in smart environments. To bridge this gap, we proposed a
novel mechanism and reference architecture for explanation
generation in this domain. The framework generates context-
aware and personalized explanations on various levels of
granularity tailored to users and situations. The framework
follows a service-oriented architecture that enables integration
with existing pervasive smart environment systems to equip
them with self-explainability functions. Our experiments on
generating explanations for everyday scenarios in smart envi-
ronments show the feasibility of the approach and motivate
further work. In forthcoming research, we plan to expand and
enrich our context model to encompass a broader range of
contextual elements. Furthermore, we plan to incorporate other
types of intelligent systems (recommendation systems, ML-
based systems, etc.) and more complex types of explanations,
such as contrastive explanations [53[]. Also, we plan to make
the explanation process more interactive, so users can provide
feedback to the system to receive more detailed explanations.
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